Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34131076

RESUMEN

Marginal effect estimates in genome-wide association studies (GWAS) are mixtures of direct and indirect genetic effects. Existing methods to dissect these effects require family-based, individual-level genetic, and phenotypic data with large samples, which is difficult to obtain in practice. Here, we propose a statistical framework to estimate direct and indirect genetic effects using summary statistics from GWAS conducted on own and offspring phenotypes. Applied to birth weight, our method showed nearly identical results with those obtained using individual-level data. We also decomposed direct and indirect genetic effects of educational attainment (EA), which showed distinct patterns of genetic correlations with 45 complex traits. The known genetic correlations between EA and higher height, lower body mass index, less-active smoking behavior, and better health outcomes were mostly explained by the indirect genetic component of EA. In contrast, the consistently identified genetic correlation of autism spectrum disorder (ASD) with higher EA resides in the direct genetic component. A polygenic transmission disequilibrium test showed a significant overtransmission of the direct component of EA from healthy parents to ASD probands. Taken together, we demonstrate that traditional GWAS approaches, in conjunction with offspring phenotypic data collection in existing cohorts, could greatly benefit studies on genetic nurture and shed important light on the interpretation of genetic associations for human complex traits.


Asunto(s)
Composición Familiar , Estudio de Asociación del Genoma Completo , Estadística como Asunto , Trastorno del Espectro Autista/genética , Peso al Nacer/genética , Escolaridad , Femenino , Humanos , Desequilibrio de Ligamiento/genética , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética
2.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732819

RESUMEN

In this paper, we present a novel three-dimensional (3D) coupled configuration of piezoelectric micromachined ultrasound transducers (pMUTs) by combing a curved and an annular diaphragm for transmit performance optimization in biomedical applications. An analytical equivalent circuit model (EQC) is developed with varied excitation methods to incorporate the acoustic-structure coupling of the curved and annular diaphragm-coupled pMUTs (CAC-pMUTs). The model-derived results align well with the reference simulated by the finite element method (FEM). Using this EQC model, we optimize the key design parameters of the CAC-pMUTs in order to improve the output sound pressure, including the width of the annular membrane, the thickness of the passive layer, and the phase difference of the driving voltage. In the anti-phase mode, the designed CAC-pMUTs demonstrate a transmit efficiency 285 times higher than that of single annular pMUTs. This substantial improvement underscores the potential of CAC-pMUTs for large array applications.

3.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125922

RESUMEN

Oxidative stress has been identified as a major factor in the development and progression of pain and psychiatric disorders, but the underlying biomarkers and molecular signaling pathways remain unclear. This study aims to identify oxidative stress-related biomarkers and signaling pathways in pain-depression comorbidity. Integrated bioinformatics analyses were applied to identify key genes by comparing pain-depression comorbidity-related genes and oxidative stress-related genes. A total of 580 differentially expressed genes and 35 differentially expressed oxidative stress-related genes (DEOSGs) were identified. By using a weighted gene co-expression network analysis and a protein-protein interaction network, 43 key genes and 5 hub genes were screened out, respectively. DEOSGs were enriched in biological processes and signaling pathways related to oxidative stress and inflammation. The five hub genes, RNF24, MGAM, FOS, and TKT, were deemed potential diagnostic and prognostic markers for patients with pain-depression comorbidity. These genes may serve as valuable targets for further research and may aid in the development of early diagnosis, prevention strategies, and pharmacotherapy tools for this particular patient population.


Asunto(s)
Biomarcadores , Comorbilidad , Biología Computacional , Depresión , Redes Reguladoras de Genes , Estrés Oxidativo , Dolor , Mapas de Interacción de Proteínas , Estrés Oxidativo/genética , Humanos , Biología Computacional/métodos , Dolor/genética , Dolor/epidemiología , Mapas de Interacción de Proteínas/genética , Depresión/genética , Depresión/epidemiología , Perfilación de la Expresión Génica , Transducción de Señal/genética
4.
Angew Chem Int Ed Engl ; 63(23): e202405135, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567459

RESUMEN

Additive manufacturing (AM) of copper through laser-based processes poses challenges, primarily attributed to the high thermal conductivity and low laser absorptivity of copper powder or wire as the feedstock. Although the use of copper salts in vat photopolymerization-based AM techniques has garnered recent attention, achieving micro-architected copper with high conductivity and density has remained elusive. In this study, we present a facile and efficient process to create complex 3D micro-architected copper structures with superior electrical conductivity and hardness. The process entails the formulation of an ion-exchangeable photoresin, followed by the utilization of digital light processing (DLP) printing to sculpt 3D hydrogel scaffolds, which were transformed into Cu2+-chelated polymer frameworks (Cu-CPFs) with a high loading of Cu2+ ions through ion exchange, followed by debinding and sintering, results in the transformation of Cu-CPFs into miniaturized copper architectures. This methodology represents an efficient pathway for the creation of intricate micro-architected 3D metal structures.

5.
Small ; 19(17): e2207298, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36703530

RESUMEN

The oxygen reduction reaction (ORR) is a key process in green energy conversion technology. Heteroatom doping has been proven to be a prospective strategy to prepare metal-free carbon-based electrocatalysts, but such methods often suffer from uncontrollable catalyst frameworks and imprecise active sites. Herein, an organic heterocyclic strategy is adopted to modulate the charge redistribution of alkynyl-containing conjugated microporous polymers (CMPs) by introducing varied five-membered heterocyclic structures. Among these CMPs, the S, 2N-containing thiadiazole heterocyclic molecule (CMP-Tdz) with carbonized alginate materials (CCA ) displays a remarkable quasi-four-electron-transfer ORR pathway, exhibiting an excellent half-wave potential (E1/2 ) of 0.77 V, coupled with superior methanol tolerance and electrochemical stability, which are among the highest performance in the metal-free organic catalytic material systems. Density functional theory calculations prove that the high catalytic performance of these catalysts originates from the sp-hybridized C atom (site-2) which is activated by their adjacent heterocyclic structures. Importantly, the five-membered heterocyclic structures can also modulate the local charge distribution, and increase dipole moment, with significantly improved catalytic kinetics. This incorporation of chemically designed heterocyclic-containing alkynyl-CMPs provides a new approach to developing efficient metal-free carbon-based electrocatalysts for fuel cells.

6.
Opt Lett ; 47(21): 5583-5586, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219276

RESUMEN

This Letter reports a new, to the best of our knowledge, photoacoustic excitation method for evaluating the shear viscoelastic properties of soft tissues. By illuminating the target surface with an annular pulsed laser beam, circularly converging surface acoustic waves (SAWs) are generated, focused, and detected at the center of the annular beam. The shear elasticity and shear viscosity of the target are extracted from the dispersive phase velocity of the SAWs based on the Kelvin-Voigt model and nonlinear regression fitting. Agar phantoms with different concentrations, and animal liver and fat tissue samples have successfully been characterized. Different from previous methods, the self-focusing of the converging SAWs allows sufficient SNR to be obtained even with low pulsed laser energy density, which makes this approach well compatible with soft tissues under both ex vivo and in vivo testing conditions.

7.
Opt Lett ; 47(4): 826-829, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167535

RESUMEN

This Letter reports ring-shaped photoacoustic (PA) tweezers that are capable of manipulating single or multiple micron-sized particles. By illuminating a thin layer of an optically absorptive liquid medium with a focused annular pulsed laser beam and a higher pulse repetition rate (e.g., 800 Hz), both acoustic radiation force and instantaneous vaporization repulsion are generated within a certain distance of the illumination region. This makes it possible to conduct continuous and versatile locomotion of single or multiple microparticles. In this Letter, interactions between two or more particles are demonstrated, such as separation, attachment, and grouping of microparticles. The PA tweezers combine some of the advantages of conventional optical and acoustic tweezers and are expected to be a useful alternative approach for the manipulation of microscale objects.


Asunto(s)
Acústica , Pinzas Ópticas , Luz , Análisis Espectral
8.
Opt Express ; 29(8): 11613-11626, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984938

RESUMEN

The Maxwellian display presents always-focused images to the viewer, alleviating the vergence-accommodation conflict (VAC) in near-eye displays (NEDs). However, the limited eyebox of the typical Maxwellian display prevents it from wider applications. We propose a Maxwellian see-through NED based on a multiplexed holographic optical element (HOE) and polarization gratings (PGs) to extend the eyebox by viewpoint multiplication. The multiplexed HOE functions as multiple convex lenses to form multiple viewpoints, which are copied to different locations by PGs. To mitigate the imaging problem that multiple viewpoints or no viewpoints enter the eye pupil, the viewpoints can be tuned by mechanically moving a PG. We implement our method in a proof-of-concept system. The optical experiments confirm that the proposed display system provides always in-focus images within a 12 mm eyebox in the horizontal direction with a 32.7° diagonal field of view (FOV) and a 16.5 mm eye relief (ERF), and its viewpoints are tunable to match the actual eye pupil size. Compared with other techniques to extend the eyebox of Maxwellian displays, the proposed method shows competitive performances of a large eyebox, adaptability to the eye pupil size, and focus cues within a large depth range.


Asunto(s)
Holografía/métodos , Dispositivos Ópticos , Retina/diagnóstico por imagen , Acomodación Ocular/fisiología , Humanos , Pupila/fisiología
9.
Bioorg Chem ; 112: 104912, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33933804

RESUMEN

Orphan nuclear receptor Nur77 is a unique member of the NR4A nuclear receptor subfamily, which is critical for cellular processes especially the inflammatory responses. Many efforts have been made to discover novel scaffold small molecules targeting Nur77. Herein, we evaluated the previously reported binding sites in crystal structures of Nur77 with small molecules, and then discovered compound 13 as a hit of Nur77 via virtual screening targeting the best-scored binding site. Based on the results of fluorescence titration assay, structure-activity relationship (SAR) analysis was summarized for compound 13 and its analogs. Among these analogs, compound 13e displayed the most potent binding affinity (0.54 ± 0.02 µM). The binding mode of compound 13e was predicted via molecule docking. Moreover, 13e exhibited significant anti-inflammation activity in TNF-α induced HepG2 cell model. Taken together, these results provided a new insight into the understanding the functions of specific binding sites on Nur77 for small molecular compounds, and the development of new scaffold Nur77 modulators.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Antiinflamatorios no Esteroideos/química , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Estructura Molecular , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
10.
Appl Opt ; 56(32): 8887-8895, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29131167

RESUMEN

Bias error, along with scale factor, is a key factor that affects the measurement accuracy of the fiber-optic current sensor. Because of polarization crosstalk, the coherence of parasitic interference signals could be rebuilt and form an output independent of the current to be measured, i.e., the bias error. The bias error is a variable of the birefringence optical path difference. Hence, when the temperature changes, the bias error shows a quasi-periodical tendency whose envelope curve reflects the coherence function of light source. By identifying the key factors of bias error and setting the propagation directions of a super-luminescent diode, polarization-maintaining coupler and polarizer to fast axis, it is possible to eliminate the coherence of parasitic interference signals. Experiments show that the maximum bias error decreases by one order of magnitude at temperatures between -40°C to 60°C.

11.
Nanomaterials (Basel) ; 14(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39269124

RESUMEN

Structural health monitoring (SHM) of composite materials is of great significance in various practical applications. However, it is a challenge to accurately monitor the damage of composites without affecting their mechanical properties. In this paper, an embedded sensing layer based on carbon nanotube-coated glass fiber is designed, combined with electrical resistance tomography (ERT) for in situ damage monitoring. Multi-wall carbon nanotube-coated glass fiber (MWCNT-GF) is prepared and embedded into laminates as an in situ sensing layer. Low-velocity impact experiments demonstrate that the embedded sensing layer has high compatibility with the composite laminates and has no adverse effect on its impact response; although, the energy absorption behavior of glass fiber-reinforced polymer (GFRP) laminates containing MWCNT-GF occurs about 10% earlier than that of GFRP laminates overall. ERT technology is used to analyze the laminates after a low-velocity impact test. The results show that the in situ monitoring method with the embedded MWCNT-GF sensing layer can achieve high precision in imaging localization of impact damage, and the error of the detected damage area is only 4.5%.

12.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405812

RESUMEN

Epidemiologic associations estimated from observational data are often confounded by genetics due to pervasive pleiotropy among complex traits. Many studies either neglect genetic confounding altogether or rely on adjusting for polygenic scores (PGS) in regression analysis. In this study, we unveil that the commonly employed PGS approach is inadequate for removing genetic confounding due to measurement error and model misspecification. To tackle this challenge, we introduce PENGUIN, a principled framework for polygenic genetic confounding control based on variance component estimation. In addition, we present extensions of this approach that can estimate genetically-unconfounded associations using GWAS summary statistics alone as input and between multiple generations of study samples. Through simulations, we demonstrate superior statistical properties of PENGUIN compared to the existing approaches. Applying our method to multiple population cohorts, we reveal and remove substantial genetic confounding in the associations of educational attainment with various complex traits and between parental and offspring education. Our results show that PENGUIN is an effective solution for genetic confounding control in observational data analysis with broad applications in future epidemiologic association studies.

13.
J Cyst Fibros ; 23(4): 754-757, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38383231

RESUMEN

Vitamin D sufficiency has been difficult to achieve consistently in patients with cystic fibrosis (CF), even with robust oral supplements. To assess vitamin D status and resistance to supplementation, we studied 80 adults using 25-hydroxyvitamin D (25OHD) determinations and whole genome sequencing to construct polygenic risk scores (PRS) that aggregate variants associated with vitamin D status. The results revealed that 30 % of patients were below the threshold of 30 ng/mL and thus should be regarded as insufficient despite normal vitamin E status, a reflection of adherence to fat soluble vitamin supplementation. The PRS values were significantly correlated with 25OHD concentrations, confirming our results in children with CF, and indicating that genetic factors play a role and have implications for therapy.


Asunto(s)
Fibrosis Quística , Suplementos Dietéticos , Deficiencia de Vitamina D , Vitamina D , Humanos , Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Vitamina D/sangre , Vitamina D/análogos & derivados , Masculino , Adulto , Femenino , Deficiencia de Vitamina D/sangre , Vitaminas/administración & dosificación
14.
Microsyst Nanoeng ; 10(1): 128, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261463

RESUMEN

Wearable ultrasound imaging technology has become an emerging modality for the continuous monitoring of deep-tissue physiology, providing crucial health and disease information. Fast volumetric imaging that can provide a full spatiotemporal view of intrinsic 3D targets is desirable for interpreting internal organ dynamics. However, existing 1D ultrasound transducer arrays provide 2D images, making it challenging to overcome the trade-off between the temporal resolution and volumetric coverage. In addition, the high driving voltage limits their implementation in wearable settings. With the use of microelectromechanical system (MEMS) technology, we report an ultrasonic phased-array transducer, i.e., a 2D piezoelectric micromachined ultrasound transducer (pMUT) array, which is driven by a low voltage and is chip-compatible for fast 3D volumetric imaging. By grouping multiple pMUT cells into one single drive channel/element, we propose an innovative cell-element-array design and operation of a pMUT array that can be used to quantitatively characterize the key coupling effects between each pMUT cell, allowing 3D imaging with 5-V actuation. The pMUT array demonstrates fast volumetric imaging covering a range of 40 mm × 40 mm × 70 mm in wire phantom and vascular phantom experiments, achieving a high temporal frame rate of 11 kHz. The proposed solution offers a full volumetric view of deep-tissue disorders in a fast manner, paving the way for long-term wearable imaging technology for various organs in deep tissues.

15.
Cardiovasc Res ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39270732

RESUMEN

AIMS: Dilated cardiomyopathy (DCM) has etiological and pathophysiological heterogeneity. Abnormal circadian rhythm (ACR) is related to the development of DCM in animal models, but exploration based on clinical samples is lacking. Sleep apnea (SA) is the most common disease related to ACR, and we chose SA as the study object to explore ACR-DCM. METHODS AND RESULTS: We included a derivation cohort (n =105) and a validation cohort (n = 65). DCM patients were divided into SA and without SA group. RT-qPCR was used to determine the change of rhythm gene expression pattern of heart samples from different timepoints. We used single-nucleus RNA sequencing (snRNA-seq) to explore the abnormal transcriptional patterns in the ACR group, and we verified the findings by pathological staining, atomic force microscopy (AFM), and Rev-erbα/ß knockout (KO) mice analysis. DCM patients with SA showed decreased amplitude of rhythm gene expression. SA group showed more severe dilation of left heart chambers. From snRNA-seq, ACR-DCM lost the morning transcriptional patterns, detailly, actin cytoskeleton organization of cardiomyocytes (CMs) disrupted and hypertrophy aggravated, and the proportion of activated fibroblasts (Fibs) decreased with the reduction of fibrotic area ratio. The results of pathological staining, mechanical experiments, and transcriptional feature of Rev-erbα/ß KO mice supported the above findings. CONCLUSION: Compared with the non-SA group, left ventricular (LV) wall dilation was more severe and the structural strength was lower in DCM patients with SA, and phenotypic changes in CM and Fib were involved in this process. ACR-DCM was histopathologically characterized by a structurally weak ventricular wall.

16.
PNAS Nexus ; 2(4): pgad121, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37124401

RESUMEN

The integration of genetic data within large-scale social and health surveys provides new opportunities to test long-standing theories of parental investments in children and within-family inequality. Genetic predictors, called polygenic scores, allow novel assessments of young children's abilities that are uncontaminated by parental investments, and family-based samples allow indirect tests of whether children's abilities are reinforced or compensated. We use over 16,000 sibling pairs from the UK Biobank to test whether the relative ranking of siblings' polygenic scores for educational attainment is consequential for actual attainments. We find evidence consistent with compensatory processes, on average, where the association between genotype and phenotype of educational attainment is reduced by over 20% for the higher-ranked sibling compared to the lower-ranked sibling. These effects are most pronounced in high socioeconomic status areas. We find no evidence that similar processes hold in the case of height or for relatives who are not full biological siblings (e.g. cousins). Our results provide a new use of polygenic scores to understand processes that generate within-family inequalities and also suggest important caveats to causal interpretations the effects of polygenic scores using sibling difference designs. Future work should seek to replicate these findings in other data and contexts.

17.
Nat Commun ; 14(1): 832, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788230

RESUMEN

Polygenic risk scores (PRS) calculated from genome-wide association studies (GWAS) of Europeans are known to have substantially reduced predictive accuracy in non-European populations, limiting their clinical utility and raising concerns about health disparities across ancestral populations. Here, we introduce a statistical framework named X-Wing to improve predictive performance in ancestrally diverse populations. X-Wing quantifies local genetic correlations for complex traits between populations, employs an annotation-dependent estimation procedure to amplify correlated genetic effects between populations, and combines multiple population-specific PRS into a unified score with GWAS summary statistics alone as input. Through extensive benchmarking, we demonstrate that X-Wing pinpoints portable genetic effects and substantially improves PRS performance in non-European populations, showing 14.1%-119.1% relative gain in predictive R2 compared to state-of-the-art methods based on GWAS summary statistics. Overall, X-Wing addresses critical limitations in existing approaches and may have broad applications in cross-population polygenic risk prediction.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Estudio de Asociación del Genoma Completo/métodos , Factores de Riesgo , Herencia Multifactorial/genética , Predisposición Genética a la Enfermedad
18.
Adv Mater ; 35(7): e2209129, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36427268

RESUMEN

Accurate identification of carbon-based metal-free electrocatalyst (CMFE) activity and enhancing their catalytic efficiency for O2 conversion is an urgent and challenging task. This study reports a promising strategy to simultaneously develop a series of covalent organic frameworks (COFs) with well-defined heterocyclic-free biphenyl or fluorenyl units. Unlike heteroatom doping, the developed method not only supplies methyl-induced molecular configuration to promote activity, but also provides a direct opportunity to identify heteroatom-free carbon active centers. The introduction of methyl groups (MGs) with reversible valence bonds into a pristine biphenyl-based COF results in an excellent performance with a half-wave potential of 0.74 V versus the reversible hydrogen electrode (RHE), which is among the highest values for CMFE-COFs as oxygen reduction reaction (ORR) electrocatalysts. Combined with in situ Raman spectra and theoretical calculations, the MG-bound skeleton (DAF-COF) is found to produce ortho activation, confirming the ortho carbon (site-5) adjacent to MGs as active centers. This may be attributed to the opening and binding of MGs, which effectively regulate the molecular configuration and charge redistribution, as well as improve charge transfer and reduce the energy barrier. This study provides insight into the design of highly efficient metal-free organic electrocatalysts via the regulation of valence bonds.

19.
Polymers (Basel) ; 15(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37447620

RESUMEN

To develop a lower-cost, excellent-performance, and environmentally friendly phenol-formaldehyde (PF) resin, soybean meal was used to modify PF resin, and soybean meal-phenol-formaldehyde (SMPF) resins were prepared. This reveals the effect of soybean meal on the structural, bonding, and curing properties of PF resin, which are very important for its applications in the wood industry. The resins' physicochemical properties and curing performance were investigated, showing that SMPF resins have higher curing temperatures than PF resin. The Fourier transform infrared spectroscopy results indicated that a cross-linking reaction occurred between the amino groups of soybean protein and the hydroxymethyl phenol. Moreover, with the addition of soybean meal, the viscosity of SMPF increased while the gel time decreased. It is worth mentioning that SMPF-2 resin has favorable viscosity, short gel time, low curing temperature (135.78 °C), and high water resistance and bonding strength (1.01 MPa). Finally, all the plywoods bonded with SMPF resins have good water resistance and bonding strength, which could meet the standard (GB/T 17657-2013, type I) for plywood. The optimized SMPF resins showed the potential for application to partially replace PF resin in the wood industry.

20.
Pediatr Pulmonol ; 58(11): 3071-3082, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37539852

RESUMEN

BACKGROUND: Although respiratory pathology is known to develop in young children with cystic fibrosis (CF), the determinants of early-onset lung disease have not been elucidated. OBJECTIVE: We aimed to determine the impact of potential intrinsic and extrinsic risk factors during the first 3 years of life, testing the hypothesis that both contribute significantly to early-onset CF lung disease. DESIGN: We studied 104 infants born during 2012-2017, diagnosed through newborn screening by age 3 months, and evaluated comprehensively to 36 months of age. Lung disease manifestations were quantified with a new scoring system known as CFELD for Cystic Fibrosis Early-onset Lung Disease. The variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene were determined and categorized. Whole genome sequencing was performed on each subject and the data transformed to polygenic risk scores (PRS) that aggregate variants associated with lung function. Extrinsic factors included socioeconomic status (SES) indicators and environmental experiences such as exposures to smoking, pets, and daycare. RESULTS: We found by univariate analysis that CFTR genotype and genetic modifiers aggregated by the PRS method were significantly associated with early-onset CF lung disease. Ordinal logistic regression analysis demonstrated that high and stable SES (maternal education ≥community college, stable 2-parent home, and not receiving Medicaid) and better growth (weight-for-age and height-for-age z-scores) reduced risks, while exposure to smoking and daycare ≥20 h/week increased the risk of CFELD severity. CONCLUSIONS: Extrinsic, modifiable determinants are influential early and potentially as important as the intrinsic risk factors in the onset of CF lung disease.


Asunto(s)
Fibrosis Quística , Lactante , Niño , Recién Nacido , Humanos , Preescolar , Fibrosis Quística/epidemiología , Fibrosis Quística/genética , Fibrosis Quística/complicaciones , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Pulmón , Factores de Riesgo , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA