Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Annu Rev Microbiol ; 73: 17-42, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31082304

RESUMEN

Cryptococcus neoformans is a ubiquitous environmental fungus and an opportunistic pathogen that causes fatal cryptococcal meningitis. Advances in genomics, genetics, and cellular and molecular biology of C. neoformans have dramatically improved our understanding of this important pathogen, rendering it a model organism to study eukaryotic biology and microbial pathogenesis. In light of recent progress, we describe in this review the life cycle of C. neoformans with a special emphasis on the regulation of the yeast-to-hypha transition and different modes of sexual reproduction, in addition to the impacts of the life cycle on cryptococcal populations and pathogenesis.


Asunto(s)
Cryptococcus neoformans/crecimiento & desarrollo , Estadios del Ciclo de Vida , Interacciones Huésped-Patógeno , Hifa/crecimiento & desarrollo , Reproducción
2.
PLoS Genet ; 13(9): e1006982, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28898238

RESUMEN

Morphotype switch is a cellular response to external and internal cues. The Cryptococcus neoformans species complex can undergo morphological transitions between the yeast and the hypha form, and such morphological changes profoundly affect cryptococcal interaction with various hosts. Filamentation in Cryptococcus was historically considered a mating response towards pheromone. Recent studies indicate the existence of pheromone-independent signaling pathways but their identity or the effectors remain unknown. Here, we demonstrated that glucosamine stimulated the C. neoformans species complex to undergo self-filamentation. Glucosamine-stimulated filamentation was independent of the key components of the pheromone pathway, which is distinct from pheromone-elicited filamentation. Glucosamine stimulated self-filamentation in H99, a highly virulent serotype A clinical isolate and a widely used reference strain. Through a genetic screen of the deletion sets made in the H99 background, we found that Crz1, a transcription factor downstream of calcineurin, was essential for glucosamine-stimulated filamentation despite its dispensability for pheromone-mediated filamentation. Glucosamine promoted Crz1 translocation from the cytoplasm to the nucleus. Interestingly, multiple components of the high osmolality glycerol response (HOG) pathway, consisting of the phosphorelay system and some of the Hog1 MAPK module, acted as repressors of glucosamine-elicited filamentation through their calcineurin-opposing effect on Crz1's nuclear translocation. Surprisingly, glucosamine-stimulated filamentation did not require Hog1 itself and was distinct from the conventional general stress response. The results demonstrate that Cryptococcus can resort to multiple genetic pathways for morphological transition in response to different stimuli. Given that the filamentous form attenuates cryptococcal virulence and is immune-stimulatory in mammalian models, the findings suggest that morphogenesis is a fertile ground for future investigation into novel means to compromise cryptococcal pathogenesis.


Asunto(s)
Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Glucosamina/metabolismo , Morfogénesis/genética , Calcineurina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cryptococcus neoformans/crecimiento & desarrollo , Citoplasma/genética , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Hifa/genética , Hifa/crecimiento & desarrollo , Proteínas Quinasas Activadas por Mitógenos/genética , Feromonas/genética , Feromonas/metabolismo , Transporte de Proteínas/genética , Transducción de Señal , Factores de Transcripción/genética
3.
PLoS Genet ; 13(5): e1006772, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28467481

RESUMEN

The fungus Cryptococcus neoformans can undergo a-α bisexual and unisexual reproduction. Completion of both sexual reproduction modes requires similar cellular differentiation processes and meiosis. Although bisexual reproduction generates equal number of a and α progeny and is far more efficient than unisexual reproduction under mating-inducing laboratory conditions, the α mating type dominates in nature. Population genetic studies suggest that unisexual reproduction by α isolates might have contributed to this sharply skewed distribution of the mating types. However, the predominance of the α mating type and the seemingly inefficient unisexual reproduction observed under laboratory conditions present a conundrum. Here, we discovered a previously unrecognized condition that promotes unisexual reproduction while suppressing bisexual reproduction. Pheromone is the principal stimulus for bisexual development in Cryptococcus. Interestingly, pheromone and other components of the pheromone pathway, including the key transcription factor Mat2, are not necessary but rather inhibitory for Cryptococcus to complete its unisexual cycle under this condition. The inactivation of the pheromone pathway promotes unisexual reproduction despite the essential role of this pathway in non-self-recognition during bisexual reproduction. Nonetheless, the requirement for the known filamentation regulator Znf2 and the expression of hyphal or basidium specific proteins remain the same for pheromone-dependent or independent sexual reproduction. Transcriptome analyses and an insertional mutagenesis screen in mat2Δ identified calcineurin being essential for this process. We further found that Znf2 and calcineurin work cooperatively in controlling unisexual development in this fungus. These findings indicate that Mat2 acts as a repressor of pheromone-independent unisexual development while serving as an activator for a-α bisexual development. The bi-functionality of Mat2 might have allowed it to act as a toggle switch for the mode of sexual development in this ubiquitous eukaryotic microbe.


Asunto(s)
Cryptococcus neoformans/crecimiento & desarrollo , Genes del Tipo Sexual de los Hongos , Factor de Apareamiento/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factor de Apareamiento/genética , Reproducción Asexuada , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
PLoS Genet ; 11(11): e1005692, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26588844

RESUMEN

In the fungal pathogen Cryptococcus neoformans, the switch from yeast to hypha is an important morphological process preceding the meiotic events during sexual development. Morphotype is also known to be associated with cryptococcal virulence potential. Previous studies identified the regulator Znf2 as a key decision maker for hypha formation and as an anti-virulence factor. By a forward genetic screen, we discovered that a long non-coding RNA (lncRNA) RZE1 functions upstream of ZNF2 in regulating yeast-to-hypha transition. We demonstrate that RZE1 functions primarily in cis and less effectively in trans. Interestingly, RZE1's function is restricted to its native nucleus. Accordingly, RZE1 does not appear to directly affect Znf2 translation or the subcellular localization of Znf2 protein. Transcriptome analysis indicates that the loss of RZE1 reduces the transcript level of ZNF2 and Znf2's prominent downstream targets. In addition, microscopic examination using single molecule fluorescent in situ hybridization (smFISH) indicates that the loss of RZE1 increases the ratio of ZNF2 transcripts in the nucleus versus those in the cytoplasm. Taken together, this lncRNA controls Cryptococcus yeast-to-hypha transition through regulating the key morphogenesis regulator Znf2. This is the first functional characterization of a lncRNA in a human fungal pathogen. Given the potential large number of lncRNAs in the genomes of Cryptococcus and other fungal pathogens, the findings implicate lncRNAs as an additional layer of genetic regulation during fungal development that may well contribute to the complexity in these "simple" eukaryotes.


Asunto(s)
Cryptococcus neoformans/crecimiento & desarrollo , Genes Fúngicos , ARN Largo no Codificante/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Intrones , Empalme del ARN , Fracciones Subcelulares/metabolismo
5.
Appl Environ Microbiol ; 82(4): 1069-1079, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26637591

RESUMEN

Adaptation to stress by eukaryotic pathogens is often accompanied by a transition in cellular morphology. The human fungal pathogen Cryptococcus neoformans is known to switch between the yeast and the filamentous form in response to amoebic predation or during mating. As in the classic dimorphic fungal pathogens, the morphotype is associated with the ability of cryptococci to infect various hosts. Many cryptococcal factors and environmental stimuli, including pheromones (small peptides) and nutrient limitation, are known to induce the yeast-to-hypha transition. We recently discovered that secreted matricellular proteins could also act as intercellular signals to promote the yeast-to-hypha transition. Here we show that the secreted acyl coenzyme A (acyl-CoA)-binding protein Acb1 plays an important role in enhancing this morphotype transition. Acb1 does not possess a signal peptide. Its extracellular secretion and, consequently, its function in filamentation are dependent on an unconventional GRASP (Golgi reassembly stacking protein)-dependent secretion pathway. Surprisingly, intracellular recruitment of Acb1 to the secretory vesicles is independent of Grasp. In addition to Acb1, Grasp possibly controls the secretion of other cargos, because the graspΔ mutant, but not the acb1Δ mutant, is defective in capsule production and macrophage phagocytosis. Nonetheless, Acb1 is likely the major or the sole effector of Grasp in terms of filamentation. Furthermore, we found that the key residue of Acb1 for acyl binding, Y80, is critical for the proper subcellular localization and secretion of Acb1 and for cryptococcal morphogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Cryptococcus neoformans/citología , Cryptococcus neoformans/metabolismo , Hifa/citología , Hifa/crecimiento & desarrollo , Acilcoenzima A/metabolismo , Proteínas Portadoras/genética , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/crecimiento & desarrollo , Análisis Mutacional de ADN , Hifa/efectos de los fármacos , Unión Proteica
6.
Appl Microbiol Biotechnol ; 97(11): 5069-77, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23604560

RESUMEN

Cell growth needs to be monitored in biological studies and bioprocess optimization. In special circumstances, such as microbial fermentations in media containing insoluble particles, accurate cell growth quantification is a challenge with current methods. Only the Burton method is applicable in such circumstances. The original Burton method was previously simplified by adopting a two-step sample pretreatment in perchloric acid procedure to eliminate the need for DNA extraction. Here, we further simplified the Burton method by replacing the previous two-step perchloric acid pretreatment with a new and one-step diphenylamine reagent pretreatment. The reliability and accuracy of this simplified method were assessed by measuring the biomass of four model microorganisms: Escherichia coli, Streptomyces clavuligerus, Saccharomyces cerevisiae, and Trichoderma reesei grown in normal media or those containing solid particles. The results demonstrate that this new simplified method performs comparably to the conventional methods, such as OD600 or the previously modified Burton method, and is much more sensitive than the dry weight method. Overall, the new method is simple, reliable, easy to perform, and generally applicable in most circumstances, and it reduces the operation time from more than 12 h (for the previously simplified Burton method) to about 2 h.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biomasa , Difenilamina/metabolismo , Hongos/crecimiento & desarrollo , Técnicas Microbiológicas/métodos , Coloración y Etiquetado/métodos , Sensibilidad y Especificidad , Factores de Tiempo
7.
Microbiol Spectr ; : e0358122, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847543

RESUMEN

Chronic infections caused by polymicrobial biofilms are often difficult to treat effectively, partially due to the elevated tolerance of polymicrobial biofilms to antimicrobial treatments. It is known that interspecific interactions influence polymicrobial biofilm formation. However, the underlying role of the coexistence of bacterial species in polymicrobial biofilm formation is not fully understood. Here, we investigated the effect of the coexistence of Enterococcus faecalis, Escherichia coli O157:H7, and Salmonella enteritidis on triple-species biofilm formation. Our results demonstrated that the coexistence of these three species enhanced the biofilm biomass and led to restructuring of the biofilm into a tower-like architecture. Furthermore, the proportions of polysaccharides, proteins, and eDNAs in the extracellular matrix (ECM) composition of the triple-species biofilm were significantly changed compared to those in the E. faecalis mono-species biofilm. Finally, we analyzed the transcriptomic profile of E. faecalis in response to coexistence with E. coli and S. enteritidis in the triple-species biofilm. The results suggested that E. faecalis established dominance and restructured the triple-species biofilm by enhancing nutrient transport and biosynthesis of amino acids, upregulating central carbon metabolism, manipulating the microenvironment through "biological weapons," and activating versatile stress response regulators. Together, the results of this pilot study reveal the nature of E. faecalis-harboring triple-species biofilms with a static biofilm model and provide novel insights for further understanding interspecies interactions and the clinical treatment of polymicrobial biofilms. IMPORTANCE Bacterial biofilms possess distinct community properties that affect various aspects of our daily lives. In particular, biofilms exhibit increased tolerance to chemical disinfectants, antimicrobial agents, and host immune responses. Multispecies biofilms are undoubtedly the dominant form of biofilms in nature. Thus, there is a pressing need for more research directed at delineating the nature of multispecies biofilms and the effects of the properties on the development and survival of the biofilm community. Here, we address the effects of the coexistence of Enterococcus faecalis, Escherichia coli, and Salmonella enteritidis on triple-species biofilm formation with a static model. In combination with transcriptomic analyses, this pilot study explores the potential underlying mechanisms that lead to the dominance of E. faecalis in triple-species biofilms. Our findings provide novel insights into the nature of triple-species biofilms and indicate that the composition of multispecies biofilms should be a key consideration when determining antimicrobial treatments.

8.
Environ Pollut ; 338: 122581, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748638

RESUMEN

A multicopper oxidase Lac-W from Weizmannia coagulans 36D1 was identified and characterized as a laccase (Lac-W) with a robust enzymatic activity, which was used in various mycotoxins degradation. We demonstrated that Lac-W could directly degrade six major mycotoxins in the absence of redox mediators in pH 9.0, 24h static incubation at room temperature, including aflatoxin B1 (AFB1, 88%), zearalenone (60%), deoxynivalenol (34%), T-2 toxin (19%), fumonisin B1 (18%), and ochratoxin A (12%). The optimal condition for Lac-W to degrade AFB1 was 30 °C, pH 9.0, enzyme-substrate ratio 3U/µg in 24h static condition. Furthermore, we characterized aflatoxin Q1 as a Lac-W-mediated degradation product of AFB1 using UHPLC-MS/MS. Interestingly, degradation products of AFB1 failed to generate cell death and apoptosis of intestinal porcine epithelial cells. Finally, our molecular docking simulation results revealed that the substrate-binding pocket of Lac-W was large enough to allow the entry of six mycotoxins with different structures, and their degradation rates were positively correlated to their interacting affinity with Lac-W. In summary, the unique properties of the Lac-W make it a great candidate for detoxifying multiple mycotoxins contaminated food and feed cost-effectively and eco-friendly. Our study provides new insights into development of versatile enzymes which could simultaneously degrade multiple mycotoxins.


Asunto(s)
Micotoxinas , Animales , Porcinos , Aflatoxina B1 , Lacasa/metabolismo , Espectrometría de Masas en Tándem , Simulación del Acoplamiento Molecular , Oxidación-Reducción
9.
J Fungi (Basel) ; 9(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37367608

RESUMEN

The Complex of Proteins Associated with Set1 (COMPASS) methylates lysine K4 on histone H3 (H3K4) and is conserved from yeast to humans. Its subunits and regulatory roles in the meningitis-causing fungal pathogen Cryptococcus neoformans remain unknown. Here we identified the core subunits of the COMPASS complex in C. neoformans and C. deneoformans and confirmed their conserved roles in H3K4 methylation. Through AlphaFold modeling, we found that Set1, Bre2, Swd1, and Swd3 form the catalytic core of the COMPASS complex and regulate the cryptococcal yeast-to-hypha transition, thermal tolerance, and virulence. The COMPASS complex-mediated histone H3K4 methylation requires H2B mono-ubiquitination by Rad6/Bre1 and the Paf1 complex in order to activate the expression of genes specific for the yeast-to-hypha transition in C. deneoformans. Taken together, our findings demonstrate that putative COMPASS subunits function as a unified complex, contributing to cryptococcal development and virulence.

10.
Infect Dis Poverty ; 12(1): 20, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932414

RESUMEN

BACKGROUND: Emerging fungal pathogens pose important threats to global public health. The World Health Organization has responded to the rising threat of traditionally neglected fungal infections by developing a Fungal Priority Pathogens List (FPPL). Taking the highest-ranked fungal pathogen in the FPPL, Cryptococcus neoformans, as a paradigm, we review progress made over the past two decades on its global burden, its clinical manifestation and management of cryptococcal infection, and its antifungal resistance. The purpose of this review is to drive research efforts to improve future diagnoses, therapies, and interventions associated with fungal infections. METHODS: We first reviewed trends in the global burden of HIV-associated cryptococcal infection, mainly based on a series of systematic studies. We next conducted scoping reviews in accordance with the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews using PubMed and ScienceDirect with the keyword Cryptococcus neoformans to identify case reports of cryptococcal infections published since 2000. We then reviewed recent updates on the diagnosis and antifungal treatment of cryptococcal infections. Finally, we summarized knowledge regarding the resistance and tolerance of C. neoformans to approved antifungal drugs. RESULTS: There has been a general reduction in the estimated global burden of HIV-associated cryptococcal meningitis since 2009, probably due to improvements in highly active antiretroviral therapies. However, cryptococcal meningitis still accounts for 19% of AIDS-related deaths annually. The incidences of CM in Europe and North America and the Latin America region have increased by approximately two-fold since 2009, while other regions showed either reduced or stable numbers of cases. Unfortunately, diagnostic and treatment options for cryptococcal infections are limited, and emerging antifungal resistance exacerbates the public health burden. CONCLUSION: The rising threat of C. neoformans is compounded by accumulating evidence for its ability to infect immunocompetent individuals and the emergence of antifungal-resistant variants. Emphasis should be placed on further understanding the mechanisms of pathogenicity and of antifungal resistance and tolerance. The development of novel management strategies through the identification of new drug targets and the discovery and optimization of new and existing diagnostics and therapeutics are key to reducing the health burden.


Asunto(s)
Cryptococcus neoformans , Infecciones por VIH , Meningitis Criptocócica , Micosis , Humanos , Meningitis Criptocócica/tratamiento farmacológico , Meningitis Criptocócica/epidemiología , Meningitis Criptocócica/complicaciones , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Micosis/complicaciones , Micosis/tratamiento farmacológico
11.
Front Microbiol ; 13: 1078293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504789

RESUMEN

Glycerol is a readily available and low-cost simple polyol compound, which can be used as a carbon source for microorganisms to produce various value-added products. Understanding the underlying regulatory mechanism in glycerol metabolism is critical for making better use of glycerol for diverse applications. In a few reported Streptomyces strains, the glycerol utilization gene cluster (glp operon) was shown to be regulated by the IclR family transcriptional regulator GylR. However, the molecular regulatory mechanism mediated by GylR has not been fully elucidated. In this study, we first analyzed the available Actinobacteria genomes in the NCBI Genome database, and found that the glp operon-like gene clusters are conserved in Streptomyces and several other genera of Actinobacteria. By taking Streptomyces clavuligerus NRRL 3585 as a model system, we identified that GylR represses the expressions of glp operon and gylR by directly binding to their promoter regions. Both glycerol-3-phosphate and dihydroxyacetone phosphate can induce the dissociation of GylR from its binding sequences. Furthermore, we identified a minimal essential operator site (a palindromic 18-bp sequence) of GylR-like regulators in Streptomyces. Our study for the first time reported the binding sequences and effector molecules of GylR-like proteins in Streptomyces. The molecular regulatory mechanism mediated by GylR presumably exists widely in Streptomyces. Our findings would facilitate the design of glycerol utilization pathways for producing valuable products. Moreover, our study provided new basic elements for the development of glycerol-inducible regulatory tools for synthetic biology research in the future.

12.
BMC Microbiol ; 11(1): 22, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21269440

RESUMEN

BACKGROUND: Clostridium thermocellum is a Gram-positive thermophilic anaerobic bacterium with the unusual capacity to convert cellulosic biomass into ethanol and hydrogen. Identification and characterization of protein complexes in C. thermocellum are important toward understanding its metabolism and physiology. RESULTS: A two dimensional blue native/SDS-PAGE procedure was developed to separate membrane protein complexes of C. thermocellum. Proteins spots were identified by MALDI-TOF/TOF Mass spectrometry. 24 proteins were identified representing 13 distinct protein complexes, including several putative intact complexes. Interestingly, subunits of both the F1-F0-ATP synthase and the V1-V0-ATP synthase were detected in the membrane sample, indicating C. thermocellum may use alternative mechanisms for ATP generation. CONCLUSION: Two dimensional blue native/SDS-PAGE was used to detect membrane protein complexes in C. thermocellum. More than a dozen putative protein complexes were identified, revealing the simultaneous expression of two sets of ATP synthase. The protocol developed in this work paves the way for further functional characterization of these protein complexes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridium thermocellum/metabolismo , Proteínas de la Membrana/metabolismo , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Infect Genet Evol ; 89: 104731, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33497839

RESUMEN

Cryptococcus neoformans is a dimorphic fungus that causes lethal meningoencephalitis mainly in immunocompromised individuals. Different morphotypes enable this environmental fungus and opportunistic pathogen to adapt to different natural niches and exhibit different levels of pathogenicity in various hosts. It is well-recognized that C. neoformans undergoes bisexual or unisexual reproduction in vitro to generate genotypic, morphotypic, and phenotypic diversity, which augments its ability for adaptation. However, if and how sexual reproduction and the meiotic machinery exert any direct impact on the infection process is unclear. This review summarizes recent discoveries on the regulation of cryptococcal life cycle and morphogenesis, and how they impact cryptococcal pathogenicity. The potential role of the meiotic machinery on ploidy regulation during cryptococcal infection is also discussed. This review aims to stimulate further investigation on links between fungal morphogenesis, sexual reproduction, and virulence.


Asunto(s)
Cryptococcus neoformans/fisiología , Morfogénesis , Virulencia , Cryptococcus neoformans/patogenicidad , Humanos , Reproducción
14.
mBio ; 12(2)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727360

RESUMEN

To aerobic organisms, low oxygen tension (hypoxia) presents a physiological challenge. To cope with such a challenge, metabolic pathways such as those used in energy production have to be adjusted. Many of such metabolic changes are orchestrated by the conserved hypoxia-inducible factors (HIFs) in higher eukaryotes. However, there are no HIF homologs in fungi or protists, and not much is known about conductors that direct hypoxic adaptation in lower eukaryotes. Here, we discovered that the transcription factor Pas2 controls the transcript levels of metabolic genes and consequently rewires metabolism for hypoxia adaptation in the human fungal pathogen Cryptococcus neoformans Through genetic, proteomic, and biochemical analyses, we demonstrated that Pas2 directly interacts with another transcription factor, Rds2, in regulating cryptococcal hypoxic adaptation. The Pas2/Rds2 complex represents the key transcription regulator of metabolic flexibility. Its regulation of metabolism rewiring between respiration and fermentation is critical to our understanding of the cryptococcal response to low levels of oxygen.IMPORTANCEC. neoformans is the main causative agent of fungal meningitis that is responsible for about 15% of all HIV-related deaths. Although an obligate aerobic fungus, C. neoformans is well adapted to hypoxia conditions that the fungus could encounter in the host or the environment. The sterol regulatory element binding protein (SREBP) is well known for its role in cryptococcal adaptation to hypoxia through its regulation of ergosterol and lipid biosynthesis. The regulation of metabolic reprogramming under hypoxia, however, is largely unknown. Here, we discovered one key regulator, Pas2, that mediates the metabolic response to hypoxia together with another transcription factor, Rds2, in C. neoformans The findings help define the molecular mechanisms underpinning hypoxia adaptation in this and other lower eukaryotes.


Asunto(s)
Adaptación Fisiológica/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/genética , Anaerobiosis , Regulación Fúngica de la Expresión Génica , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Factores de Transcripción/metabolismo
15.
Curr Biol ; 30(8): 1387-1396.e5, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32109388

RESUMEN

Cryptococcus neoformans is a global human fungal pathogen that causes fatal meningoencephalitis in mostly immunocompromised individuals. During pulmonary infection, cryptococcal cells form large polyploid cells that exhibit increased resistance to host immune attack and are proposed to contribute to the latency of cryptococcal infection. These polyploid titan cells can generate haploid and aneuploid progeny that may result in systemic infection. What triggers cryptococcal polyploidization and how ploidy reduction is achieved remain open questions. Here, we discovered that Cryptococcus cells polyploidize in response to genotoxic stresses that cause DNA double-strand breaks. Intriguingly, meiosis-specific genes are activated in C. neoformans and contribute to ploidy reduction, both in vitro and during infection in mice. Cryptococcal cells that activated their meiotic genes in mice were resistant to specific genotoxic stress compared to sister cells recovered from the same host tissue but without activation of meiotic genes. Our findings support the idea that meiotic genes, in addition to their conventional roles in classic sexual reproduction, contribute to adaptation of eukaryotic cells that undergo dramatic genome changes in response to genotoxic stress. The discovery has additional implications for evolution of sexual reproduction and the paradox of the presence of meiotic machinery in asexual species. Finally, our findings in this eukaryotic microbe mirror the revolutionary discoveries of the polyploidization and meiosis-like ploidy reduction process in cancer cells, suggesting that the reversible ploidy change itself could provide a general mechanism for rejuvenation to promote individual survival in response to stress.


Asunto(s)
Criptococosis/microbiología , Cryptococcus neoformans/genética , Meiosis/genética , Poliploidía , Animales , Femenino , Ratones , Estrés Fisiológico
16.
Commun Biol ; 2: 412, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754642

RESUMEN

Cellular differentiation is instructed by developmental regulators in coordination with chromatin remodeling complexes. Much information about their coordination comes from studies in the model ascomycetous yeasts. It is not clear, however, what kind of information that can be extrapolated to species of other phyla in Kingdom Fungi. In the basidiomycete Cryptococcus neoformans, the transcription factor Znf2 controls yeast-to-hypha differentiation. Through a forward genetic screen, we identified the basidiomycete-specific factor Brf1. We discovered Brf1 works together with Snf5 in the SWI/SNF chromatin remodeling complex in concert with existent Znf2 to execute cellular differentiation. We demonstrated that SWI/SNF assists Znf2 in opening the promoter regions of hyphal specific genes, including the ZNF2 gene itself. This complex also supports Znf2 to fully associate with its target regions. Importantly, our findings revealed key differences in composition and biological function of the SWI/SNF complex in the two major phyla of Kingdom Fungi.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Criptococosis/microbiología , Cryptococcus neoformans/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/metabolismo , Proteínas Cromosómicas no Histona/genética , Cryptococcus neoformans/citología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Hifa , Factores de Transcripción de Tipo Kruppel/genética , Mutagénesis Insercional , Fenotipo , Factores de Transcripción/genética
17.
mBio ; 9(6)2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425151

RESUMEN

Switching between different morphotypes is an adaptive cellular response in many microbes. In Cryptococcus neoformans, the yeast-to-hypha transition confers resistance to microbial predation in the soil and is an integral part of its life cycle. Morphogenesis is also known to be associated with virulence, with the filamentous form being immune-stimulatory and protective in mammalian models of cryptococcosis. Previous studies identified the transcription factor Znf2 as a master regulator of cryptococcal filamentation. However, the upstream regulators of Znf2 remain largely unknown. PAS domain proteins have long been recognized as transducers of diverse environmental signals. Here, we identified a PAS domain protein Pas3 as an upstream regulator of Znf2. Surprisingly, this small Pas3 protein lacks a nuclear localization signal but is enriched in the nucleus where it regulates the transcript level of ZNF2 and its prominent downstream targets. We discovered that the PAS domain is essential for Pas3's nuclear enrichment and function. Intriguingly, Pas3 interacts with Bre1, which is required for Cryptococcus histone H2B monoubiquitination (H2Bub1) and H3 lysine 4 dimethylation (H3K4me2), two histone modifications known to be associated with active gene transcription. Indeed, Bre1 functions together with Pas3 in regulating cryptococcal filamentation based on loss-of-function, epistasis, and transcriptome analysis. These findings provide the first evidence of a signaling regulator acting with a chromatin modifier to control cryptococcal filamentation.IMPORTANCE For the ubiquitous environmental pathogen Cryptococcus neoformans, the morphological transition from yeast to filament confers resistance to natural predators like soil amoeba and is an integral differentiation event to produce infectious spores. Interestingly, filamentation is immuno-stimulatory and attenuates cryptococcal virulence in a mammalian host. Consistently, the morphogenesis transcription factor Znf2 profoundly shapes cryptococcal interaction with various hosts. Identifying the signaling pathways activating filamentation is thus, conductive to a better understanding of cryptococcal biology. In this study, we identified a PAS domain protein Pas3 that functions upstream of Znf2 in regulating cryptococcal filamentation. Interestingly, Pas3 interacts with the chromatin modifier Bre1 in the nucleus to regulate the transcript level of Znf2 and its prominent downstream targets. This is the first example of a PAS domain signaling regulator interacting with a chromatin modifier to control filamentation through their impact on cryptococcal transcriptome.


Asunto(s)
Cryptococcus neoformans/fisiología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Hifa/fisiología , Proteínas de la Membrana/genética , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Virulencia
18.
Nat Microbiol ; 3(6): 698-707, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29784977

RESUMEN

Bacterial quorum sensing is a well-characterized communication system that governs a large variety of collective behaviours. By comparison, quorum sensing regulation in eukaryotic microbes remains poorly understood, especially its functional role in eukaryote-specific behaviours, such as sexual reproduction. Cryptococcus neoformans is a prevalent fungal pathogen that has two defined sexual cycles (bisexual and unisexual) and is a model organism for studying sexual reproduction in fungi. Here, we show that the quorum sensing peptide Qsp1 serves as an important signalling molecule for both forms of sexual reproduction. Qsp1 orchestrates various differentiation and molecular processes, including meiosis, the hallmark of sexual reproduction. It activates bisexual mating, at least in part through the control of pheromone, a signal necessary for bisexual activation. Notably, Qsp1 also plays a major role in the intercellular regulation of unisexual initiation and coordination, in which pheromone is not strictly required. Through a multi-layered genetic screening approach, we identified the atypical zinc finger regulator Cqs2 as an important component of the Qsp1 signalling cascade during both bisexual and unisexual reproduction. The absence of Cqs2 eliminates the Qsp1-stimulated mating response. Together, these findings extend the range of behaviours governed by quorum sensing to sexual development and meiosis.


Asunto(s)
Cryptococcus neoformans/fisiología , Péptidos/genética , Péptidos/metabolismo , Percepción de Quorum , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Pruebas Genéticas , Hifa/crecimiento & desarrollo , Meiosis , Feromonas/metabolismo , Transducción de Señal
19.
Sci China Life Sci ; 56(7): 591-600, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23832248

RESUMEN

The glycerol utilization (gyl) operon is involved in clavulanic acid (CA) production by Streptomyces clavuligerus, and possibly supplies the glyceraldehyde-3-phosphate (G3P) precursor for CA biosynthesis. The gyl operon is regulated by GylR and is induced by glycerol. To enhance CA production in S. clavuligerus, an extra copy of ccaR expressed from Pgyl (the gyl promoter) was integrated into the chromosome of S. clavuligerus NRRL 3585. This construct coordinated the transcription of CA biosynthetic pathway genes with expression of the gyl operon. In the transformants carrying the Pgyl-controlled regulatory gene ccaR, CA production was enhanced 3.19-fold in glycerol-enriched batch cultures, relative to the control strain carrying an extra copy of ccaR controlled by its own promoter (PccaR). Consistent with enhanced CA production, the transcription levels of ccaR, ceas2 and claR were significantly up-regulated in the transformants containing Pgyl-controlled ccaR.


Asunto(s)
Ácido Clavulánico/biosíntesis , Regulación Bacteriana de la Expresión Génica , Glicerol/metabolismo , Streptomyces/metabolismo , Secuencia de Bases , Química Farmacéutica/métodos , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Genes Bacterianos , Gliceraldehído 3-Fosfato/química , Glicerol/química , Familia de Multigenes , Oligonucleótidos/genética , Operón , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA