Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
BMC Plant Biol ; 22(1): 514, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36329386

RESUMEN

BACKGROUND: Grazing disturbance usually affects floral display and pollination efficiency in the desert steppe, which may cause pollen limitation in insect-pollinated plants. Effective pollination is essential for the reproductive success of insect-pollinated plants and insufficient pollen transfer may result in pollen limitation. Caragana microphylla Lam is an arid region shrub with ecological importance. Few studies have been conducted on how grazing disturbance influences pollen limitation and pollination efficiency of C. microphylla. Here, we quantify the effect of different grazing intensities on floral display, pollinator visitation frequency and seed production in the Urat desert steppe. RESULTS: In C. microphylla, supplemental hand pollination increased the seed set, and pollen limitation was the predominant limiting factor. As the heavy grazing significantly reduced the seed set in plants that underwent open-pollination, but there was no significant difference in the seed set between plants in the control plots and plants in the moderate grazing plots. Furthermore, there was a higher pollinator visitation frequency in plants in the control plots than in plants in the heavy grazing plots. CONCLUSIONS: We found that pollinator visitation frequency was significantly associated with the number of open flowers. Our findings also demonstrated that seed production is associated with pollinator visitation frequency, as indicated by increased seed production in flowers with higher pollinator visitation frequency. Therefore, this study provides insight into the effect of different grazing intensities on floral display that are important for influencing pollinator visitation frequency and pollination efficiency in desert steppes.


Asunto(s)
Flores , Herbivoria , Insectos , Polen , Polinización , Animales , Flores/fisiología , Insectos/fisiología , Plantas/parasitología , Polinización/fisiología , Clima Desértico , Herbivoria/fisiología
2.
BMC Plant Biol ; 21(1): 426, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34537013

RESUMEN

BACKGROUND: Reproduction in most flowering plants may be limited because of the decreased visitation or activity of pollinators in fragmented habitats. Hedysarum scoparium Fisch. et Mey. is an arid region shrub with ecological importance. We explored the pollen limitation and seed set of Hedysarum scoparium in fragmented and restored environments, and examined whether pollen limitation is a significant limiting factor for seed set. We also compared floral traits and pollinator visitation between both habitats, and we determined the difference of floral traits and pollinators influenced reproductive success in Hedysarum scoparium. RESULTS: Our results indicated that supplementation with pollen significantly increased seed set per flower, which is pollen-limited in this species. Furthermore, there was greater seed set of the hand cross-pollination group in the restored habitat compared to the fragmented environment. More visits by Apis mellifera were recorded in the restored habitats, which may explain the difference in seed production between the fragmented and restored habitats. CONCLUSIONS: In this study, a positive association between pollinator visitation frequency and open flower number was observed. The findings of this study are important for experimentally quantifying the effects of floral traits and pollinators on plant reproductive success in different habitats.


Asunto(s)
Fabaceae/fisiología , Flores/fisiología , Polen/fisiología , Animales , China , Ecosistema , Polinización , Semillas/crecimiento & desarrollo
3.
Connect Tissue Res ; 60(2): 178-188, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29852798

RESUMEN

OBJECTIVES: Adherent culture which is used to collect adipose tissue extract (ATE) previously brings the problem of inhomogeneity and non-repeatability. Here we aim to extract ATE with stirred suspension culture to speed up the extraction process, stabilize the yield, and improve consistent potency metrics of ATE. MATERIALS AND METHODS: ATE was collected with adherent culture (ATE-A) and stirred suspension culture (ATE-S) separately. Protein yield and composition were detected by SDS-PAGE, while cytokines in ATE were determined with ELISA. The adipogenic and angiogenic potential of ATE were compared by western blot and qPCR. In addition, haematoxylin and eosin staining and lactate dehydrogenase (LDH) activity assays were used to analyze the cell viability of adipose tissue cultured with different methods. RESULTS: The yield of ATE-S was consistent while ATE-A varied notably. Characterization of the protein composition and exosome-like vesicles (ELVs) indicated no significant difference between ATE-S and ATE-A. The concentrations of cytokines (VEGF, bFGF, and IL-6) showed no significant difference, while IGF in ATE-S was higher than that in ATE-A. ATE-S showed upregulated adipogenic and angiogenic potential compared to ATE-A. Morever, stirred suspension culture decreased the LDH activity of ATE while increased the number of viable adipocytes and reduced adipose tissue necrosis. CONCLUSION: Compared with adherent culture, stirred suspension culture is a reliable, time- and labor-saving method to collect ATE, which might be used to improve the downstream applications of ATE.


Asunto(s)
Tejido Adiposo/metabolismo , Técnicas de Cultivo de Tejidos/métodos , Extractos de Tejidos/metabolismo , Adipogénesis , Animales , Adhesión Celular , Exosomas/metabolismo , Exosomas/ultraestructura , Neovascularización Fisiológica , Ratas Sprague-Dawley , Suspensiones , Supervivencia Tisular
4.
Sensors (Basel) ; 19(23)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31817009

RESUMEN

Different livestock behaviors have distinct effects on grassland degradation. However, because direct observation of livestock behavior is time- and labor-intensive, an automated methodology to classify livestock behavior according to animal position and posture is necessary. We applied the Random Forest algorithm to predict livestock behaviors in the Horqin Sand Land by using Global Positioning System (GPS) and tri-axis accelerometer data and then confirmed the results through field observations. The overall accuracy of GPS models was 85% to 90% when the time interval was greater than 300-800 s, which was approximated to the tri-axis model (96%) and GPS-tri models (96%). In the GPS model, the linear backward or forward distance were the most important determinants of behavior classification, and nongrazing was less than 30% when livestock travelled more than 30-50 m over a 5-min interval. For the tri-axis accelerometer model, the anteroposterior acceleration (-3 m/s2) of neck movement was the most accurate determinant of livestock behavior classification. Using instantaneous acceleration of livestock body movement more precisely classified livestock behaviors than did GPS location-based distance metrics. When a tri-axis model is unavailable, GPS models will yield sufficiently reliable classification accuracy when an appropriate time interval is defined.


Asunto(s)
Agricultura/instrumentación , Conducta Animal , Sistemas de Información Geográfica , Ganado , Acelerometría , Agricultura/métodos , Algoritmos , Animales , Bovinos , China , Movimiento , Reproducibilidad de los Resultados
5.
J Plant Res ; 130(6): 1013-1021, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28534178

RESUMEN

Vegetation recovery during succession is an important process for ecological restoration of the soil, especially in degraded sandy land. However, the driving mechanisms, such as how a pioneer species competes with other species, is uncertain. In China's Horqin Sandy Land, Artemisia halodendron is an important shrub that is common on semi-fixed dunes, where it replaces Agriophyllum squarrosum during succession, and is an important indicator species of the second stage of dune stabilization. However, how it outcompetes other species is still unclear. In this study, we conducted a seed bank germination experiment using soil from the native habitats of A. halodendron on semi-fixed dunes. We covered the soil with foliage litter of A. halodendron at a range of concentrations. Seed germination and seedling growth were strongly affected by the foliage litter. Seed germination and seedling growth were not harmed by a low concentration (≤50 g m-2) of the foliage litter but severely inhibited by high concentrations (≥100 g m-2). Strong allelopathy, indicated by decreased germination, increased seedling loss, and decreased plant biomass, appeared during the later stages of germination (after about 20 days of incubation). Our results suggest that as a pioneer shrub during the vegetation succession that occurs during dune stabilization, A. halodendron outcompeted other species through the allelopathic effect of its foliage litter. This helps to explain the patchy distribution and heterogeneity of vegetation communities in the Horqin Sandy Land.


Asunto(s)
Artemisia/fisiología , Germinación/fisiología , Alelopatía , Artemisia/crecimiento & desarrollo , Biomasa , China , Ecosistema , Pradera , Hojas de la Planta/fisiología , Banco de Semillas , Plantones/crecimiento & desarrollo , Plantones/fisiología , Semillas/crecimiento & desarrollo , Semillas/fisiología , Suelo
6.
Environ Monit Assess ; 189(4): 149, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28275986

RESUMEN

Plants that grow in dune ecosystems always suffer from sand burial. Shrubs play implications on the healthy functioning of dune ecosystems due to control blowing sand. However, the survival and growth responses of shrubs to sand burial remain poorly understood. The survival rate and seedling height of two shrubs (Artemisia halodendron and Lespedeza davurica) along with the soil properties under different burial depths were examined in order to reveal the causing ecophysiological attributes of sand burial on shrubs in the desertified region. It was found that A. halodendron can survive a burial depth of 6 cm greater than its seedling height, which is a dominant shrub in mobile dunes with intense burial, whereas a burial depth equivalent to three fourths of its seedling height is detrimental to L. davurica, which is dominant in fixed dunes with less burial. The reasons for the shrub death under sand burial were associated with the physical barrier to vertical growth and the reduction in photosynthetic area. In conclusion, A. halodendron can facilitate the stabilization of mobile dunes because of their high tolerance to the frequent and intensive sand burial, while L. davurica can be beneficial for the recovery process because of their higher survival rates under shallow burial following restoration of mobile dunes.


Asunto(s)
Artemisia/fisiología , Ecosistema , Monitoreo del Ambiente , Lespedeza/fisiología , Plantones/fisiología , China , Fotosíntesis , Plantones/crecimiento & desarrollo , Dióxido de Silicio , Suelo
7.
J Plant Res ; 129(3): 435-47, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26780064

RESUMEN

Ammopiptanthus mongolicus is an ecologically important species in the arid region of Northwest China. Habitat disturbance can significantly affect plant mating success and ultimately species viability. Pollen limitation of plant reproduction occurs in many plant species, particularly those under habitat disturbance. However, previous investigations have demonstrated differences in pollen limitation between conserved and disturbed sites. We compared the phenology, pollen limitation, pollinators and breeding system of both sites to determine whether habitat disturbance has generated changes in these plant components. We found that the species differed in four aspects. First, blooming duration and flowering peak were longer in the disturbed site than in the conserved site. Second, A. mongolicus can be pollen-limited and pollen limitation was more intense in the conserved site than in the disturbed site. Third, Anthophora uljanini was found to be a frequent pollinator in the conserved site, while Apis mellifera was the most effective and frequent flower visitor. More pollinator visits were recorded in the disturbed site, which could explain the differences in reproductive success. Finally, seed set was higher in the disturbed site than in the conserved site. We found that outcrossing was dominant in both sites and that agamospermy and self-pollination played complementary roles to ensure reproduction. Differences in flower production influenced by artificial selection and pollinator type explain the different seed set in both sites, whereas habitat disturbance cause changes differences in the pollination process and limits pollen flow. The balance between artificial management and mating success is crucial to analysis of the pollination process and manipulation of A. mongolicus population size.


Asunto(s)
Clima Desértico , Ecosistema , Fabaceae/fisiología , Polinización/fisiología , Cruzamiento , China , Flores/fisiología , Geografía , Polen/fisiología , Reproducción , Factores de Tiempo
8.
Environ Monit Assess ; 188(1): 21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26661957

RESUMEN

Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.


Asunto(s)
Monitoreo del Ambiente , Pradera , Suelo/química , Biomasa , China , Clima Desértico , Ecología , Ecosistema , Poaceae
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 46(5): 773-6, 2015 Sep.
Artículo en Zh | MEDLINE | ID: mdl-26619555

RESUMEN

OBJECTIVE: To optimize the extraction method of secretory factors from adipose tissue explant (SFAE) in vitro. METHODS: SFAE were obtained through adherent culture (SFAE-A) and suspension culture (SFAE-S) and concentrated by filtration and centrifugation. The yield of SFAE was compared using BCA protein detection kit. P3 adipose-derived stem cells (ADSCs) were induced with equal amount of SFAE for 7-13 d, before the state of adipogenesis between suspension culture and adherent culture was compared by microscope observation and oil red O staining. RESULTS: The average amount of SFAE yielded from adherent culture and suspension culture did not show significant difference. While the yield of SFAE from suspension culture was consistent at 8. 7 mg per gram of adipose tissue, the adherent culture generated an inconsistent result in the four repeat experiments, ranging from 7. 3 mg to 12. 4 mg per gram of adipose tissue. Moreover, ten more flasks and better distribution were needed for adherent culture to acquire an equal amount of SFAE in comparison with suspension culture. SFAE from both adherent and suspension culture promoted the adipogenesis of P3 adipose-derived stem cells. No differences on the adipogenic effect were found between the two extraction methods. CONCLUSION: Secretory factors from adherent culture and suspension culture have the same adipogenesis effect. Suspension culture can save time and labor. The most important advantage of suspension culture is its stable yield of SFAE.


Asunto(s)
Adipogénesis , Técnicas de Cultivo de Célula , Células Madre/citología , Tejido Adiposo/citología , Células Cultivadas , Humanos
10.
Sci Total Environ ; 915: 169915, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190901

RESUMEN

Global nitrogen deposition is significantly altering the carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in terrestrial ecosystems, yet how N deposition simultaneously affects plant-litter-soil-soil microbial stoichiometry in arid grassland is still unclear. In a five-year experimental study conducted in a desert steppe in Northern China, we investigated the effects of N addition on the C:N:P stoichiometry of plants, litter, soil, and soil microbes. We also used structural equation modelling (SEM) exploring the direct or indirect effects of N addition, plant species diversity, functional traits and diversity, soil microbial diversity, soil pH, soil electrical conductivity (EC) and moisture on the stoichiometry in plant-soil system. The results showed that N addition increased the N, P concentrations and N:P in plants, the N concentration and N:P in litter, and the C, N concentrations, C:P and N:P in microbes. Conversely, it decreased the C:N and C:P in plants, and litter C:N. Functional traits, functional dispersion (FDis), soil pH and EC accounted for a substantial proportion of the observed variations in elemental concentrations (from 42 % to 69 %) and stoichiometry (from 9 % to 73 %) across different components. SEM results showed that N addition decreased C:N and C:P in plants and litter by increasing FDis and leaf N content, while increased plant and litter N:P by decreasing leaf C content and increasing specific leaf area, respectively. Furthermore, N addition increased microbial C:P by increasing leaf thickness. We also found the mediating effects of soil pH and EC on C:N, C:P of litter and microbial N:P. Overall, our research suggests that plant functional traits as key predictors of nutrient cycling responses in desert steppes under N addition. This study extends the application of plant functional traits, enhances our understanding of C and nutrient cycling and facilitates predicting the response of desert steppes to N deposition.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Microbiología del Suelo , Nitrógeno/análisis , Plantas , Fósforo/análisis , Carbono/análisis , China , Pradera
11.
Front Microbiol ; 14: 1013570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051518

RESUMEN

The plant and soil microbial communities are influenced by variability in environmental conditions (e.g., nitrogen addition); however, it is unclear how long-term nitrogen addition and litter manipulation affect soil microbial communities in a semiarid sandy grassland. Therefore, we simulated the impact of N addition and litter manipulation (litter removal, litter doubling) on plant and soil microbial communities in Horqin grassland, northern China through an experiment from 2014 to 2019. Our results revealed that in the case of non-nitrogen (N0), litter manipulation significantly reduced vegetation coverage (V) (p < 0.05); soil bacterial communities have higher alpha diversity than that of the fungi, and the beta diversity of soil fungi was higher than that of the bacteria; soil microbial alpha diversity was significantly decreased by nitrogen addition (N10) (p < 0.05); N addition and litter manipulation had significantly interactive influences on soil microbial beta diversity, and litter manipulation (C0 and C2) had significantly decreased soil microbial beta diversity (p < 0.05) in the case of nitrogen addition (N10) (p < 0.05). Moreover, bacteria were mostly dominated by the universal phyla Proteobacteria, Actinobacteria, and Acidobacteria, and fungi were only dominated by Ascomycota. Furthermore, the correlation analysis, redundancy analysis (RDA), and variation partitioning analysis indicated that the soil fungi community was more apt to be influenced by plant community diversity. Our results provide evidence that plant and soil microbial community respond differently to the treatments of the 6-year N addition and litter manipulation in a semiarid sandy land.

12.
Front Microbiol ; 14: 1214186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601343

RESUMEN

Understanding the effects of groundwater depth on soil microbiota and multiple soil functions is essential for ecological restoration and the implementation of groundwater conservation. The current impact of increased groundwater levels induced by drought on soil microbiota and multifunctionality remains ambiguous, which impedes our understanding of the sustainability of water-scarce ecosystems that heavily rely on groundwater resources. This study investigated the impacts of altered groundwater depths on soil microbiota and multifunctionality in a semi-arid region. Three groundwater depth levels were studied, with different soil quality and soil moisture at each level. The deep groundwater treatment had negative impacts on diversity, network complexity of microbiota, and the relationships among microbial phylum unites. Increasing groundwater depth also changed composition of soil microbiota, reducing the relative abundance of dominant phyla including Proteobacteria and Ascomycota. Increasing groundwater depth led to changes in microbial community characteristics, which are strongly related to alterations in soil multifunctionality. Overall, our results suggest that groundwater depth had a strongly effect on soil microbiota and functionality.

13.
Front Plant Sci ; 14: 1186406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457335

RESUMEN

Introduction: Understanding the impact of deep groundwater depth on vegetation communities and soil in sand dunes with different underground water tables is essential for ecological restoration and the conservation of groundwater. Furthermore, this understanding is critical for determining the threshold value of groundwater depth that ensures the survival of vegetation. Method: This paper was conducted in a semi-arid region in eastern China, and the effects of deep groundwater depth (6.25 m, 10.61 m, and 15.26 m) on vegetation communities and soil properties (0-200 cm) across three dune types (mobile, semi-fixed, and fixed dunes) were evaluated in a sand ecosystem in the Horqin Sandy Land. Results: For vegetation community, variations in the same species are more significant at different groundwater depths. For soil properties, groundwater depth negatively influences soil moisture, total carbon, total nitrogen, available nitrogen, available phosphorus concentrations, and soil pH. Besides, groundwater depth also significantly affected organic carbon and available potassium concentrations. In addition, herb species were mainly distributed in areas with lower groundwater depth, yet arbor and shrub species were sparsely distributed in places with deeper groundwater depth. Discussion: As arbor and shrub species are key drivers of ecosystem sustainability, the adaptation of these dominant species to increasing groundwater depth may alleviate the negative effects of increasing groundwater depth; however, restrictions on this adaptation were exceeded at deeper groundwater depth.

14.
Environ Sci Pollut Res Int ; 30(9): 24319-24328, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36334210

RESUMEN

Extreme droughts strongly impact grassland ecology, both functionally and structurally. However, a comprehensive understanding of the drought impacts on the ecosystem stability is critical for its sustainable development under changing climate. We experimentally report the impact of extreme drought on the temporal stability of aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP) in a desert steppe of northern China. The relative importance evaluation of extreme drought, soil properties, species asynchrony, taxonomic, functional, and phylogenetic diversity was performed using structural equation modeling (SEM) to measure the temporal ANPP and BNPP stabilities. Our findings suggested that extreme drought decreased BNPP stability but did not affect ANPP stability. Extreme drought reduced taxonomic and phylogenetic diversity, ANPP, and soil water content but did not affect species asynchrony, functional diversity, or BNPP. Species richness, Shannon-Wiener index, and soil water content were positively correlated with BNPP stability. The SEM results showed a drought-mediated indirect weakening of BNPP stability via modification of species richness. Asynchrony of species unrelated to drought, however, directly affected ANPP stability. The mechanisms underlying the response determination of ANPP and BNPP stability to extreme drought in desert steppe varied notably. Depending on the species asynchrony, ANPP reduced by extreme drought could maintain higher stability. However, extreme drought lowered BNPP stability by altering species richness.


Asunto(s)
Sequías , Ecosistema , Filogenia , China , Agua , Suelo , Pradera
15.
Sci Total Environ ; 884: 163902, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37137371

RESUMEN

Plant elemental composition and stoichiometry are useful tools for understanding plant nutrient strategy and biogeochemical cycling in terrestrial ecosystems. However, no studies have examined how plant leaf carbon (C), nitrogen (N), and phosphorus (P) stoichiometry responds to abiotic and biotic factors in the fragile desert-grassland ecological transition zone in northern China. Then a systematically designed 400 km transect was established to investigate the C, N, and P stoichiometry of 870 leaf samples of 61 species from 47 plant communities in the desert-grassland transition zone. At the individual level, plant taxonomic groups and life forms rather than climate or soil factors determined the leaf C, N, and P stoichiometry. In addition, leaf C, N, and P stoichiometry (except leaf C) was significantly influenced by soil moisture content in the desert-grassland transition zone. At the community level, leaf C content showed a considerable interspecific variation (73.41 %); however, the variation in leaf N and P content, as well as C:N and C:P ratios, was mainly due to intraspecific variation, which was in turn driven by soil moisture. We suggested that intraspecific trait variation played a key role in regulating community structure and function to enhance the resistance and resilience of plant communities to climate change in the desert-grassland transition zone. Our results highlighted the role of soil moisture content as a critical parameter for modeling the biogeochemical cycling in dryland plant-soil systems.


Asunto(s)
Ecosistema , Pradera , Hojas de la Planta/química , Plantas/química , China , Nitrógeno/análisis , Fósforo/análisis , Suelo/química
16.
Sci Total Environ ; 857(Pt 1): 159367, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36240924

RESUMEN

The change of plant biodiversity caused by resource-enhancing global changes has greatly affected grassland productivity. However, it remains unclear how multi-resource enrichment induces the effects of multifaceted biodiversity on grassland productivity under different site resource constraints. We conducted a multiple resource addition (MRA) experiment of water and nutrients at three sites located along a resource gradient in northern China. This allowed us to assess the response of aboveground net primary productivity (ANPP), species (species richness and plant density), functional (functional richness and community-weighted mean of traits) and phylogenetic (phylogenetic richness) diversity to increasing number of MRA. We used structural equation model (SEM) to examine the direct and indirect effects of MRA and multifaceted biodiversity on ANPP. The combined addition of the four resources increased ANPP at all three sites. But with increasing number of MRA, biodiversity varied at the three sites. At the high resource constraint site, species richness, plant density and leaf nitrogen concentration (LNC) increased. At the medium resource constraint site, plant height and LNC increased, leaf dry matter content (LDMC) decreased. At the low resource constraint site, species, functional and phylogenetic richness decreased, and height increased. The SEM showed that MRA increased ANPP directly at all three sites, and indirectly by increasing plant density at the high constraint site and height at the medium constraint site. Independent of MRA, ANPP was affected by height at the high resource constraint site and LNC at the low resource constraint site. Our results illustrate that multi-resource addition positively affects productivity, while affects biodiversity depending on site resource constraint. The study highlights that site resource constraint conditions need to be taken into consideration to better predict grassland structure and function, particularly under the future multifaceted global change scenarios.


Asunto(s)
Biodiversidad , Pradera , Plantas , Biomasa , Ecosistema , Filogenia , China , Densidad de Población
17.
Sci Total Environ ; 861: 160654, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36473666

RESUMEN

Soil microbe diversity plays a key role in dryland ecosystem function under global climate change, yet little is known about how plant-soil microbe relationships respond to climate change. Altered precipitation patterns strongly shape plant community composition in deserts and steppes, but little research has demonstrated whether plant biodiversity attributes mediate the response of soil microbial diversity to long- and short-term precipitation changes. Here we used a comparative study to explore how altered precipitation along the natural and experimental gradients affected associations of soil bacterial and fungal diversity with plant biodiversity attributes (species, functional and phylogenetic diversity) and soil properties in desert-shrub and steppe-grass communities. We found that along both gradients, increasing precipitation increased soil bacterial and fungal richness in the desert and soil fungal richness in the steppe. Soil bacterial richness in the steppe was also increased by increasing precipitation in the experiment but was decreased along the natural gradient. Plant biodiversity and soil properties explained the variations in soil bacterial and fungal richness from 43 % to 96 % along the natural gradient and from 19 to 46 % in the experiment. Overall, precipitation effects on soil bacterial or fungal richness were mediated by plant biodiversity attributes (species richness and plant height) or soil properties (soil water content) along the natural gradient but were mediated by plant biodiversity attributes (functional or phylogenetic diversity) in the experiment. These results suggest that different mechanisms are responsible for the responses of soil bacterial and fungal diversity to long- and short-term precipitation changes. Long- and short-term precipitation changes may modify plant biodiversity attribute effects on soil microbial diversity in deserts and steppes, highlighting the importance of precipitation changes in shaping relationships between plant and soil microbial diversity in water-limited areas.


Asunto(s)
Ecosistema , Suelo , Microbiología del Suelo , Filogenia , Biodiversidad , Plantas , Bacterias , Agua
18.
Environ Manage ; 50(4): 622-32, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22829221

RESUMEN

The Horqin sandy rangeland of northern China is a seriously desertified region with a fragile ecology. The sandy alluvial and aeolian sediments have a coarse texture and loose structure and are therefore vulnerable to damage caused by grazing animals and wind erosion. We investigated whether grazing exclusion could enhance ecosystem carbon (C) and nitrogen (N) storage and thereby improve overall soil quality. We compared soil properties, C and N storage in biomass (aboveground and below-ground), and the total and light fraction soil organic matter between adjacent areas with continuous grazing and a 12-year grazing exclosure. The soil silt + clay content, organic C, total Kjeldahl N, available N and K, and cation-exchange capacity were significantly (P < 0.05) greater in the exclosure. We found that to a depth of 100 cm, the exclosure plots had greater light fraction C storage (by 267.2 g m(-2) = 73.3 %), light fraction N storage (by 16.6 g m(-2) = 105.7 %), total soil C storage (by 1174.4 g m(-2) = 43.9 %), and total N storage (by 91.1 g m(-2) = 31.3 %). Biomass C and N storage were also 205.0 and 8.0 g m(-2) greater (154.8 and 181.8 %, respectively). The increase was greatest in the light fraction organic matter and biomass and decreased with increasing depth in the soil. The results suggest that light fraction C and N respond more rapidly than total soil C and N to grazing exclusion and that vegetation recovers faster than soil. Our results confirmed that the degraded sandy rangeland is recovering and sequestering C after the removal of grazing pressure.


Asunto(s)
Carbono/metabolismo , Ecosistema , Nitrógeno/metabolismo , Suelo/química , Animales , Biomasa , China , Conservación de los Recursos Naturales , Conducta Alimentaria , Ganado , Desarrollo de la Planta , Plantas/química
19.
Front Microbiol ; 13: 1074841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704553

RESUMEN

Soil microbial diversity, composition, and function are sensitive to global change factors. It has been predicted that the temperature and precipitation will increase in northern China. Although many studies have been carried out to reveal how global change factors affect soil microbial biomass and composition in terrestrial ecosystems, it is still unexplored how soil microbial diversity and composition, especially in microbial functional genes, respond to increasing precipitation and warming in a semiarid grassland of northern China. A field experiment was established to simulate warming and increasing precipitation in a temperate semiarid grassland of the Horqin region. Soil bacterial (16S) and fungal (ITS1) diversity, composition, and functional genes were analyzed after two growing seasons. The result showed that warming exerted negative effects on soil microbial diversity, composition, and predicted functional genes associated with carbon and nitrogen cycles. Increasing precipitation did not change soil microbial diversity, but it weakened the negative effects of simulated warming on soil microbial diversity. Bacterial and fungal diversities respond consistently to the global change scenario in semiarid sandy grassland, but the reasons were different for bacteria and fungi. The co-occurrence of warming and increasing precipitation will alleviate the negative effects of global change on biodiversity loss and ecosystem degradation under a predicted climate change scenario in a semiarid grassland. Our results provide evidence that soil microbial diversity, composition, and function changed under climate change conditions, and it will improve the predictive models of the ecological changes of temperate grassland in future climate change scenarios.

20.
Front Plant Sci ; 13: 756950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812936

RESUMEN

The frequency and intensity of extreme precipitation events and severe drought are predicted to increase in semiarid areas due to global climate change. Plant morphological traits can reflect plant responses to a changing environment, such as altered precipitation or drought patterns. In this study, we examined the response of morphological traits of root, stem, leaf and reproduction meristems of annual herbaceous species to altered precipitation and drought patterns in a semiarid sandy grassland. The study involved a control treatment (100% of background precipitation) and the following six altered precipitation treatments: (1) P(+): precipitation increased by 30%, (2) P(++): precipitation increased by 60%, (3) P(-): precipitation decreased by 30%, (4) P(--): precipitation decreased by 60%, (5) drought 1 (D1): 46-day drought from May 1st to June 15th, and (6) drought 2 (D2): 46-day drought from July 1st to August 15th. P(++) significantly increased root length, flower length-to-width ratio, both P(+) and P(++) significantly increased stem length and flower number in the plant growing seasons, while all of them decreased under P(-) and P(--). The annual herbaceous plants marginally increased the number of second-level stem branches and stem diameter in order to better resist the severe drought stress under P(--). P(+) and P(++) increased the root, stem, leaf, and flower dry weight, with the flower dry weight accounting for a larger proportion than the other aboveground parts. Under D2, the plants used the limited water resources more efficiently by increasing the root-to-shoot ratio compared with P(-), P(--) and D1, which reflects biomass allocation to belowground increased. The linear mixed-effects models and redundancy analysis showed that the root-to-shoot ratio and the dry weight of various plant components were significantly affected by morphological traits and altered precipitation magnitude. Our results showed that the herbaceous species have evolved morphological trait responses that allow them to adapt to climate change. Such differences in morphological traits may ultimately affect the growing patterns of annual herbaceous species, enhancing their drought-tolerant capacity in semiarid sandy grassland during the ongoing climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA