Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 105078, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37482277

RESUMEN

Manganese (Mn) is an essential nutrient, but is toxic in excess. Whole-body Mn levels are regulated in part by the metal-ion influx transporter SLC39A8, which plays an essential role in the liver by reclaiming Mn from bile. Physiological roles of SLC39A8 in Mn homeostasis in other tissues, however, remain largely unknown. To screen for extrahepatic requirements for SLC39A8 in tissue Mn homeostasis, we crossed Slc39a8-inducible global-KO (Slc39a8 iKO) mice with Slc39a14 KO mice, which display markedly elevated blood and tissue Mn levels. Tissues were then analyzed by inductively coupled plasma-mass spectrometry to determine levels of Mn. Although Slc39a14 KO; Slc39a8 iKO mice exhibited systemic hypermanganesemia and increased Mn loading in the bone and kidney due to Slc39a14 deficiency, we show Mn loading was markedly decreased in the brains of these animals, suggesting a role for SLC39A8 in brain Mn accumulation. Levels of other divalent metals in the brain were unaffected, indicating a specific effect of SLC39A8 on Mn. In vivo radiotracer studies using 54Mn in Slc39a8 iKO mice revealed that SLC39A8 is required for Mn uptake by the brain, but not most other tissues. Furthermore, decreased 54Mn uptake in the brains of Slc39a8 iKO mice was associated with efficient inactivation of Slc39a8 in isolated brain microvessels but not in isolated choroid plexus, suggesting SLC39A8 mediates brain Mn uptake via the blood-brain barrier. These findings establish SLC39A8 as a candidate therapeutic target for mitigating Mn uptake and accumulation in the brain, the primary organ of Mn toxicity.


Asunto(s)
Encéfalo , Proteínas de Transporte de Catión , Manganeso , Animales , Ratones , Transporte Biológico , Encéfalo/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Manganeso/metabolismo , Ratones Noqueados
2.
Anal Chem ; 96(13): 5323-5330, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501982

RESUMEN

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Asunto(s)
ADN Polimerasa Dirigida por ADN , ADN , Guanina/análogos & derivados , Humanos , ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Daño del ADN , Biomarcadores , Reparación del ADN
3.
Microb Pathog ; 188: 106549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281605

RESUMEN

The five epidermal growth factor-like domains (EGF) of Eimeria tenella microneme protein 8 (EtMIC8) (EtMIC8-EGF) plays a vital role in host cell attachment and invasion. These processes require interactions between parasite proteins and receptors on the surface of host cells. In this study, five chicken membrane proteins potentially interacting with EtMIC8-EGF were identified using the GST pull-down assay and mass spectrometry analysis, and only chicken (Gallus gallus) epithelial cell adhesion molecule (EPCAM) could bind to EtMIC8-EGF. EPCAM-specific antibody and recombinant EPCAM protein (rEPCAM) inhibited the EtMIC8-EGF binding to host cells in a concentration-dependent manner. Furthermore, the rEPCAM protein showed a binding activity to sporozoites in vitro, and a significant reduction of E. tenella invasion in DF-1 cells was further observed after pre-incubation of sporozoites with rEPCAM. The specific anti-EPCAM antibody further significantly decreased weight loss, lesion score and oocyst output during E. tenella infection, displaying partial inhibition of E. tenella infection. These results indicate that chicken EPCAM is an important EtMIC8-interacting host protein involved in E. tenella-host cell adhesion and invasion. The findings will contribute to a better understanding of the role of adhesion-associated microneme proteins in E. tenella.


Asunto(s)
Coccidiosis , Eimeria tenella , Enfermedades de las Aves de Corral , Animales , Eimeria tenella/química , Eimeria tenella/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Pollos , Proteínas Protozoarias , Factor de Crecimiento Epidérmico/metabolismo , Proteínas Recombinantes , Esporozoítos/metabolismo , Coccidiosis/veterinaria , Coccidiosis/parasitología , Enfermedades de las Aves de Corral/parasitología
4.
Respir Res ; 25(1): 149, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555433

RESUMEN

BACKGROUND: The clinical significance of the impulse oscillometry-defined small airway bronchodilator response (IOS-BDR) is not well-known. Accordingly, this study investigated the clinical characteristics of IOS-BDR and explored the association between lung function decline, acute respiratory exacerbations, and IOS-BDR. METHODS: Participants were recruited from an Early Chronic Obstructive Pulmonary Disease (ECOPD) cohort subset and were followed up for two years with visits at baseline, 12 months, and 24 months. Chronic obstructive pulmonary disease (COPD) was defined as a post-bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio < 0.70. IOS-BDR was defined as meeting any one of the following criteria: an absolute change in respiratory system resistance at 5 Hz ≤ - 0.137 kPa/L/s, an absolute change in respiratory system reactance at 5 Hz ≥ 0.055 kPa/L/s, or an absolute change in reactance area ≤ - 0.390 kPa/L. The association between IOS-BDR and a decline in lung function was explored with linear mixed-effects model. The association between IOS-BDR and the risk of acute respiratory exacerbations at the two-year follow-up was analyzed with the logistic regression model. RESULTS: This study involved 466 participants (92 participants with IOS-BDR and 374 participants without IOS-BDR). Participants with IOS-BDR had higher COPD assessment test and modified Medical Research Council dyspnea scale scores, more severe emphysema, air trapping, and rapid decline in FVC than those without IOS-BDR over 2-year follow-up. IOS-BDR was not associated with the risk of acute respiratory exacerbations at the 2-year follow-up. CONCLUSIONS: The participants with IOS-BDR had more respiratory symptoms, radiographic structural changes, and had an increase in decline in lung function than those without IOS-BDR. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1900024643. Registered on 19 July, 2019.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Asma/diagnóstico , Broncodilatadores/uso terapéutico , Volumen Espiratorio Forzado , Oscilometría , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Pruebas de Función Respiratoria , Espirometría
5.
BMC Womens Health ; 24(1): 491, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237940

RESUMEN

OBJECTIVE: The aim of this study is to assess the use of machine learning methodologies in the diagnosis of endometriosis (EM). METHODS: This study included a total of 106 patients with EM and 203 patients with non-EM conditions (like simple cysts and simple uterine fibroids), all admitted to the Shunyi Women's and Children's Hospital of Beijing Children's Hospital between January 2017 and September 2022. All participants were free of comorbidities and their diagnoses were confirmed via postoperative pathology. Comparative analysis was conducted between the EM and non-EM groups. Baseline data were assessed, including white blood cell count, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, mean platelet volume, hemoglobin, carbohydrate antigen 125 (CA125), carbohydrate antigen 199, coagulation parameters, and other serologic indicators. An optimal predictive model was developed using an artificial intelligence algorithm to determine the presence of EM. The objective is to provide new insights for the clinical diagnosis and treatment of EM. RESULTS: The random forest algorithm demonstrated superior performance when compared to decision trees, LogitBoost, artificial neural networks, naïve Bayes, support vector machines, and linear regression in machine learning methods. Combining CA125 with the NLR yielded a better prediction of EM than using CA125 alone when applying the random forest algorithm. The accuracy of predicting EM with CA125 combined with NLR was 78.16%, with a sensitivity of 86.21% and an area under the curve (AUC) of 0.85 (P < 0.05). In contrast, using CA125 alone resulted in an EM prediction accuracy of 75.8%, with a sensitivity of 79.3% and an AUC of 0.82 (P < 0.05). CONCLUSION: The diagnostic value of serum CA125 combined with the NLR for EM is higher than that of serum CA125 alone. This finding indicates that NLR could serve as a new supplementary biomarker along with serum CA125 in the diagnosis of EM.


Asunto(s)
Antígeno Ca-125 , Endometriosis , Aprendizaje Automático , Humanos , Femenino , Endometriosis/diagnóstico , Endometriosis/sangre , Antígeno Ca-125/sangre , Adulto , Neutrófilos , Algoritmos
6.
Phytochem Anal ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311001

RESUMEN

INTRODUCTION: Polygalae Radix (PR) is known to relieve toxicity and increase efficiency in various diseases after processing. However, there were few studies for aromatic carboxylic acids (ACAs) due to the limited detection, especially for the metabolites within m/z 100-2000. OBJECTIVES: This study aims to elucidate the whole metabolism of PR with/without licorice (LP), focusing on metabolites within m/z 100-2000 and pharmacodynamics in vivo. MATERIAL AND METHODS: This study was established by the combination of multidimensional ultra-high performance liquid chromatography coupled with a mass spectrometer (UPLC-MS) technology with protein sedimentation method to analyze metabolites in plasma, brain, colon, and stomach contents. Quantitative monitoring ACAs was enhanced with our novel stable isotope derivatization (SILD) technique. And then the pharmacokinetics (PK) study of relatively large metabolites was carried out. A targeted network pharmacology approach was established to avoid false positive results, mapping interactions relevant to Alzheimer's disease (AD), and other conditions. RESULTS: The 85 polygala metabolites were qualitatively analyzed in plasma, brain, colon, and stomach contents. The 11 types of relatively large metabolites and 8 types of ACAs were quantitatively monitored. Among them, nine types of relatively large metabolites were assessed through PK studies. In targeted network pharmacology, it highlighted the significance of small molecular metabolites, including ACAs et al, which were frequently overlooked. LP may play a more key role mainly through neural active ligand-receptor interaction, AD, and pertussis pathways. These findings have outlined a step-by-step strategy for in-depth research in vivo, laying a foundation for further verification of biological function.

7.
Anal Chem ; 95(5): 3082-3088, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36692970

RESUMEN

Long noncoding RNAs (lncRNAs) are valuable biomarkers and therapeutic targets, and they play essential roles in various pathological and biological processes. So far, the reported lncRNA assays usually suffer from unsatisfactory sensitivity and time-consuming procedures. Herein, we develop a mix-and-read assay based on multiple cyclic enzymatic repairing amplification (ERA) for sensitive and rapid detection of mammalian metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1). In this assay, we design two three-way junction (3WJ) probes including a 3WJ template and a 3WJ primer to specifically recognize lncRNA MALAT1, and the formation of a stable 3WJ structure induces cyclic ERA to generate triggers. The resulting triggers subsequently hybridize with a free 3WJ template and act as primers to initiate new rounds of cyclic ERA, generating abundant triggers. The hybridization of triggers with signal probes forms stable double-stranded DNA duplexes that can be specifically cleaved by apurinic/apyrimidinic endonuclease 1 to produce a high fluorescence signal. This assay can be carried out in a mix-and-read manner within 10 min under an isothermal condition (50 °C), which is the rapidest and simplest method reported so far for the lncRNA MALAT1 assay. This method can sensitively detect lncRNA MALAT1 with a limit of detection of 0.87 aM, and it can accurately measure endogenous lncRNA MALAT1 at the single-cell level. Moreover, this method can distinguish lncRNA MALAT1 expression in breast cancer patient tissues and their corresponding healthy adjacent tissues. Importantly, the extension of this assay to different RNAs detection can be achieved by simply replacing the corresponding target recognition sequences.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ADN/química , ARN Largo no Codificante/genética
8.
Anal Chem ; 95(34): 12974-12981, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590447

RESUMEN

Fat mass and obesity-associated proteins (FTO) play an essential role in the reversible regulation of N6-methyladenosine (m6A) epigenetic modification, and the overexpression of FTO is closely associated with the occurrence of diverse human diseases (e.g., obesity and cancers). Herein, we demonstrate the construction of multiple DNAzymes driven by single base elongation and ligation for the single-molecule monitoring of FTO in cancer tissues. When target FTO is present, the m6A-RNA is specifically demethylated and subsequently acts as a primer to combine with the padlock probe, initiating single-base elongation and ligation reaction to generate a closed template probe. Upon the addition of phi29 DNA polymerase, a rolling circle amplification (RCA) reaction is initiated to produce large numbers of Mg2+-dependent DNAzyme repeats. Subsequently, the DNAzymes cyclically digest the signal probes, liberating numerous Cy5 molecules that can be precisely counted by single-molecule imaging. Taking advantage of the sequence specificity of the polymerase/ligase-mediated gap-filling and ligation as well as the high amplification efficiency of RCA, this biosensor shows excellent specificity and high sensitivity with a detection limit of 5.96 × 10-16 M. It can be applied to screen FTO inhibitors and quantify FTO activity at the single-cell level. Moreover, the proposed strategy can accurately distinguish the FTO expression level in tissues of healthy individuals and breast cancer patients, providing a new platform for drug discovery, m6A modification-related research, and clinical diagnostics.


Asunto(s)
Neoplasias de la Mama , ADN Catalítico , Humanos , Femenino , Descubrimiento de Drogas , Epigénesis Genética , Obesidad , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
9.
Anal Chem ; 95(48): 17920-17927, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37983085

RESUMEN

We demonstrate for the first time the construction of a dual-mode biosensor for electrochemiluminescent (ECL) and electrochemical chiral recognition of l- and d-isomers of amino acids, with ferrocene (Fc) as both a signal enhancer and a signal tracer. With the dissolved oxygen as a coreactant, ZnIn2S4 acts as the ECL emitter to generate a weak cathodic ECL signal. Fc can enter into the ß-cyclodextrin (ß-CD) cavity on ZnIn2S4-modified electrode as a result of host-guest interaction. Since Fc can promote H2O and O2 to produce abundant reactive oxygen species (ROS) (e.g., O2·- and ·OH), the ECL signal of ZnIn2S4 can be further amplified with Fc as a coreaction accelerator. Meanwhile, Fc molecules on the ß-CD/ZnIn2S4-modified electrode can be electrochemically oxidized to Fc+ to produce a remarkable oxidation peak current. When l-histidine (l-His) is present, the matching of the l-His configuration with the ß-CD cavity leads to the entrance of more l-His into the cavity of ß-CD than d-histidine (d-His), and the subsequent competence of l-His with Fc on the Fc/ß-CD/ZnIn2S4-modified electrode induces the decrease in both Fc peak current and ZnIn2S4-induced ECL intensity. This dual-mode biosensor can efficiently discriminate l-His from d-His, and it can sensitively monitor l-His with a detection limit of 7.60 pM for ECL mode and 3.70 pM for electrochemical mode. Moreover, this dual-mode biosensor can selectively discriminate l-His from other l- and d-isomers (e.g., threonine, phenylalanine, and glutamic acid), with potential applications in the chiral recognition of nonelectroactive chiral compounds, bioanalysis, and disease diagnosis.


Asunto(s)
Técnicas Biosensibles , Mediciones Luminiscentes , Metalocenos/química , Estereoisomerismo , Técnicas Electroquímicas , Límite de Detección
10.
Anal Chem ; 95(22): 8728-8734, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37218166

RESUMEN

Circular RNAs (circRNAs) as endogenous non-coding RNAs are characterized by covalently closed circular structures, and they widely exist in mammalian cells. The aberrant expression of circRNAs may result in various diseases. Herein, we demonstrate the construction of genetically encoded light-up RNA aptamers for ultrasensitive and label-free detection of circRNA mitochondrial tRNA translation optimization 1 (circMTO1) in cancer cells and tissues. The light-up RNA aptamers are generated by proximity ligation-activated recombinase polymerase amplification (RPA)-assisted transcription amplification. When circMTO1 is present, it initiates the proximity ligation reaction, activating RPA to produce numerous long double-stranded DNAs containing T7 promoters. Subsequently, the RPA products are identified by T7 RNA polymerase, initiating the transcription amplification reaction to generate abundant Spinach RNA aptamers. Spinach RNA aptamers can bind with DFHBI (3,5-difluoro-4-hydroxybenzylidene imidazolidinone) dye to produce a distinct fluorescence signal with near-zero background. This biosensor exhibits excellent selectivity and high sensitivity with a limit of detection of 2.54 aM. It can accurately monitor cellular circMTO1 at the single-cell level and discriminate the expression of circMTO1 between breast cancer patient tissues and healthy tissues. Notably, this biosensor can be employed to measure other nucleic acids by altering the corresponding target recognition sequences, providing a valuable platform for cancer diagnosis and biomedical study.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias , Animales , Humanos , ARN Circular , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/química , ADN , Neoplasias/diagnóstico , Neoplasias/genética , Mamíferos
11.
Am J Hematol ; 98(2): 309-321, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36591789

RESUMEN

There has been little consensus on how to quantitatively assess immune reconstitution after hematopoietic stem cell transplantation (HSCT) as part of the standard of care. We retrospectively analyzed 11 150 post-transplant immune profiles of 1945 patients who underwent HSCT between 2012 and 2020. 1838 (94.5%) of the cases were allogeneic HSCT. Using the training set of patients (n = 729), we identified a composite immune signature (integrating neutrophil, total lymphocyte, natural killer, total T, CD4+ T, and B cell counts in the peripheral blood) during days 91-180 after allogeneic HSCT that was predictive of early mortality and moreover simplified it into a formula for a Composite Immune Risk Score. When we verified the Composite Immune Risk Score in the validation (n = 284) and test (n = 391) sets of patients, a high score value was found to be associated with hazard ratios (HR) of 3.64 (95% C.I. 1.55-8.51; p = .0014) and 2.44 (95% C.I., 1.22-4.87; p = .0087), respectively, for early mortality. In multivariate analysis, a high Composite Immune Risk Score during days 91-180 remained an independent risk factor for early mortality after allogeneic HSCT (HR, 1.80; 95% C.I., 1.28-2.55; p = .00085). In conclusion, the Composite Immune Risk Score is easy to compute and could identify the high-risk patients of allogeneic HSCT who require targeted effort for prevention and control of infection.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Humanos , Estudios Retrospectivos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Modelos de Riesgos Proporcionales , Linfocitos B , Factores de Riesgo
12.
Analyst ; 148(12): 2732-2738, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37232199

RESUMEN

The structure-specific endonuclease flap endonuclease 1 (FEN1) is an essential functional protein in DNA replication and genome stability, and it has been identified as a promising biomarker and drug target for multiple cancers. Herein, we develop a target-activated T7 transcription circuit-mediated multiple cycling signal amplification platform for monitoring FEN1 activity in cancer cells. In the presence of FEN1, the flapped dumbbell probe is cleaved to generate a free 5' flap single-stranded DNA (ssDNA) with the 3'-OH terminus. The ssDNA can hybridize with the T7 promoter-bearing template probe to trigger the extension with the aid of Klenow fragment (KF) DNA polymerase. Upon the addition of T7 RNA polymerase, an efficient T7 transcription amplification reaction is initiated to produce abundant single-stranded RNAs (ssRNAs). The ssRNA can hybridize with a molecular beacon to form an RNA/DNA heteroduplex that can be selectively digested by DSN to generate an enhanced fluorescence signal. This method exhibits good specificity and high sensitivity with a limit of detection (LOD) of 1.75 × 10-6 U µL-1. Moreover, it can be applied for the screening of FEN1 inhibitors and the monitoring of FEN1 activity in human cells, holding great potential in drug discovery and clinical diagnosis.


Asunto(s)
Endonucleasas de ADN Solapado , Neoplasias , Humanos , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , ADN/genética , ADN/metabolismo , Replicación del ADN , Reparación del ADN , Neoplasias/genética
13.
BMC Pulm Med ; 23(1): 52, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737731

RESUMEN

BACKGROUND: The role of airway impairment assessed by impulse oscillometry (IOS) in patients with chronic obstructive pulmonary disease (COPD) remains unclear. Therefore, this study aimed to analyze the proportion and clinical characteristics of airway impairment assessed by IOS across COPD severities, and explore whether airway impairment is a subtype of COPD. METHODS: This study was based on cross-sectional data from the ECOPD cohort in Guangdong, China. Subjects were consecutively recruited from July 2019 to August 2021. They filled out questionnaires and underwent lung function tests, IOS and computed tomography (CT). COPD was defined as post-bronchodilator forced expiratory volume in one second/forced vital capacity < lower limit of normal (LLN). Meanwhile, airway impairment was defined as IOS parameters > upper limit of normal or < LLN. On the one hand, Poisson regression was employed to analyze the associations between acute exacerbations of COPD (AECOPD) in the previous year and airway impairment. On the other hand, logistic regression was used to assess differences in CT imaging between patients with IOS parameters' abnormalities and patients with normal IOS parameters. RESULTS: 768 COPD subjects were finally enrolled in the study. The proportion of airway impairment assessed by R5, R20, R5-R20, X5, AX, and Fres was 59.8%, 29.7%, 62.5%, 52.9%, 60.9% and 67.3%, respectively. Airway impairment assessed by IOS parameters (R5, R5-R20, X5, AX, and Fres) in patients with COPD was present across all severities of COPD, particularly in GOLD 3-4 patients. Compared with patients with normal IOS parameters, patients with IOS parameters' abnormalities had more respiratory symptoms, more severe airway obstruction and imaging structural abnormalities. Patients with IOS parameters' abnormalities assessed by R5 [risk ratio (RR): 1.58, 95% confidential interval (CI): 1.13-2.19, P = 0.007], R5-R20 [RR: 1.73, 95%CI: 1.22-2.45, P = 0.002], X5 [RR: 2.11, 95%CI: 1.51-2.95, P < 0.001], AX [RR: 2.20, 95%CI: 1.53-3.16, P < 0.001], and Fres [RR: 2.13, 95%CI: 1.44-3.15, P < 0.001] had a higher risk of AECOPD in the previous year than patients with normal IOS parameters. CONCLUSIONS: Airway impairment assessed by IOS may be a subtype of COPD. Future studies are warranted to identify the underlying mechanisms and longitudinal progression of airway impairment.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Oscilometría/métodos , Estudios Transversales , Espirometría/métodos , Pruebas de Función Respiratoria/métodos , Volumen Espiratorio Forzado
14.
Parasitol Res ; 123(1): 45, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095706

RESUMEN

Difficulties of in vitro culture and genetic manipulation of Eimeria tenella have hindered the screening of virulence factors in this parasite. In this study, the E. tenella rhoptry protein 30 (EtROP30) was expressed in Toxoplasma gondii (RH∆Ku80-EtROP30), and its effect on the proliferation and virulence of parasites was investigated. The results revealed that the expression of EtROP30 had no impact on the invasion and egress processes. However, the RH∆Ku80-EtROP30 strain formed larger plaques compared to the RH∆Ku80, indicating that the EtROP30 expression promotes T. gondii proliferation. Furthermore, the RH∆Ku80-EtROP30 strain exhibited greater pathogenicity, resulting in earlier mortality and shorter overall survival time compared to RH∆Ku80. These results imply that EtROP30 expression facilitates parasite intracellular proliferation and virulence in mice, suggesting that EtROP30 might be a candidate virulence factor of E. tenella.


Asunto(s)
Eimeria tenella , Toxoplasma , Animales , Ratones , Eimeria tenella/genética , Eimeria tenella/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Animales Modificados Genéticamente , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
15.
Phytochem Anal ; 34(5): 540-547, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169718

RESUMEN

INTRODUCTION: Relieving toxicity and enhancing a calming effect after processing Polygalae Radix (PR) are widely known. Aromatic carboxylic acids (ACAs) may be crucial processed products. However, due to the limited detection methods for ACAs, the whole metabolic profiles via intestinal bacteria are still not very clear. OBJECTIVE: Designing a novel strategy for the detection of ACAs and tracking the whole metabolic profiles before and after processing PR. MATERIALS AND METHODS: The stable-isotope labelling derivatisation (SILD) method based on multidimensional ultra-high performance liquid chromatography coupled with a mass spectrometer (UHPLC-MS) technology and UNIFI-pathway mode was firstly designed to systematically study the metabolisms of all the drug-derived ingredients ranging from m/z 100 to 2000 in processing PR via intestinal bacteria. Firstly, the SILD with UHPLC coupled with a triple-quadrupole MS technology was designed to trace eight ACA metabolites of the processed PR with intestinal bacteria. Additionally, the UHPLC coupled with a quadrupole time-of-flight MS with UNIFI-pathway mode was adopted to monitor relatively big metabolites. RESULTS: The metabolism mechanism of ACAs (eight kinds) and the relatively big molecular metabolites (98 kinds) were deeply traced in PR, PR with refined honey (HP), and PR with licorice (LP) via the intestinal bacteria. Totally 106 intact metabolic profiles of drug-derived ingredients were presented. Importantly, the influence of LP on the metabolism of compounds after incubation of intestinal bacteria was greater than that of HP. CONCLUSION: This research provides a comprehensive and systematic guidance for further study on in vivo metabolisms of the processed PR.


Asunto(s)
Medicamentos Herbarios Chinos , Miel , Espectrometría de Masas , Metaboloma , Raíces de Plantas/química , Cromatografía Líquida de Alta Presión/métodos , Miel/análisis , Medicamentos Herbarios Chinos/química
16.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983036

RESUMEN

ZIP8 is a newly identified manganese transporter. A lack of functional ZIP8 results in severe manganese deficiency in both humans and mice, indicating that ZIP8 plays a crucial role in maintaining body manganese homeostasis. Despite a well-acknowledged connection between ZIP8 and manganese metabolism, how ZIP8 is regulated under high-manganese conditions remains unclear. The primary goal of this study was to examine the regulation of ZIP8 by high-manganese intake. We used both neonatal and adult mouse models in which mice were supplied with dietary sources containing either a normal or a high level of manganese. We discovered that high-manganese intake caused a reduction in liver ZIP8 protein in young mice. Since a decrease in hepatic ZIP8 leads to reduced manganese reabsorption from the bile, our study identified a novel mechanism for the regulation of manganese homeostasis under high-manganese conditions: high dietary manganese intake results in a decrease in ZIP8 in the liver, which in turn decreases the reabsorption of manganese from the bile to prevent manganese overload in the liver. Interestingly, we found that a high-manganese diet did not cause a decrease in hepatic ZIP8 in adult animals. To determine the potential reason for this age-dependent variation, we compared the expressions of liver ZIP8 in 3-week-old and 12-week-old mice. We found that liver ZIP8 protein content in 12-week-old mice decreases when compared with that of 3-week-old mice under normal conditions. Overall, results from this study provide novel insights to facilitate the understanding of ZIP8's function in regulating manganese metabolism.


Asunto(s)
Hígado , Manganeso , Animales , Humanos , Lactante , Ratones , Bilis/metabolismo , Homeostasis , Hígado/metabolismo , Manganeso/metabolismo
17.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677648

RESUMEN

Rheumatoid arthritis (RA) is a chronic, systemic immune disease that causes joint affection and even disability. Activated macrophages play an important role in the pathogenesis and progression of RA by producing pro-inflammatory factors. The use of dexamethasone (DXM) is effective in relieving the intractable pain and inflammatory progression of RA. However, long-term use of DXM is strongly associated with increased rates of diabetes, osteoporosis, bone fractures, and mortality, which hinders its clinical use. In this study, the dextran sulfate-cisaconitic anhydride-dexamethasone (DXM@DS-cad-DXM) micelles were prepared to treat RA by selectively recognizing scavenger receptor (SR) on the activated macrophages. The potent targeting property of DXM@DS-cad-DXM micelles to SR was by fluorescence microscope. Additionally, the effective accumulation and powerful anti-inflammatory activity of DXM@DS-cad-DXM micelles were observed in the inflamed joints of adjuvant-induced arthritis (AIA) rats after intravenous administration. Overall, DXM@DS-cad-DXM micelles are a potentially effective nanomedicine for targeted therapy of RA.


Asunto(s)
Artritis Reumatoide , Micelas , Ratas , Animales , Sulfato de Dextran , Artritis Reumatoide/tratamiento farmacológico , Macrófagos , Receptores Depuradores , Dexametasona
18.
Anal Chem ; 94(15): 6004-6010, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35384669

RESUMEN

Alkaline phosphatase (ALP) is a valuable biomarker and effective therapeutic target for the diagnosis and treatment of diverse human diseases, including bone disorder, cardiovascular disease, and cancers. The reported ALP assays often suffer from laborious procedures, costly reagents, inadequate sensitivity, and large sample consumption. Herein, we report a new single-molecule fluorescent biosensor for the simple and ultrasensitive detection of ALP. In this assay, the ALP-catalyzed dephosphorylation of detection probe can protect the detection probe against lambda exonuclease-mediated digestion, and the remaining detection probes can trigger ceaseless hybridization between two Cy5-labeled hairpin probes through toehold-mediated DNA strand displacement, generating a long fluorescent DNA chain, which can be subsequently separated from unhybridized hairpin probes and disassembled into dispersed Cy5 moieties upon NaOH treatment. The free Cy5 moieties indicate the presence of ALP and can be directly quantified via single-molecule counting. This biosensor enables efficient amplification and transduction of the target ALP signal through enzyme-free assembly and disassembly processes, significantly simplifying the experimental procedure and improving the assay accuracy. The proposed biosensor allows specific and ultrasensitive detection of ALP activity with a detection limit down to 2.61 × 10-6 U mL-1 and is suitable for ALP inhibition assay and kinetic analysis. Moreover, this biosensor can be applied for endogenous ALP detection in human cells and clinical human serum, holding the potential in the ALP biological function study and clinical diagnosis.


Asunto(s)
Fosfatasa Alcalina , Técnicas Biosensibles , Fosfatasa Alcalina/metabolismo , Catálisis , Colorantes , ADN , Humanos , Cinética , Límite de Detección
19.
Respir Res ; 23(1): 229, 2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36058907

RESUMEN

BACKGROUND: Aging has been evidenced to bring about some structural and functional lung changes, especially in COPD. However, whether aging affects SAD, a possible precursor of COPD, has not been well characterized. OBJECTIVE: We aimed to comprehensively assess the relationship between aging and SAD from computed tomography, impulse oscillometry, and spirometry perspectives in Chinese. METHODS: We included 1859 participants from ECOPD, and used a linear-by-linear association test for evaluating the prevalence of SAD across various age subgroups, and multivariate regression models for determining the impact of age on the risk and severity of SAD. We then repeated the analyses in these subjects stratified by airflow limitation. RESULTS: The prevalence of SAD increases over aging regardless of definitional methods. After adjustment for other confounding factors, per 10-yrs increase in age was significantly associated with the risk of CT-defined SAD (OR 2.57, 95% CI 2.13 to 3.10) and the increase in the severity of air trapping (ß 2.09, 95% CI - 0.06 to 4.25 for LAA-856), airway reactance (ß - 0.02, 95% CI - 0.04 to - 0.01 for X5; ß 0.30, 95% CI 0.13 to 0.47 for AX; ß 1.75, 95% CI 0.85 to 2.66 for Fres), as well as the decrease in expiratory flow rates (ß - 3.95, 95% CI - 6.19 to - 1.71 for MMEF%predicted; ß - 5.42, 95% CI - 7.88 to - 2.95 for FEF50%predicted) for SAD. All these associations were generally maintained in SAD defined by IOS or spirometry. After stratification of airflow limitation, we further found that the effect of age on LAA-856 was the most significant among almost all subgroups. CONCLUSIONS: Aging is significantly associated with the prevalence, increased risk, as well as worse severity of SAD. CT may be a more optimal measure to assess aging-related SAD. The molecular mechanisms for the role of aging in SAD need to be explored in the future. Trial registration Chinese Clinical Trial Registry ChiCTR1900024643. Registered on 19 July 2019.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Envejecimiento , Estudios Transversales , Humanos , Pulmón/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Espirometría
20.
Respir Res ; 23(1): 298, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316732

RESUMEN

BACKGROUND: Preserved ratio impaired spirometry (PRISm) refers to decreased forced expiratory volume in 1 s (FEV1) in the setting of preserved ratio. Little is known about the role of PRISm and its complex relation with small airway dysfunction (SAD) and lung volume. Therefore, we aimed to investigate the associations between PRISm and SAD and lung volume. METHODS: We conducted a cross-sectional community-dwelling study in China. Demographic data, standard respiratory epidemiology questionnaire, spirometry, impulse oscillometry (IOS) and computed tomography (CT) data were collected. PRISm was defined as post-bronchodilator FEV1/FVC ≥ 0.70 and FEV1 < 80% predicted. Spirometry-defined SAD was defined as at least two of three of the post-bronchodilator maximal mid-expiratory flow (MMEF), forced expiratory flow 50% (FEF50), and forced expiratory flow 75% (FEF75) less than 65% of predicted. IOS-defined SAD and CT-defined gas trapping were defined by the fact that the cutoff value of peripheral airway resistance R5-R20 > 0.07 kPa/L/s and LAA- 856>20%, respectively. Analysis of covariance and logistic regression were used to determine associations between PRISm and SAD and lung volume. We then repeated the analysis with a lower limit of normal definition of spirometry criteria and FVC definition of PRISm. Moreover, we also performed subgroup analyses in ever smoker, never smoker, subjects without airway reversibility or self-reported diagnosed asthma, and subjects with CT-measured total lung capacity ≥70% of predicted. RESULTS: The final analysis included 1439 subjects. PRISm had higher odds and more severity in spirometry-defined SAD (pre-bronchodilator: odds ratio [OR]: 5.99, 95% confidence interval [95%CI]: 3.87-9.27, P < 0.001; post-bronchodilator: OR: 14.05, 95%CI: 8.88-22.24, P < 0.001), IOS-defined SAD (OR: 2.89, 95%CI: 1.82-4.58, P < 0.001), and CT-air trapping (OR: 2.01, 95%CI: 1.08-3.72, P = 0.027) compared with healthy control after adjustment for confounding factors. CT-measured total lung capacity in PRISm was lower than that in healthy controls (4.15 ± 0.98 vs. 4.78 ± 1.05 L, P < 0.05), after adjustment. These results were robust in repeating analyses and subgroup analyses. CONCLUSION: Our finding revealed that PRISm was associated with SAD and reduced total lung capacity. Future studies to identify the underlying mechanisms and longitudinal progression of PRISm are warranted.


Asunto(s)
Broncodilatadores , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Volumen Espiratorio Forzado , Estudios Transversales , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Espirometría/métodos , Pulmón/diagnóstico por imagen , Capacidad Pulmonar Total , Capacidad Vital
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA