Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Respir Res ; 25(1): 18, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178073

RESUMEN

OBJECTIVE: We aim to molecularly stratify stage IA lung adenocarcinoma (LUAD) for precision medicine. METHODS: Twelve multi-institution datasets (837 cases of IA) were used to classify the high- and low-risk types (based on survival status within 5 years), and the biological differences were compared. Then, a gene-based classifying score (IA score) was trained, tested and validated by several machine learning methods. Furthermore, we estimated the significance of the IA score in the prognostic assessment, chemotherapy prediction and risk stratification of stage IA LUAD. We also developed an R package for the clinical application. The SEER database (15708 IA samples) and TCGA Pan-Cancer (1881 stage I samples) database were used to verify clinical significance. RESULTS: Compared with the low-risk group, the high-risk group of stage IA LUAD has obvious enrichment of the malignant pathway and more driver mutations and copy number variations. The effect of the IA score on the classification of high- and low-risk stage IA LUAD was much better than that of classical clinicopathological factors (training set: AUC = 0.9, validation set: AUC = 0.7). The IA score can significantly predict the prognosis of stage IA LUAD and has a prognostic effect for stage I pancancer. The IA score can effectively predict chemotherapy sensitivity and occult metastasis or invasion in stage IA LUAD. The R package IAExpSuv has a good risk probability prediction effect for both groups and single stages of IA LUAD. CONCLUSIONS: The IA score can effectively stratify the risk of stage IA LUAD, offering good assistance in precision medicine.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Variaciones en el Número de Copia de ADN , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/genética , Bases de Datos Factuales , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Medición de Riesgo , Pronóstico
2.
J Therm Biol ; 110: 103386, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36462848

RESUMEN

Mongolian sheep are characteristically cold-tolerant and they partially depend on seasonal browning of white adipose tissue (WAT) to acclimate to cold environments. The present work aimed to examine the rumen microbes, rumen fermentation profile, and relationships between the rumen microbiota, short-chain fatty acids (SCFAs), and markers of WAT browning and are thus conducive to exploring the plateau environment adaptability of Mongolian sheep in the cold season. A comparative analysis of the rumen microbes and SCFAs in the cold and warm seasons was conducted. Rumen microbes were analyzed using Illumina sequencing of the 16S rRNA gene. Ruminal SCFAs were determined by gas chromatography. Spearman's correlation test was used to determine the relationships between the rumen microbiota, SCFAs, and markers of WAT browning. Microbial 16S rRNA sequencing revealed a marked shift in rumen microbiota composition between the two seasons, and the bacteria were characterized by increased levels of the Actinobacteria and genera Christensenellaceae R-7 group, Ruminococcaceae UCG-011, Rikenellaceae RC9 gut group, Papillibacter, and Butyrivibrio 2 and reduced levels of Prevotella 1 and Ruminococcaceae UCG-014 in the cold season (P<0.05). Furthermore, the concentrations of SCFAs such as acetate and butyrate were significantly increased in the cold season (P<0.001 and P<0.05, respectively). Correlation analysis demonstrated that the relative abundances of the Actinobacteria and the genera Christensenellaceae R-7 group, Butyrivibrio 2, Ruminococcaceae UCG-002, and Ruminococcaceae UCG-011, identified as members of the Christensenellaceae, Lachnospiraceae, and Ruminococcaceae families (all within Firmicutes), were positively correlated with markers of browning in either retroperitoneal WAT or perirenal WAT, and acetate was positively correlated with Ruminococcaceae UCG-011 and Butyrivibrio 2 and markers of browning in either retroperitoneal WAT or perirenal WAT. Overall, there are distinct relationships between the rumen microbiota, ruminal SCFAs and markers of WAT browning during the cold season in grazing Mongolian sheep.


Asunto(s)
Actinobacteria , Rumen , Ovinos , Animales , Estaciones del Año , ARN Ribosómico 16S/genética , Ácidos Grasos Volátiles , Gerbillinae , Tejido Adiposo Blanco , Biomarcadores
3.
J Therm Biol ; 109: 103333, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36195394

RESUMEN

Mongolian sheep are characteristically cold-tolerant and thus can survive well and maintain genetic stability in the extremely cold environment of the Mongolian Plateau. However, the adaptive mechanism of Mongolian sheep during the cold season in the plateau environment remains unknown. Browning of white adipose tissues (WAT) can trigger nonshivering thermogenesis as a potential strategy to promote an animal's tolerance to cold environments. Thus, a comparative analysis of the genes and proteins of uncoupling protein 1 (UCP1)-dependent and UCP1-independent browning pathways, mitochondrial biogenesis, lipogenic and lipolytic processes of WAT from grazing Mongolian sheep in the cold and warm seasons was conducted. We found seasonal browning of both retroperitoneal WAT and perirenal WAT, and the signalling of the process was mainly transduced by the UCP1- dependent pathway, primarily reflected in the upregulated gene levels of UCP1 and peroxisome proliferative activated receptor gamma coactivator 1 alpha (PGC-1α). In addition, the mean adipocyte diameter and mRNA expression of lipogenic genes in both interscapular WAT and subcutaneous WAT were significantly elevated during the cold season. The findings of this study demonstrate that grazing Mongolian sheep could depend on seasonal browning of both retroperitoneal WAT and perirenal WAT together with the expansion of both interscapular WAT and subcutaneous WAT to acclimate to cold environments of the Mongolian Plateau.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Aclimatación , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , ARN Mensajero/genética , Estaciones del Año , Ovinos , Termogénesis , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
Sensors (Basel) ; 21(23)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34884135

RESUMEN

Geospatial three-dimensional (3D) raster data have been widely used for simple representations and analysis, such as geological models, spatio-temporal satellite data, hyperspectral images, and climate data. With the increasing requirements of resolution and accuracy, the amount of geospatial 3D raster data has grown exponentially. In recent years, the processing of large raster data using Hadoop has gained popularity. However, data uploaded to Hadoop are randomly distributed onto datanodes without consideration of the spatial characteristics. As a result, the direct processing of geospatial 3D raster data produces a massive network data exchange among the datanodes and degrades the performance of the cluster. To address this problem, we propose an efficient group-based replica placement policy for large-scale geospatial 3D raster data, aiming to optimize the locations of the replicas in the cluster to reduce the network overhead. An overlapped group scheme was designed for three replicas of each file. The data in each group were placed in the same datanode, and different colocation patterns for three replicas were implemented to further reduce the communication between groups. The experimental results show that our approach significantly reduces the network overhead during data acquisition for 3D raster data in the Hadoop cluster, and maintains the Hadoop replica placement requirements.

5.
J Cell Mol Med ; 24(11): 6178-6190, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32307881

RESUMEN

Mycoplasma gallisepticum (MG) can cause chronic respiratory disease (CRD) in chickens. While several studies have reported the inflammatory functions of microRNAs during MG infection, the mechanism by which exosomal miRNAs regulate MG-induced inflammation remains to be elucidated. The expression of exosome-microRNA derived from MG-infected chicken type II pneumocytes (CP-II) was screened, and the target genes and function of differentially expressed miRNAs (DEGs) were predicted. To verify the role of exosomal gga-miR-451, Western blot, ELISA and RT-qPCR were used in this study. The results showed that a total of 722 miRNAs were identified from the two exosomal small RNA (sRNA) libraries, and 30 miRNAs (9 up-regulated and 21 down-regulated) were significantly differentially expressed. The target miRNAs were significantly enriched in the treatment group, such as cell cycle, Toll-like receptor signalling pathway and MAPK signalling pathway. The results have also confirmed that gga-miR-451-absent exosomes derived from MG-infected CP-II cells increased inflammatory cytokine production in chicken fibroblast cells (DF-1), and wild-type CP-II cell-derived exosomes displayed protective effects. Collectively, our work suggests that exosomes from MG-infected CP-II cells alter the dynamics of the DF-1 cells, and may contribute to pathology of the MG infection via exosomal gga-miR-451 targeting YWHAZ involving in inflammation.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Exosomas/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Inflamación/genética , MicroARNs/genética , Proteínas 14-3-3/metabolismo , Células Epiteliales Alveolares/ultraestructura , Animales , Apoptosis/genética , Ciclo Celular/genética , Línea Celular , Pollos/genética , Análisis por Conglomerados , Citocinas/metabolismo , Exosomas/metabolismo , Exosomas/ultraestructura , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Mediadores de Inflamación/metabolismo , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados , Receptores Toll-Like/metabolismo
6.
Int J Mol Sci ; 20(12)2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31238581

RESUMEN

MicroRNAs (miRNAs) have been determined to be important regulators for pathogenic microorganism infection. However, it is largely unclear how miRNAs are triggered during pathogen infection. We previously reported that the up-regulation of gga-miR-451 negatively regulates the Mycoplasma gallisepticum (MG)-induced production of inflammatory cytokines via targeting tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta (YWHAZ). The aim of this study was to investigate the mechanism regulating gga-miR-451 in MG infection in chickens. Analysis of gga-miR-451 precursor, pri-miR-451, and pre-miR-451 indicated that the regulation occurred transcriptionally. We also identified the transcriptional regulatory region of gga-miR-451 that contained consensus-binding motif for aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (Arnt) complex, which is known as the transcription factor that regulates gene expression. Luciferase reporter assays combined with chromatin immunoprecipitation (ChIP) demonstrated that AhR:Arnt bound directly to the promoter elements of gga-miR-451, which were responsible for gga-miR-451 transcription in the context of MG infection. Furthermore, upregulation of AhR:Arnt significantly induced gga-miR-451 and inhibited YWHAZ expression, suggesting that AhR:Arnt may play an anti-inflammatory role in MG infection. This discovery suggests that induced gga-miR-451 expression is modulated by AhR:Arnt in response to MG infection.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , Infecciones por Mycoplasma/genética , Infecciones por Mycoplasma/metabolismo , Mycoplasma gallisepticum , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Embrión de Pollo , Fibroblastos , Regulación de la Expresión Génica , Infecciones por Mycoplasma/microbiología , Activación Transcripcional
7.
Int J Mol Sci ; 20(5)2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30818821

RESUMEN

Mycoplasma gallisepticum (MG) mainly infects chickens to initiate chronic respiratory disease (CRD). microRNAs (miRNAs) play vital roles according to previously reported studies. Our previous study showed that gga-miR-16-5p, in MG-infected lungs of chicken embryo, was upregulated by Illumina sequencing. The study aimed to reveal what role gga-miR-16-5p plays in CRD progression. gga-miR-16-5p was upregulated in MG-infected fibroblast cells (DF-1). Phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) was demonstrated as the target gene of gga-miR-16-5p. Furthermore, PIK3R1 expression was lower in MG-infected groups than it in noninfected controls measured by qPCR. Additionally, overexpressed gga-miR-16-5p could downregulate PIK3R1 and phosphorylated serine/threonine kinase (p-Akt) to express protein, whereas there is an opposite effect on inhibition. Overexpressed gga-miR-16-5p resulted in decreased activity of tumor necrosis factor alpha (TNF-α) and the nuclear factor-kappaB (NF-κB) by qPCR. Furthermore, overexpressed gga-miR-16-5p restricted cell multiplication, cycle progression, and increased apoptosis of MG-infected DF-1 cells, whereas inhibited gga-miR-16-5p led to the opposite effect. Collectively, upregulated gga-miR-16-5p could decrease multiplication, cycle progression, and increase apoptosis of MG-infected DF-1 cells, at least partly through directly targeting PIK3R1 and inhibiting PI3K/Akt/NF-κB pathway to exert an anti-inflammatory effect. Our results will provide more experimental evidence to bring pathogenesis of MG infection to light.


Asunto(s)
Antiinflamatorios/metabolismo , Apoptosis/genética , Fibroblastos/metabolismo , Fibroblastos/microbiología , MicroARNs/genética , Mycoplasma gallisepticum/fisiología , Transducción de Señal , Regulación hacia Arriba/genética , Animales , Secuencia de Bases , Línea Celular , Proliferación Celular , Embrión de Pollo , Regulación hacia Abajo/genética , Pulmón/microbiología , Pulmón/patología , MicroARNs/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Enfermedades Respiratorias/genética , Enfermedades Respiratorias/microbiología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
8.
Int J Mol Sci ; 19(4)2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29652844

RESUMEN

Mycoplasma gallisepticum (MG) is the most economically significant mycoplasma pathogen of poultry that causes chronic respiratory disease (CRD) in chickens. Although miRNAs have been identified as a major regulator effect on inflammatory response, it is largely unclear how they regulate MG-induced inflammation. The aim of this study was to investigate the functional roles of gga-miR-451 and identify downstream targets regulated by gga-miR-451 in MG infection of chicken. We found that the expression of gga-miR-451 was significantly up-regulated during MG infection of chicken embryo fibroblast cells (DF-1) and chicken embryonic lungs. Overexpression of gga-miR-451 decreased the MG-induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), whereas inhibition of gga-miR-451 had the opposite effect. Gene expression data combined with luciferase reporter assays demonstrated that tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta (YWHAZ) was identified as a direct target of gga-miR-451 in the context of MG infection. Furthermore, upregulation of gga-miR-451 significantly inhibited the MG-infected DF-1 cells proliferation, induced cell-cycle arrest, and promoted apoptosis. Collectively, our results demonstrate that gga-miR-451 negatively regulates the MG-induced production of inflammatory cytokines via targeting YWHAZ, inhibits the cell cycle progression and cell proliferation, and promotes cell apoptosis. This study provides a better understanding of the molecular mechanisms of MG infection.


Asunto(s)
Proteínas 14-3-3/genética , Infecciones por Mycoplasma/genética , Mycoplasma gallisepticum/patogenicidad , Enfermedades de las Aves de Corral/microbiología , Infecciones del Sistema Respiratorio/veterinaria , Animales , Apoptosis , Línea Celular , Embrión de Pollo , Pollos , Citocinas/genética , Fibroblastos/química , Fibroblastos/citología , Fibroblastos/microbiología , Pulmón/química , Pulmón/microbiología , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/veterinaria , Enfermedades de las Aves de Corral/genética , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/microbiología , Regulación hacia Arriba
9.
Int J Mol Sci ; 19(8)2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-30044397

RESUMEN

Mycoplasma gallisepticum (MG) is the pathogen of chronic respiratory disease (CRD), hallmarked by vigorous inflammation in chickens, causing the poultry industry enormous losses. miRNAs have emerged as important regulators of animal diseases. Previous miRNA sequencing data has demonstrated that miR-130b-3p is up-regulated in MG-infected chicken embryo lungs. Therefore, we aimed to investigate the function of miR-130b-3p in MG infection of chickens. RT-qPCR results confirmed that miR-130b-3p was up-regulated both in MG-infected chicken embryo lungs and chicken embryonic fibroblast cells (DF-1 cells). Furthermore, functional studies showed that overexpression of miR-130b-3p promoted MG-infected DF-1 cell proliferation and cell cycle, whereas inhibition of miR-130b-3p weakened these cellular processes. Luciferase reporter assay combined with gene expression data supported that phosphatase and tensin homolog deleted on chromosome ten (PTEN) was a direct target of miR-130b-3p. Additionally, overexpression of miR-130b-3p resulted in up-regulations of phosphatidylinositol-3 kinase (PI3K), serine/threonine kinase (AKT), and nuclear factor-κB (NF-κB), whereas inhibition of miR-130b-3p led to the opposite results. Altogether, upon MG infection, up-regulation of miR-130b-3p activates the PI3K/AKT/NF-κB pathway, facilitates cell proliferation and cell cycle via down-regulating PTEN. This study helps to understand the mechanism of host response to MG infection.


Asunto(s)
Pollos/microbiología , MicroARNs/metabolismo , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/patogenicidad , Enfermedades de las Aves de Corral/microbiología , Animales , Ciclo Celular , Línea Celular , Proliferación Celular , Embrión de Pollo , Fibroblastos/microbiología , Humanos , Pulmón/microbiología , MicroARNs/genética , Infecciones por Mycoplasma/microbiología , FN-kappa B/genética , FN-kappa B/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Enfermedades de las Aves de Corral/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación hacia Arriba
10.
Int J Mol Sci ; 16(12): 28669-82, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26633386

RESUMEN

Mycoplasma gallisepticum (MG), one of the most pathogenic Mycoplasma, has caused tremendous economic loss in the poultry industry. Recently, increasing evidence has suggested that micro ribonucleic acids (miRNAs) are involved in microbial pathogenesis. However, little is known about potential roles of miRNAs in MG infection of chicken. In the present study, using miRNA Solexa sequencing we have found that gga-miR-101-3p was up-regulated in the lungs of MG-infected chicken embryos. Moreover, gga-miR-101-3p regulated expression of the host enhancer of zeste homolog 2 (EZH2) through binding to the 3' un-translated region (3'-UTR) of EZH2 gene. Over-expression of gga-miR-101-3p significantly inhibited EZH2 expression and hence inhibited proliferation of chicken embryonic fibroblast (DF-1 cells) by blocking the G1-to-S phase transition. Similar results were obtained in MG-infected chicken embryos and DF-1 cells, where gga-miR-101-3p was significantly up-regulated, while EZH2 was significantly down-regulated. This study reveals that gga-miR-101-3p plays an important role in MG infection through regulation of EZH2 expression and provides a new insight into the mechanisms of MG pathogenesis.


Asunto(s)
MicroARNs/genética , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/microbiología , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Sitios de Unión , Ciclo Celular , Proliferación Celular , Embrión de Pollo , Pollos , Regulación de la Expresión Génica , MicroARNs/química , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Interferencia de ARN , ARN Mensajero/química , ARN Mensajero/genética , Alineación de Secuencia
11.
Heliyon ; 10(1): e22888, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163215

RESUMEN

Background: Rising rates of lung cancer screening have contributed to an increase in pulmonary nodule diagnosis rates. Studies have shown that psychosocial factors and hormones have an impact on the development of the oncological diseases. Therefore, we conducted this study to explore the potential relationship between pulmonary nodules pathology and patient personality traits and hormone levels. Methods: This study enrolled 245 individuals who had first been diagnosed with pulmonary nodules in Tangdu Hospital and admitted for surgery. The personality profile of these patients was analyzed on admission using the C-Type Behavioral Scale and hormone levels were measured in preoperative serum samples. Associations between nodule pathology, personality scores, and hormone levels, were then assessed through Statistical methods analysis. Results: Behavioral scale analyses revealed significant differences four items, including depression, anger outward, optimism, and social support (P< 0.05). Specifically, patients with higher depression scores were more likely to harbor malignant pulmonary nodules, as were patients with lower levels of anger outward, social support, and optimism. Univariate analyses indicated that nodule pathology was associated with significant differences in nodule imaging density, CT value, testosterone levels, and T4 levels(P< 0.05), and logistic regression analyses revealed pulmonary nodule imaging density and T4 levels to be significant differences of nodule pathology. Conclusion: The results showed a significant association between nodules pathology and the personality characteristics of the patients (depression, anger outward, optimism, social support), the patients' T4 levels and the imaging density of the nodules.

12.
mSystems ; 9(3): e0121423, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38364095

RESUMEN

The intestine plays a pivotal role in nutrient absorption and host defense against pathogens, orchestrated in part by antimicrobial peptides secreted by Paneth cells. Among these peptides, lysozyme has multifaceted functions beyond its bactericidal activity. Here, we uncover the intricate relationship between intestinal lysozyme, the gut microbiota, and host metabolism. Lysozyme deficiency in mice led to altered body weight, energy expenditure, and substrate utilization, particularly on a high-fat diet. Interestingly, these metabolic benefits were linked to changes in the gut microbiota composition. Cohousing experiments revealed that the metabolic effects of lysozyme deficiency were microbiota-dependent. 16S rDNA sequencing highlighted differences in microbial communities, with ASTB_g (OTU60) highly enriched in lysozyme knockout mice. Subsequently, a novel bacterium, ASTB Qing110, corresponding to ASTB_g (OTU60), was isolated. Metabolomic analysis revealed that ASTB Qing110 secreted high levels of NAD+, potentially influencing host metabolism. This study sheds light on the complex interplay between intestinal lysozyme, the gut microbiota, and host metabolism, uncovering the potential role of ASTB Qing110 as a key player in modulating metabolic outcomes. IMPORTANCE: The impact of intestinal lumen lysozyme on intestinal health is complex, arising from its multifaceted interactions with the gut microbiota. Lysozyme can both mitigate and worsen certain health conditions, varying with different scenarios. This underscores the necessity of identifying the specific bacterial responses elicited by lysozyme and understanding their molecular foundations. Our research reveals that a deficiency in intestinal lysozyme1 may offer protection against diet-induced obesity by altering bacterial populations. We discovered a strain of bacterium, ASTB Qing110, which secretes NAD+ and is predominantly found in lyz1-deficient mice. Qing110 demonstrates positive effects in both C. elegans and mouse models of ataxia telangiectasia. This study sheds light on the intricate role of lysozyme in influencing intestinal health.


Asunto(s)
Microbiota , Muramidasa , Animales , Ratones , Muramidasa/genética , NAD , Caenorhabditis elegans , Intestinos/microbiología , Bacterias , Dieta Alta en Grasa/efectos adversos
13.
Int J Surg ; 110(3): 1605-1610, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116668

RESUMEN

BACKGROUND: No studies to date have focused on the timing of pulmonary resection in patients with previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present study, the authors analyzed the surgical outcomes and evaluated the optimal time point of pulmonary resection surgery following SARS-CoV-2 infection. MATERIALS AND METHODS: In this multicenter retrospective cohort study, patients were divided into different groups according to the time interval between SARS-CoV-2 diagnosis and pulmonary resection. The primary outcome measure was postoperative complications within 30 days after surgery, which was investigated to determine the optimal time point of pulmonary resection. Logistic regression models were used to calculate the risk factors for postoperative complications. RESULTS: In total, 400 patients were enrolled, and the postoperative pathologic examination of 322 (80.5%) patients showed lung cancer. As the interval between SARS-CoV-2 infection and pulmonary resection increased, the incidence of complications gradually decreased in each group. The incidence of grade ≥II complications was higher in the ≤2-week and 2-week to 4-week groups than in the 4-week to 6-week, 6-week to 8-week and >8-week groups [3 (21.4%), 17 (20.2%), 10 (10.6%), 13 (7.9%), and 3 (6.5%), respectively] ( P <0.05). Multiclassification regression analysis showed that the risk of grade ≥II complications in the ≤2-week and 2-week to 4-week groups was significantly higher than that in the >8-week group [odds ratio (95% CI), 3.937 (1.072-14.459), P =0.039 and 3.069 (1.232-6.863), P =0.015]. The logistic regression analysis suggested that underlying disease, persistent SARS-CoV-2 symptoms, and surgical timing (≤4 weeks) were independent risk factors for complications of pulmonary resection after SARS-CoV-2 infection. CONCLUSION: Pulmonary resection should be delayed for at least 4 weeks following SARS-CoV-2 infection to reduce the risk of postoperative complications.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Estudios Retrospectivos , Prueba de COVID-19 , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología
14.
Cancer Gene Ther ; 30(11): 1443-1455, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37537209

RESUMEN

Esophageal cancer (EC) is the tenth most common cancer worldwide and has high morbidity and mortality. Its main subtypes include esophageal squamous cell carcinoma and esophageal adenocarcinoma, which are usually diagnosed during their advanced stages. The biological defects and inability of preclinical models to summarize completely the etiology of multiple factors, the complexity of the tumor microenvironment, and the genetic heterogeneity of tumors severely limit the clinical treatment of EC. Patient-derived models of EC not only retain the tissue structure, cell morphology, and differentiation characteristics of the original tumor, they also retain tumor heterogeneity. Therefore, compared with other preclinical models, they can better predict the efficacy of candidate drugs, explore novel biomarkers, combine with clinical trials, and effectively improve patient prognosis. This review discusses the methods and animals used to establish patient-derived models and genetically engineered mouse models, especially patient-derived xenograft models. It also discusses their advantages, applications, and limitations as preclinical experimental research tools to provide an important reference for the precise personalized treatment of EC and improve the prognosis of patients.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ratones , Animales , Humanos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/terapia , Adenocarcinoma/patología , Modelos Animales de Enfermedad , Microambiente Tumoral
15.
Foods ; 12(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37174316

RESUMEN

As toxic metals, Hg and Cd are a concern for food safety and human health; their rapid and portable analysis is still a challenge. A portable and rapid Hg-Cd analyzer constructed from a metal-ceramic heater (MCH)-based electrothermal vaporizer (ETV), an on-line catalytic pyrolysis furnace (CPF), a composite Pt/Ni trap, and a homemade miniature atomic absorption spectrometer (AAS) was proposed for grain analysis in this work. To enhance sensitivity, a new folded light path was designed for simultaneous Hg and Cd analysis using charge coupled device (CCD) in AAS. To eliminate the grain matrix interference, a catalytic pyrolysis furnace with aluminum oxide fillers was utilized to couple with a composite Pt/Ni trap. The method limits of detection (LODs) were 1.1 µg/kg and 0.3 µg/kg for Hg and Cd using a 20 mg grain sample, fulfilling the real sample analysis to monitor the grain contamination quickly; linearity R2 > 0.995 was reached only using standard solution calibration, indicating the sample was free of grain matrix interference. The favorable analytical accuracy and precision were validated by analyzing real and certified reference material (CRM) grains with recoveries of 97-103% and 96-111% for Hg and Cd, respectively. The total analysis time was less than 5 min without sample digestion or use of any chemicals, and the instrumental size and power consumption were <14 kg and 270 W, respectively. Compared with other rapid methods, this newly designed Hg-Cd analyzer is proven to be simple, portable, and robust and is, thus, suitable to quickly monitor Hg and Cd contamination in the field to protect grain and food safety.

16.
Anal Chim Acta ; 1251: 341008, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-36925294

RESUMEN

At present, immediate monitoring urinary arsenic is still a challenge for treating arsenic poisoning patients. Thus, a fast, reliable and accurate analytical approach is indispensable to monitor ultratrace arsenic in urine sample for health warning. In this work, a silicon nitride (SN) rod was first integrally utilized as a sample carrier for ≤50 µL urinary aliquot, an electric heater for removing water and ashing sample as well as a high voltage electrode for dielectric barrier discharge vaporization (DBDV). The direct analytical method of arsenic in urine without sample digestion was thus developed using atomic fluorescence spectrometer (AFS) as a model detector. After 4 V electrically heating the SN rod for 60 s, urine sample was dehydrated and ashed outside; then, DBD was exerted under 0.8 A with 0.8 L/min H2 + Ar (1:9, v:v) for 20 s to vaporize arsenic analyte from the SN rod. After optimization, 0.014 µg/L arsenic detection limit (LOD) was reached with favorable analytical precision (RSD <5%) and accuracy (91-110% recoveries) for real sample analysis. As a result, the whole analysis process only consumes <3 min to exclude complicated sample preparation; furthermore, the designed DBDV system only occupies 25 W and <2 kg, which renders a miniature sampling component to hyphenate with a miniature detector to detect arsenic. Thus, this direct sampling DBDV method extremely fulfills the fast, sensitive and precise detection of ultratrace arsenic in urine sample.


Asunto(s)
Arsénico , Humanos , Arsénico/análisis , Volatilización , Espectrofotometría Atómica/métodos , Agua/análisis
17.
Cells ; 12(19)2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37830635

RESUMEN

Respiratory diseases represent a significant economic and health burden worldwide, affecting millions of individuals each year in both human and animal populations. MicroRNAs (miRNAs) play crucial roles in gene expression regulation and are involved in various physiological and pathological processes. Exosomal miRNAs and cellular miRNAs have been identified as key regulators of several immune respiratory diseases, such as chronic respiratory diseases (CRD) caused by Mycoplasma gallisepticum (MG), Mycoplasma pneumoniae pneumonia (MMP) caused by the bacterium Mycoplasma pneumoniae, coronavirus disease 2019 (COVID-19), chronic obstructive pulmonary disease (COPD), asthma, and acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Consequently, miRNAs seem to have the potential to serve as diagnostic biomarkers and therapeutic targets in respiratory diseases. In this review, we summarize the current understanding of the functional roles of miRNAs in the above several respiratory diseases and discuss the potential use of miRNAs as stable diagnostic biomarkers and therapeutic targets for several immune respiratory diseases, focusing on the identification of differentially expressed miRNAs and their targeting of various signaling pathways implicated in disease pathogenesis. Despite the progress made, unanswered questions and future research directions are discussed to facilitate personalized and targeted therapies for patients with these debilitating conditions.


Asunto(s)
COVID-19 , MicroARNs , Mycoplasma gallisepticum , Enfermedad Pulmonar Obstructiva Crónica , Síndrome de Dificultad Respiratoria , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , COVID-19/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Síndrome de Dificultad Respiratoria/genética , Biomarcadores/metabolismo
18.
Cancer Med ; 12(5): 5545-5557, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36325966

RESUMEN

OBJECTIVE: Mutations in driver genes contribute to the development and progression of lung adenocarcinoma (LUAD). However, in the dynamic evolutionary process from adenocarcinoma in situ (AIS) to minimally invasive adenocarcinoma (MIA) and eventually to invasive adenocarcinoma (IAC), the role of driver genes is currently unclear. This study aimed to analyse the role of driver gene status in the progression of LUAD from preneoplasia to IAC. METHODS: Patients with LUAD who underwent surgery in our centre from March 2015 to December 2019 were retrospectively analysed, and LUAD patients with tumour sizes ≤3.0 cm and pN0 were included in the final analysis. The mutation status of common driver genes, including EGFR, ALK and ROS1, was detected. According to the pathological characteristics, the patients were divided into three stages: AIS, MIA and IAC. We analysed the distribution of driver gene mutation frequencies across three stages of LUAD. In addition, we performed univariate and multivariate analyses of IAC patients to screen for relevant variables (driver genes and clinicopathological features) affecting their prognosis. RESULTS: Ultimately, 759 patients with LUAD were enrolled, including 135, 130, and 494 cases of AIS, MIA, and IAC, respectively. EGFR mutations were identified in 359 (61.8%) patients, and with the transition from AIS to MIA, the frequency of EGFR mutations increased from 33.3% to 50.8%, p = 0.004, whereas the frequency of EGFR mutations was comparable for MIA and IAC (50.8% vs. 50.2%, p = 0.922). Moreover, ALK and ROS1 gene fusions were identified in 17 cases (2.2%) and 2 cases (3.0‰) respectively. For AIS, neither ALK gene nor ROS1 gene fusions were observed. When the tumour progressed to MIA, the ALK fusion frequency was 2.3% (3/130), which was basically consistent with the ALK fusion frequency of 2.8% in IAC, p = 0.143. For IAC, fusions of ROS1 fell into this category. In addition, we found that 40 patients (5.3%) developed metastasis/recurrence, and 14 patients (1.8%) died of cancer-specific related diseases. Notably, for AIS, there were no recurrences and no deaths, and for MIA, only 1 patient died with LUAD. Finally, survival analysis was performed in patients with stage IA invasive adenocarcinoma, and EGFR-mutant patients showed better DFS than EGFR-wild-type patients (p = 0.036). Conversely, patients with ALK fusions showed worse DFS than those with ALK wild-type (p = 0.004), and the same results were found in OS analysis. CONCLUSIONS: The accumulation of EGFR driver gene mutation frequencies mediates the progression of LUAD from AIS to MIA. When the tumour progresses to stage IA invasive adenocarcinoma, multivariate analysis based on driver gene status can be used as a pivotal prognostic factor.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Proteínas Tirosina Quinasas/genética , Estudios Retrospectivos , Proteínas Proto-Oncogénicas/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma/patología , Proteínas Tirosina Quinasas Receptoras/genética , Receptores ErbB/genética , Mutación
19.
Brain Behav ; 13(5): e2970, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36999243

RESUMEN

BACKGROUND: Conditioned place preference (CPP) is a common behavioral paradigm for studying the association of unconditioned stimulus reward memory with context. Generalization is a flexible memory recall pattern developed on the basis of original memory. Drug-seeking behaviors in substance use disorders (SUDs) exhibit diversity, which we generally attribute to the highly generalized features of SUD memory. However, to date, there are no animal models for SUD generalization studies. METHODS: We design the generalization box (G-box) and the generalization retrieval process based on the conditioned place preference (CPP) model. In the memory retrieval stage, we replaced the conditioning CPP box (T-box) with a generalization box (G-box) to study drug generalization memory. For appearance, the generalized boxes have different angles and numbers of sides compared to the conditioning boxes. For the visual cues, the shapes of the symbols are different (triangle icons for the hexagonal chamber and dot icons for the round chamber), but the orientation information remains the same. To establish CPP generalization, the mice received morphine on the vertical or horizontal side of a conditioning box (T-box) and saline on the other side. Then, after CPP conditioning, the generalization test was performed in a generalization box (G-box: hexagonal chamber and Gr-box: round chamber) 21 days later. RESULTS: CPP-conditioned mice still displayed a clear preference for similar visual information in the G-box. CPA-conditioned mice behaved similarly to CPP, with mice consistently avoiding similar visual information in the G-box. We further observed that the generalization results are similar using two generalization boxes (G-box and Gr-box). CONCLUSION: In this study, we succeeded in creating a simple and effective generalization model for morphine reward. The establishment of this model provides a new tool for generalization studies of SUD and therapy in humans.


Asunto(s)
Condicionamiento Clásico , Morfina , Humanos , Ratones , Animales , Morfina/farmacología , Condicionamiento Operante , Memoria , Recompensa
20.
Heliyon ; 9(10): e21059, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37916122

RESUMEN

Background: Enhancing the diagnostic efficacy of early-stage lung cancer is crucial for improving prognosis. The objective of this study was to ascertain dependable exosomal miRNAs as biomarkers for the diagnosis of lung cancer. Methods: Exosomal miRNA candidates were identified through miRNA sequencing and subsequently validated in various case-control sets using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The correlation between the expression of exosomal miRNAs and the clinicopathological features of lung cancer was investigated. To assess the diagnostic efficacy of exosomal miRNAs for lung cancer, the receiver operating characteristic (ROC) curve analysis was conducted. The optimal cutoff value of exosomal miRNAs was determined in the testing cohort and subsequently confirmed in the validation cohort. Results: The results showed that the expression of exosomal miR-1290 was significantly elevated, while that of miR-29c-3p was significantly decreased in the plasma of lung cancer patients, especially in those with early-stage lung cancer, compared to individuals with benign lung conditions (P < 0.01). Exosomal miR-1290 and miR-29c-3p demonstrated superior diagnostic efficacy compared to conventional tumor biomarkers in distinguishing between lung cancer and benign lung diseases, as evidenced by their respective area under the curve (AUC) values of 0.934 and 0.868. Furthermore, exosomal miR-1290 and miR-29c-3p exhibited higher diagnostic efficiency in early-stage lung cancer than traditional tumor markers, with AUC values of 0.947 and 0.895, respectively. Notably, both exosomal miR-1290 and miR-29c-3p displayed substantial discriminatory capacity in distinguishing between non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), as indicated by their respective AUC values of 0.810 and 0.842. Conclusions: The findings of this study provided evidence that exosomal miR-1290 and miR-29c-3p hold significant potential as biomarkers for the early detection of lung cancer, as well as for differentiating between NSCLC and SCLC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA