Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(9): 16199-16211, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859254

RESUMEN

Single-crystal silicon (c-Si) is a vital component of photonic devices and has obvious advantages. Moreover, femtosecond-pulsed laser interactions with matter have been widely applied in micro/nanoscale processing. In this paper, we report the modification mechanisms of c-Si induced by a femtosecond laser (350 fs, 520 nm) at different pulse fluences, along with the mechanism of this technique to trim the phase error of c-Si-based devices. In this study, several distinct types of final micro/nanostructures, such as amorphization and ablation, were analyzed. The near-surface morphology was characterized using optical microscopy, scanning electron microscopy, and atomic force microscopy. The main physical modification processes were further analyzed using a two-temperature model. By employing Raman spectroscopy, we demonstrated that a higher laser fluence significantly contributes to the formation of more amorphous silicon components. The thickness of the amorphous layer was almost uniform (approximately 30 nm) at different induced fluences, as determined using transmission electron microscopy. From the ellipsometry measurements, we demonstrated that the refractive index increases for amorphization while the ablation decreases. In addition, we investigated the ability of the femtosecond laser to modify the effective index of c-Si microring waveguides by either amorphization or ablation. Both blue and red shifts of resonance spectra were achieved in the microring devices, resulting in double-direction trimming. Our results provide further insight into the femtosecond laser modification mechanism of c-Si and may be a practical method for dealing with the fabrication errors of c-Si-based photonic devices.

2.
Opt Express ; 32(7): 11613-11628, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571004

RESUMEN

The increasing use of transparent ceramics in laser systems presents a challenge; their low damage threshold has become a significant impediment to the development of powerful laser systems. Consequently, it is imperative to undertake research into the damage sustained by these materials. Micropores, the most common structural defects in transparent ceramics, inevitably remain within the material during its preparation process. However, the relationship between the density and size of these micropores and their impact on nanosecond laser damage threshold and damage evolution remains unclear. In this study, we utilize the annealing process to effectively manage the density and size of micropores, establishing a correlation between micropores in relation to damage thresholds. This study confirms for the first time that micropores significantly contribute to laser damage, comparing and analyzing the damage morphology characteristics of both front and rear surfaces of transparent ceramics. It also presents, potential mechanisms that may contribute to these differences in damage. This paper offers guidance for controlling micropores during the preparation and processing of transparent ceramics with high laser damage thresholds. The findings are expected to further improve the anti-nanosecond laser damage capabilities of transparent ceramics.

3.
Opt Express ; 31(2): 2208-2224, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785239

RESUMEN

Ultrathin planar transparent conducting oxide (TCO) films are commonly used to enhance the optical response of epsilon-near-zero (ENZ) devices; however, our results suggest that thickness-dependent loss renders them ineffective. Here, we investigated the thickness-dependent loss of indium tin oxide (ITO) films and their effect on the ENZ-enhanced optical responses of ITO and ITO/SiO2 multilayer stacks. The experimental and computational results show that the optical loss of ITO films increases from 0.47 to 0.70 as the thickness decreases from 235 to 52 nm, which results in a reduction of 60% and 45% in the maximum field enhancement factor of a 52-nm monolayer ITO and 4-layer ITO/SiO2 multilayer stack, respectively. The experimental results show that the ENZ-enhanced nonlinear absorption coefficient of the 52-nm single-layer ITO film is -1.6 × 103 cm GW-1, which is 81% lower than that of the 235-nm ITO film (-8.6 × 103 cm GW-1), indicating that the thickness-dependent loss makes the ultrathin TCO films unable to obtain greater nonlinear responses. In addition, the increased loss reduces the cascading Berreman transmission valley intensity of the 4-layer ITO/SiO2 multilayer stack, resulting in a 42% reduction in the ENZ-enhanced nonlinear absorption coefficient compared to the 235-nm ITO film and a faster hot electron relaxation time. Our results suggest that the thickness and loss trade-off is an intrinsic property of TCO films and that the low-loss ultrathin TCO films are the key to the robust design and fabrication of novel ENZ devices based on flat ultrathin TCO films.

4.
Opt Express ; 29(23): 38591-38605, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808909

RESUMEN

In recent years, there has been increasing interest in optoelectronic applications of transparent conductive oxide (TCO) thin-film-based materials and devices fabricated using patterning techniques. Meanwhile, femtosecond laser processing is a convenient method that further improves the performance of TCO-based functional devices and expands their application prospects. In this study, we proposed a simple and effective strategy to determine the fluences required for laser processing TCOs. We investigated the modification of an indium tin oxide (ITO) film induced by a femtosecond laser (45/150 fs, 800 nm) at different pulse fluences. The results reveal that the laser modification of ITO films is highly dependent on the irradiated pulse fluences. Several distinct types of final micro/nanostructures were observed and may be attributed to superficial amorphization, spallation ablation, stress-assisted delamination, boiling evaporation, and phase explosion. The final micro/nanostructures were studied in detail using optical microscopy, scanning electron microscopy, transmission electron microscopy and a surface profiler. At a lower fluence above the melting but below the ablation threshold, a laterally parabolic amorphous layer profiled with maximum thicknesses of several tens of nanometers was quantitatively attained. At a higher fluence, stress-assisted delamination and superheated liquid-induced micro-honeycomb structures emerged. Furthermore, the electron and lattice temperature evolutions were also obtained using a two-temperature model to prove the ablation mechanism and ascertain the micro/nanostructure formation principle. The predicted surface temperatures confirmed film amorphization without ablation below 0.23 J/cm2. These results reveal the interaction mechanism between femtosecond laser pulse and ITO film including the competition between the free electron heating of intraband transition and the multiphoton absorption of the interband transition, which promotes the potential applications for femtosecond laser processing TCO films and other wide-band-gap semiconductors such as photodetectors, solar cells, UV-light-emitting diodes, and flat-panel displays.

5.
Opt Express ; 29(22): 35993-36004, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34809021

RESUMEN

We propose a strategy to optimize the laser conditioning of DKDP crystals by varying the temporal shape of sub-nanosecond pulses. Four sub-ns temporally shaped pulses with nearly the same full width at half maxima of ∼600 ps but different rising-falling statuses were designed to conduct laser-induced damage (LID) and laser conditioning experiments on DKDP crystals. The shape of the pulse substantially influences the damage pinpoints size and LID threshold (LIDT) of the crystals in the sub-nanosecond range. After sub-nanosecond laser conditioning, the ns R-on-1 LIDT showed that slow-rising fast-falling pulse (R400-F200 and High-foot pulses) conditioning achieved a 14%-20% LIDT enhancement than the traditional Gaussian pulse (R300-F300 pulse). The 8-ns laser damage morphologies after slow-rising fast-falling pulse conditioning showed cracks, whereas those after fast-rising slow-falling pulse (R200-F400 pulse) conditioning were pinpoint core, as usual. These results suggest that the rising front plays an important role in the LID and laser conditioning of the DKDP crystals. A pulse with a slower rising front is beneficial for thermal modification, thereby leading to better LID properties. This strategy greatly expands and enriches the manipulation methods to improve the LIDT of DKDP crystals, and sheds light on understanding the laser damage mechanisms.

6.
Opt Express ; 29(6): 8171-8180, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820268

RESUMEN

Metal-dielectric low dispersion mirrors (MLDM) have a promising application prospect in petawatt (PW) laser systems. We studied the damage characteristics of MLDM and found that the damage source of MLDM (Ag + Al2O3+SiO2) is located at the metal-dielectric interface. We present the effect of the interface on the femtosecond laser damage of MLDM. Finite element analysis shows that thermal stress is distributed at the interface, causing stress damage which is consistent with the damage morphology. After enhancing the interface adhesion and reducing the residual stress, the damage source transfers from the interface to a surface SiO2 layer, and the damage threshold can be increased from 0.60 J/cm2 to 0.73 J/cm2. This work contributes to the search for new techniques to improve the damage threshold of MLDM used in PW laser systems.

7.
Opt Express ; 28(13): 18814-18828, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32672173

RESUMEN

High-quality ammonium dihydrogen phosphate (NH4H2PO4, ADP) crystals were grown in Z direction and in defined crystallographic direction (θ=90°, φ=45°) by the rapid growth method, respectively. Defect-induced damage behavior in 355 nm of three types of ADP samples cutting in type-II matching and third harmonic generation direction from the as-grown crystals were investigated, including the initial laser induced damage (LID) characteristics and the physical and chemical properties of defects which serve as the damage precursors. The evaluations of damage behaviors include the "sampling" laser induced damage threshold (LIDT) by 1-on-1 and R-on-1 methods, bulk damage growth and bulk damage morphology. UV-visible transmittance spectrum, ultraviolet absorption spectrum, fluorescence spectrum, positron annihilation spectrum and the online light scattering measurements were carried out to investigate the defect-induced damage behavior in ADP crystals. The study will provide a reference for the investigations on laser induced damage properties of ADP crystals in short wavelength.

8.
Opt Lett ; 45(21): 6014-6017, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137057

RESUMEN

Laser damage in fused silica, particularly ultraviolet laser damage, is still a key problem limiting the development of high-power laser systems. In this Letter, a combined process of chemical etching and CO2 laser polishing was applied to ground fused silica. A super-smooth surface with a root-mean-square roughness of 0.25 nm was achieved through this combined process. Furthermore, the combined process can reduce the introduction of photoactive metal impurity elements, destructive defects, and chemical-structure defects, resulting in a 0% probability damage threshold nearly 33% higher than a conventional chemical mechanical polished sample for a 7.6 ns pulse at a wavelength of 355 nm.

9.
Opt Express ; 27(6): 7912-7921, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052617

RESUMEN

A new surface plasmon resonance (SPR) configuration is proposed, which consists of a prism, a dielectric layer, a metal coating, and a matching liquid. The optical constants of each layer in the proposed prism-dielectric-metal-liquid (PDML) configuration have been optimized to match the SPR conditions and reach the strongest intensity. Combining the PDML configuration with spectroscopic ellipsometry, SPR spectroscopic ellipsometry (SPRSE) with a PDML configuration was developed. The SPR wavelength can be adjusted to the desired wavelength by varying the thickness of the dielectric layer. The amplitude and phase change, magnified by the SPR in the visible and near-infrared wavelengths, were obtained to determine the optical constants and thickness of ultrathin metal coatings. The extracted optical constants were found to be in good agreement with the results obtained using transmission electron microscopy (TEM) and X-ray reflectivity (XRR) techniques. These SPRSE measurements show great potential for characterizing the interface between a metal coating and a dielectric layer, and the surface uniformity of ultrathin metal coatings.

10.
Opt Lett ; 43(23): 5777-5780, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499939

RESUMEN

This Letter reports on the results of experiments aimed at obtaining high-quality super-smooth surfaces by investigating the laser polishing of fused silica. A maximum reduction in root-mean-square roughness to 0.156 nm was achieved, and laser-polished surfaces exhibited virtually no micro-defects or damage. A subsequent analysis using a multi-physics numerical model revealed the underlying physical mechanism of laser polishing of fused silica. The model simulated the surface smoothing process of laser polishing and demonstrated the effects of surface tension, the Marangoni effect, light pressure, and gravity in the process. It was found that the surface tension dominates the surface smoothing process, and it is a critical factor for achieving sub-nanometer micro-roughness of laser polishing of fused silica. Additionally, the model was successfully applied to predict the residual surface roughness of laser polishing.

11.
Opt Lett ; 43(18): 4538-4541, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-30211910

RESUMEN

HfO2/SiO2 bilayer coatings and multilayer high-reflection coatings without and with a modified co-evaporated interface (MCEI) have been prepared. An MCEI is designed to be evaporated at an oxygen-deficient environment to achieve higher absorption than the conventional discrete interface. Capacitance-voltage measurements and absorption measurements demonstrate that an MCEI increases the trap density and leads to higher absorption. The laser-induced damage threshold and nano-indenter test results indicate that the MCEI multilayer coating exhibits better laser resistance and mechanical property, despite the larger absorption. The experimental results suggest that adhesive force between layers plays a more important role in nanosecond laser damage resistance than interface absorption.

12.
Appl Opt ; 56(28): 7898-7904, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29047776

RESUMEN

A setup for surface-plasmon-resonance- (SPR) based imaging ellipsometry was developed, which gains from the sensitivities of both SPR and ellipsometry to ultrathin film parameters. It is based on Otto's configuration for prism-sample coupling and a wide-beam imaging ellipsometry. A set of ultrathin gold and silver films was measured to determine their optical constants and thicknesses. Coupling the sample using a prism with a convex surface enables us to capture images of generated SPR elliptical fringes, which correspond to different SPR amplitude values at different air gap thicknesses. Analysis of the images acquired at different polarizer and analyzer angles provides the ellipsometric functions Ψ and Δ versus thickness of air gap and hence the extraction of the optical constants of ultrathin metal films. The measured film thickness is in agreement with the results of x-ray reflectivity measurements.

13.
Appl Opt ; 56(2): 312-316, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28085868

RESUMEN

The active-mirror architecture is widely used in high-power laser systems. In this study, the laser-damage characteristics of Nd:glass active mirrors are investigated. They are exposed to nanosecond 1064 nm laser incident from the Nd:glass. The laser-induced damage thresholds (LIDTs) of the coated sides are lower than those of the uncoated sides. The LIDT of the active mirror whose substrate is manually scrubbed is lower than that of one whose substrate is ultrasonically cleaned. Analysis shows that the absorbing surface defects on the manually scrubbed Nd:glass surface are responsible for the lower LIDT of the active mirror prepared via manual scrubbing, while the subsurface defects in the ultrasonically cleaned Nd:glass substrate are the main reason for the damage of the active mirror prepared via ultrasonic cleaning. The strong standing-wave electric field near the interface between the coating and the Nd:glass substrate is another factor affecting the damage of the active mirror.

14.
Opt Lett ; 41(7): 1534-7, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27192280

RESUMEN

We investigate the laser-induced damage performance at 1064 nm of potassium dihydrogen phosphate (KDP) crystals grown using filters of different pore sizes. The aim is to explore a novel method for understanding laser-matter interactions with regard to physical parameters affecting the ability of damage precursors to initiate damage. By reducing the pore size of filters in continuous filtration growth, we can improve laser damage resistance. Furthermore, we develop a model based on a Gaussian distribution of precursor thresholds and heat transfer to obtain a size distribution of the precursor defects. Smaller size and/or lower concentration of precursor defects could lead to better damage resistance.

15.
Opt Express ; 23(11): 14774-83, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072836

RESUMEN

The effect of nanosecond laser conditioning on the femtosecond laser-induced damage behaviors of Al2O3, HfO2, SiO2 single layers and Al2O3/SiO2 high reflectors (HR) are explored. During femtosecond laser damage test, negative effects on enhancing the femtosecond laser-induced damage threshold (LIDT) of optical films after the nanosecond laser conditioning is found, which is opposite to the LIDT improvement in the nanosecond range. To explain the mechanism after nanosecond laser conditioning, a theoretical model including multiphoton ionization (MPI), avalanche ionization (AI) and decays of electrons with one defect state is built to simulate the evolution of electron density in the conduction band. A permanent mid-gap defect state resulting from the process of laser conditioning is introduced in our model, which is found to contribute seed electrons to conduction band and hence accelerate the final breakdown. Both the experimental result and theoretical calculation agree very well with each other.

16.
Opt Express ; 23(13): 17653-8, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26191772

RESUMEN

Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

17.
Opt Express ; 23(12): 16273-80, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26193600

RESUMEN

The variation of scattering and absorption in DKDP crystals by laser conditioning was investigated by combining light scattering technique and on-site transmittance measurement technique. Laser-induced disappearance of scattering defects was observed, and variation of transmittance was achieved. Using Mie theory, a kind of absorbing defects, aside from scattering defect, was discovered. Moreover, the experimental results demonstrated that the absorption of crystal could be mitigated by laser conditioning.

18.
Appl Opt ; 53(15): 3347-54, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24922225

RESUMEN

The laser-induced damage behaviors of chirped mirrors (CMs) are studied by single 800 nm, 38 fs lasers. The CMs provide group delay dispersion of around -60 fs² and average reflectivity of about 99.4% with bandwidth range of 200-300 nm at a central wavelength of 800 nm. Interestingly, a circular blister feature appears in the CMs at a wide range of laser fluence. An optical microscope, atomic force microscope, scanning electron microscope, and surface profiler are applied to describe the blister characteristics. An adiabatic expansion model of ideal gas is adopted to illustrate the formation dynamics of blisters. The evolution of blisters can be explained by partial evaporation of the film and a subsequent gas expansion, driving the bulging of the film stack up to the stress limit, where the blister fractures. According to this model, the energy absorption ratio of blisters increases monotonously with increasing laser fluence before the occurrence of the focal spot confinement effect.

19.
Opt Lett ; 38(15): 2632-5, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23903096

RESUMEN

A reliable method, combining a wet etch process and real-time damage event imaging during a raster scan laser damage test, has been developed to directly determine the most dangerous precursor inducing low-density laser damage at 355 nm in fused silica. It is revealed that ~16% of laser damage sites were initiated at the place of the scratches, ~49% initiated at the digs, and ~35% initiated at invisible defects. The morphologies of dangerous scratches and digs were compared with those of moderate ones. It is found that local sharp variation at the edge, twist, or inside of a subsurface defect is the most dangerous laser damage precursor.

20.
Appl Opt ; 52(29): 7186-93, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24217737

RESUMEN

A reliable method, combining femtosecond (fs) laser mitigation and chemical (HF) etching, has been developed to mitigate laser-damage growth sites on a fused silica surface. A rectangular mitigation site was fabricated by an fs laser with a raster scan procedure; HF etching was then used to remove the redeposition material. The results show that the mitigation site exhibits good physical qualities with a smooth bottom and edge. The damage test results show that the growth threshold of the mitigation sites increases. Furthermore, the structural characteristic of samples was measured by a photoluminescence (PL) spectrometer, and the light intensification caused by damage and mitigation sites was numerically modeled by the finite-difference time-domain (FDTD). It revealed that the removal of damaged material and structure optimization contribute to the increase of the damage growth threshold of the mitigation site.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA