Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(7): 1696-1722, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38269959

RESUMEN

Vitamin D deficiency is a worldwide health concern, especially in the elderly population. Much remains unknown about the relationship between vitamin D deficiency (VDD), stress-induced cognitive dysfunctions and depressive-like behaviour. In this study, 4-month-old male C57Bl/6J mice were fed with control or vitamin D free diet for 6 months, followed by unpredictable chronic stress (UCMS) for 8 weeks. VDD induced cognitive impairment and reduced grooming behaviour, but did not induce depressive-like behaviour. While UCMS in vitamin D sufficient mice induced expected depressive-like phenotype and impairments in the contextual fear memory, chronic stress did not manifest as an additional risk factor for memory impairments and depressive-like behaviour in VDD mice. In fact, UCMS restored self-care behaviour in VDD mice. At the histopathological level, VDD mice exhibited cell loss in the granule cell layer, reduced survival of newly generated cells, accompanied with an increased number of apoptotic cells and alterations in glial morphology in the hippocampus; however, these effects were not exacerbated by UCMS. Interestingly, UCMS reversed VDD induced loss of microglial cells. Moreover, tyrosine hydroxylase levels decreased in the striatum of VDD mice, but not in stressed VDD mice. These findings indicate that long-term VDD in adulthood impairs cognition but does not augment behavioural response to UCMS in middle-aged mice. While VDD caused cell loss and altered glial response in the DG of the hippocampus, these effects were not exacerbated by UCMS and could contribute to mechanisms regulating altered stress response.


Asunto(s)
Deficiencia de Vitamina D , Vitamina D , Anciano , Humanos , Animales , Ratones , Masculino , Persona de Mediana Edad , Lactante , Hipocampo , Encéfalo , Trastornos de la Memoria/etiología , Deficiencia de Vitamina D/complicaciones , Ratones Endogámicos C57BL , Estrés Psicológico/complicaciones , Modelos Animales de Enfermedad
2.
BMC Med ; 21(1): 286, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542262

RESUMEN

BACKGROUND: Microglia are known to regulate stress and anxiety in both humans and animal models. Psychosocial stress is the most common risk factor for the development of schizophrenia. However, how microglia/brain macrophages contribute to schizophrenia is not well established. We hypothesized that effector molecules expressed in microglia/macrophages were involved in schizophrenia via regulating stress susceptibility. METHODS: We recruited a cohort of first episode schizophrenia (FES) patients (n = 51) and age- and sex-paired healthy controls (HCs) (n = 46) with evaluated stress perception. We performed blood RNA-sequencing (RNA-seq) and brain magnetic resonance imaging, and measured plasma level of colony stimulating factor 1 receptor (CSF1R). Furthermore, we studied a mouse model of chronic unpredictable stress (CUS) combined with a CSF1R inhibitor (CSF1Ri) (n = 9 ~ 10/group) on anxiety behaviours and microglial biology. RESULTS: FES patients showed higher scores of perceived stress scale (PSS, p < 0.05), lower blood CSF1R mRNA (FDR = 0.003) and protein (p < 0.05) levels, and smaller volumes of the superior frontal gyrus and parahippocampal gyrus (both FDR < 0.05) than HCs. In blood RNA-seq, CSF1R-associated differentially expressed blood genes were related to brain development. Importantly, CSF1R facilitated a negative association of the superior frontal gyrus with PSS (p < 0.01) in HCs but not FES patients. In mouse CUS+CSF1Ri model, similarly as CUS, CSF1Ri enhanced anxiety (both p < 0.001). Genes for brain angiogenesis and intensity of CD31+-blood vessels were dampened after CUS-CSF1Ri treatment. Furthermore, CSF1Ri preferentially diminished juxta-vascular microglia/macrophages and induced microglia/macrophages morphological changes (all p < 0.05). CONCLUSION: Microglial/macrophagic CSF1R regulated schizophrenia-associated stress and brain angiogenesis.


Asunto(s)
Microglía , Esquizofrenia , Animales , Humanos , Ratones , Encéfalo/patología , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
3.
Cell Mol Neurobiol ; 43(5): 2053-2069, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36163404

RESUMEN

Microglial cells constantly surveil the cerebral microenvironment and become activated following injury and disease to mediate inflammatory responses. The nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasome, which is abundantly expressed in microglial cells, plays a key role in these responses as well as in the development of many neurological disorders. Microglial cell lines are a valuable tool to study the causes and possible treatments for neurological diseases which are linked to inflammation. Here, we investigated whether the mouse microglial cell line IMG is suitable to study NLRP3 inflammasome by incubating cells with different concentrations of NLRP3 inflammasome priming and activating agents lipopolysaccharide (LPS) and ATP, respectively, and applying short (4 h) or long (24 h) LPS incubation times. After short LPS incubation, the mRNA levels of most pro-inflammatory and NLRP3 inflammasome-associated genes were more upregulated than after long incubation. Moreover, the combination of higher LPS and ATP concentrations with short incubation time resulted in greater levels of active forms of caspase-1 and interleukin-1 beta (IL-1ß) proteins than low LPS and ATP concentrations or long incubation time. We also demonstrated that treatment with NLRP3 inflammasome inhibitor glibenclamide suppressed NLRP3 inflammasome activation in IMG cells, as illustrated by the downregulation of gasdermin D N-fragment and mature caspase-1 and IL-1ß protein levels. In addition, we conducted similar experiments with primary microglial cells and BV-2 cell line to determine the similarities and differences in their responses. Overall, our results indicate that IMG cell line could be a valuable tool for NLRP3 inflammasome studies. In IMG cells, 4-h incubation with lipopolysaccharide (LPS) induces a stronger upregulation of NLRP3 inflammasome-associated pro-inflammatory genes compared to 24-h incubation. NLRP3 inflammasome is robustly activated only after the addition of 3 mM of ATP following short LPS incubation time.


Asunto(s)
Inflamasomas , Microglía , Animales , Ratones , Lipopolisacáridos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR , Caspasa 1 , Línea Celular , Interleucina-1beta , Adenosina Trifosfato/farmacología
4.
Addict Biol ; 25(1): e12720, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30730091

RESUMEN

An increasing number of reports have provided crucial evidence that epigenetic modifications, such as DNA methylation, may be involved in initiating and establishing psychostimulant-induced stable changes at the cellular level by coordinating the expression of gene networks, which then manifests as long-term behavioral changes. In this study, we evaluated the enzyme activity of DNA methyltransferases (DNMTs) after cocaine treatment and during withdrawal. Furthermore, we studied how genetic or pharmacological inhibition of DNMTs in mouse nucleus accumbens (NAc) affects the induction and expression of cocaine-induced behavioral sensitization. Our results showed that after silencing Dnmt3a in the NAc during the induction phase of cocaine-induced sensitization, overall DNMT activity decreases, correlating negatively with behavioral sensitization. Reduced Dnmt3a mRNA during this phase was the largest contributing factor for decreased DNMT activity. Cocaine withdrawal and a challenge dose increased DNMT activity in the NAc, which was associated with the expression of behavioral sensitization. Long-term selective Dnmt3a transcription silencing in the NAc did not alter DNMT activity or the expression of cocaine-induced behavioral sensitization. However, bilateral intra-NAc injection of a non-specific inhibitor of DNMT (RG108) during withdrawal from cocaine decreased DNMT activity in the NAc and had a small effect on the expression of cocaine-induced behavioral sensitization. Thus, cocaine treatment and withdrawal is associated with biphasic changes in DNMT activity in the NAc, and the expression of behavioral sensitization decreases with non-selective inhibition of DNMT but not with selective silencing of Dnmt3a.


Asunto(s)
Cocaína/farmacología , Metilación de ADN/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/enzimología , Animales , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL
5.
J Cell Sci ; 129(20): 3792-3802, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27566163

RESUMEN

Membrane-associated glycoprotein neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) play an important role in brain plasticity by regulating cell-cell interactions. Here, we demonstrate that the cytosolic serine protease prolyl endopeptidase (PREP) is able to regulate NCAM and PSA-NCAM. Using a SH-SY5Y neuroblastoma cell line with stable overexpression of PREP, we found a remarkable loss of PSA-NCAM, reduced levels of NCAM180 and NCAM140 protein species, and a significant increase in the NCAM immunoreactive band migrating at an apparent molecular weight of 120 kDa in PREP-overexpressing cells. Moreover, increased levels of NCAM fragments were found in the concentrated medium derived from PREP-overexpressing cells. PREP overexpression selectively induced an activation of matrix metalloproteinase-9 (MMP-9), which could be involved in the observed degradation of NCAM, as MMP-9 neutralization reduced the levels of NCAM fragments in cell culture medium. We propose that increased PREP levels promote epidermal growth factor receptor (EGFR) signaling, which in turn activates MMP-9. In conclusion, our findings provide evidence for newly-discovered roles for PREP in mechanisms regulating cellular plasticity through NCAM and PSA-NCAM.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteolisis , Serina Endopeptidasas/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Western Blotting , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Medios de Cultivo , Receptores ErbB/metabolismo , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Metaloproteinasa 9 de la Matriz/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuroblastoma/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Prolil Oligopeptidasas , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Proteínas Recombinantes/farmacología , Ácidos Siálicos/metabolismo , Sialiltransferasas/metabolismo
6.
Pharmacol Res ; 113(Pt B): 731-738, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27095082

RESUMEN

Brain plasticity refers to the ability of the brain to undergo functionally relevant adaptations in response to external and internal stimuli. Alterations in brain plasticity have been associated with several neuropsychiatric disorders, and current theories suggest that dysfunctions in neuronal circuits and synaptogenesis have a major impact in the development of these diseases. Among the molecules that regulate brain plasticity, neural cell adhesion molecule (NCAM) and its polysialylated form PSA-NCAM have been of particular interest for years because alterations in NCAM and PSA-NCAM levels have been associated with memory impairment, depression, autistic spectrum disorders and schizophrenia. In this review, we discuss the roles of NCAM and PSA-NCAM in the regulation of brain plasticity and, in particular, their roles in the mechanisms of depression. We also demonstrate that the NCAM-mimetic peptides FGL and Enreptin are able to restore disrupted neuronal plasticity. FGL peptide has also been demonstrated to ameliorate the symptoms of depressive-like behavior in NCAM-deficient mice and therefore, may be considered a new drug candidate for the treatment of depression as well as other neuropsychiatric disorders with disrupted neuroplasticity.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Encefalopatías/metabolismo , Fármacos del Sistema Nervioso Central/farmacología , Fármacos del Sistema Nervioso Central/uso terapéutico , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo
7.
Int J Neuropsychopharmacol ; 16(9): 2053-66, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23684129

RESUMEN

Several studies suggest that individual variability is a critical component underlying drug addiction as not all members of a population who use addictive substance become addicted. There is evidence that the overall epigenetic status of a cell (epigenome) can be modulated by a variety of environmental factors, such as nutrients and chemicals. Based on these data, our aim was to investigate whether environmental factors like S-adenosylmethionine (SAM) via affecting epigenome could alter cocaine-induced gene expression and locomotor sensitization in mice. Our results demonstrate that repeated SAM (10 mm/kg) pretreatment significantly potentiated cocaine-induced locomotor sensitization. Using mouse nucleus accumbens (NAc) tissue, whole-genome gene expression profiling revealed that repeated SAM treatment affected a limited number of genes, but significantly modified cocaine-induced gene expression by blunting non-specifically the cocaine response. At the gene level, we discovered that SAM modulated cocaine-induced DNA methylation by inhibiting both promoter-associated CpG-island hyper- and hypomethylation in the NAc but not in the reference tissue cerebellum. Finally, our in vitro and in vivo data show that the modulating effect of SAM is in part due to decreased methyltransferase activity via down-regulation of Dnmt3a mRNA. Taken together, our results suggest that environmental factors that affect the NAc-cell epigenome may alter the development of psychostimulant-induced addiction and this may explain, at least partly, why some individuals are more vulnerable to drug addiction.


Asunto(s)
Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , S-Adenosilmetionina/farmacología , Animales , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/psicología , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Regulación hacia Abajo , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Células PC12 , Regiones Promotoras Genéticas , Ratas , Factores de Tiempo , Transcripción Genética/efectos de los fármacos , ADN Metiltransferasa 3B
8.
Front Cell Neurosci ; 17: 1254923, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771931

RESUMEN

Background: Microglia play an important role in the maintenance of brain and behavioral homeostasis. The protective effect of microglial replenishment was reported in neurological diseases, but whether microglial therapy would benefit psychiatric disorders such as schizophrenia has been unclear. As schizophrenia is a stress-vulnerable disorder and psychosocial stress promotes inflammation and microglial activation, we aim to understand how microglial replenishment works in stress-associated schizophrenia. Methods: We used a CSF1R-mediated pharmacological approach to study repopulated microglia (repMg) in a cohort of mice (n = 10/group) undergoing chronic unpredictable stress (CUS). We further studied a cohort of first-episode schizophrenia (FES, n = 74) patients who had higher perceived stress scores (PSS) than healthy controls (HCs, n = 68). Results: Reborn microglia attenuated CUS-induced learned hopelessness and social withdrawal but not anxiety in mice. Compared to control, CUS- or repMg-induced differentially expressed genes (DEGs) in the prefrontal cortex regulated nervous system development and axonal guidance. CUS also caused microglial hyper-ramification and increased engulfment of synaptophysin and vesicular glutamate transporter-2 by microglia and astrocytes, which were recovered in CUS + repMg (all p < 0.05). Moreover, FES patients had smaller hippocampal fimbria than HCs (p < 1e-7), which were negatively associated with PSS (r = -0.397, p = 0.003). Blood DEGs involved in immune system development were also associated with PSS and the right fimbria more prominently in FES patients than HCs (Zr, p < 0.0001). The KCNQ1 was a partial mediator between PSS and fimbria size (ß = -0.442, 95% CI: -1.326 ~ -0.087). Conclusion: Microglial replenishment may potentially benefit psychiatric disorders such as schizophrenia.

9.
J Biol Chem ; 286(12): 10814-24, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21252228

RESUMEN

Parkinson disease is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. α-Synuclein accumulation in turn leads to compensatory effects that may include the up-regulation of autophagy. Another common feature of Parkinson disease (PD) is mitochondrial dysfunction. Here, we provide evidence that the overactivation of autophagy may be a link that connects the intracellular accumulation of α-synuclein with mitochondrial dysfunction. We found that the activation of macroautophagy in primary cortical neurons that overexpress mutant A53T α-synuclein leads to massive mitochondrial destruction and loss, which is associated with a bioenergetic deficit and neuronal degeneration. No mitochondrial removal or net loss was observed when we suppressed the targeting of mitochondria to autophagosomes by silencing Parkin, overexpressing wild-type Mitofusin 2 and dominant negative Dynamin-related protein 1 or blocking autophagy by silencing autophagy-related genes. The inhibition of targeting mitochondria to autophagosomes or autophagy was also partially protective against mutant A53T α-synuclein-induced neuronal cell death. These data suggest that overactivated mitochondrial removal could be one of the contributing factors that leads to the mitochondrial loss observed in PD models.


Asunto(s)
Autofagia , Mitocondrias/metabolismo , Mutación Missense , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , GTP Fosfohidrolasas , Silenciador del Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Células PC12 , Enfermedad de Parkinson/genética , Ratas , Ratas Wistar , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/genética
10.
Neurobiol Dis ; 48(3): 533-45, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22842016

RESUMEN

The fibroblast growth factor receptor (FGFR) plays a vital role in the development of the nervous system regulating a multitude of cellular processes. One of the interaction partners of the FGFR is the neural cell adhesion molecule (NCAM), which is known to play an important role in neuronal development, regeneration and synaptic plasticity. Thus, simultaneous activation of FGFR- and NCAM-mediated signaling pathways may be expected to affect processes underlying neurodegenerative diseases. We here report the identification of a peptide compound, Enreptin, capable of interacting with both FGFR and NCAM. We demonstrate that this dual specificity agonist induces phosphorylation of FGFR and differentiation and survival of primary neurons in vitro, and that these effects are inhibited by abrogation of both NCAM and FGFR signaling pathways. Furthermore, Enreptin crosses the blood-brain barrier after subcutaneous administration, enhances long-term memory in normal mice and ameliorates memory deficit in mice with induced brain inflammation. Moreover, Enreptin reduces cognitive impairment and neuronal death induced by Aß25-35 in a rat model of Alzheimer's disease, and reduces the mortality rate and clinical signs of experimental autoimmune encephalomyelitis in rats. Thus, Enreptin is an attractive candidate for the treatment of neurological diseases.


Asunto(s)
Memoria/efectos de los fármacos , Moléculas de Adhesión de Célula Nerviosa/agonistas , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oligopéptidos/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/agonistas , Animales , Conducta Animal/efectos de los fármacos , Encefalopatías/patología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas/citología , Ratas , Ratas Wistar , Resonancia por Plasmón de Superficie
11.
Cells ; 11(13)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35805086

RESUMEN

The miR-146 family consists of two microRNAs (miRNAs), miR-146a and miR-146b, which are both known to suppress a variety of immune responses. Here in this study, we show that miR-146b is abundantly expressed in neuronal cells, while miR-146a is mainly expressed in microglia and astroglia of adult mice. Accordingly, miR-146b deficient (Mir146b-/-) mice exhibited anxiety-like behaviors and enhanced cognition. Characterization of cellular composition of Mir146b-/- mice using flow cytometry revealed an increased number of neurons and a decreased abundancy of astroglia in the hippocampus and frontal cortex, whereas microglia abundancy remained unchanged. Immunohistochemistry showed a higher density of neurons in the frontal cortex of Mir146b-/- mice, enhanced hippocampal neurogenesis as evidenced by an increased proliferation, and survival of newly generated cells with enhanced maturation into neuronal phenotype. No microglial activation or signs of neuroinflammation were observed in Mir146b-/- mice. Further analysis demonstrated that miR-146b deficiency is associated with elevated expression of glial cell line-derived neurotrophic factor (Gdnf) mRNA in the hippocampus, which might be at least in part responsible for the observed neuronal expansion and the behavioral phenotype. This hypothesis is partially supported by the positive correlation between performance of mice in the object recognition test and Gdnf mRNA expression in Mir146b-/- mice. Together, these results show the distinct function of miR-146b in controlling behaviors and provide new insights in understanding cell-specific function of miR-146b in the neuronal and astroglial organization of the mouse brain.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , MicroARNs , Animales , Cognición , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neurogénesis , ARN Mensajero
12.
Front Immunol ; 13: 996415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389659

RESUMEN

The miR-146 family consists of two microRNAs (miRNAs), miR-146a and miR-146b (miR-146a/b), both of which are known to suppress immune responses in a variety of conditions. Here, we studied how constitutive deficiency of miR-146b (Mir146b-/-) affects lipopolysaccharide (LPS)-induced neuroinflammation in mice. Our experiments demonstrated that miR-146b deficiency results in the attenuation of LPS-induced neuroinflammation, as it was evidenced by the reduction of sickness behavior, a decrease in the inflammatory status of microglia, and the loss of morphological signs of microglial activation in the hippocampus. Gene expression analysis revealed that LPS-induced upregulation of hippocampal pro-inflammatory cytokines is attenuated in Mir146b-/- mice, compared to wild-type (WT) mice. In addition, reduced expression of the NF-κB nuclear protein p65, reduced miR-146 family target TLR4 expression and relatively stronger upregulation of miR-146a was found in Mir146b-/- mice as compared to WT mice upon LPS challenge. Compensatory upregulation of miR-146a can explain the attenuation of the LPS-induced neuroinflammation. This was supported by experiments conducted with miR-146a/b deficient mice (Mir146a/b-/-), which demonstrated that additional deletion of the miR-146a led to the restoration of LPS-induced sickness behavior and proinflammatory cytokines. Our experiments also showed that the observed upregulation of miR-146a in Mir146b-/- mice is due to the overexpression of a miR-146a transcription inducer, interferon regulatory factor 7 (Irf7). Altogether, our results show the existence of crosstalk between miR-146a and mir-146b in the regulation of LPS-induced neuroinflammation.


Asunto(s)
Lipopolisacáridos , MicroARNs , Ratones , Animales , Lipopolisacáridos/toxicidad , Inflamación/genética , MicroARNs/metabolismo , Regulación hacia Arriba , Citocinas/metabolismo
13.
Food Chem ; 391: 133240, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35617760

RESUMEN

The effects of commercial enzymes (pectinases, cellulases, beta-1-3-glucanases, and pectin lyases) on the recovery of anthocyanins and polyphenols from blackcurrant press cake were studied considering two solid:solvent ratios (1:10 and 1:4 w/v). ß-glucanase enabled the recovery of the highest total phenolic content - 1142 mg/100 g, and the extraction of anthocyanins was similar using all enzymes (∼400 mg/100 g). The use of cellulases and pectinases enhanced the extraction of antioxidants (DPPH - 1080 mg/100 g; CUPRAC - 3697 mg/100 g). The freeze-dried extracts presented antioxidant potential (CUPRAC, DPPH), which was associated with their biological effects in different systems: antiviral activity against both non-enveloped viruses (enterovirus coxsackievirus A-9) and enveloped coronaviruses (HCoV-OC43), and cytotoxicity towards cancer cells (A549 and HCT8). No cytotoxic effects on normal human lung fibroblast (IMR90) were observed, and no anti-inflammatory activity was detected in lipopolysaccharides-treated murine immortalised microglial cells.


Asunto(s)
Celulasas , Ribes , Animales , Antocianinas/química , Antocianinas/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Humanos , Ratones , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ribes/química
14.
Front Immunol ; 13: 1005067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325348

RESUMEN

Stress is a trigger for the development of psychiatric disorders. However, how stress trait differs in schizophrenia patients is still unclear. Stress also induces and exacerbates immune activation in psychiatric disorders. Plexins (Plxn) and its ligands semaphorins (Sema) are important cellular receptors with plural functions in both the brain and the immune system. Recently, the role of Plxn/Sema in regulation of neuroinflammation was also noticed. Here, when investigating immune mechanisms underlying stress susceptibility in schizophrenia, we discovered the role of Plxnb2 in stress response. Patients of first-episode schizophrenia (FES) with high stress (FES-hs, n=51) and low stress (FES-ls, n=50) perception and healthy controls (HCs) (n=49) were first recruited for neuroimaging and blood bulk RNA sequencing (RNA-seq). A mouse model of chronic unpredictable stress (CUS) and intra-amygdaloid functional blocking of Plxnb2 were further explored to depict target gene functions. Compared to HCs, FES-hs patients had bigger caudate and thalamus (FDR=0.02&0.001, respectively) whereas FES-ls patients had smaller amygdala (FDR=0.002). Blood RNA-seq showed differentially expressed PLXNB2 and its ligands among patient groups and HCs (FDR<0.05~0.01). Amygdaloid size and PLXNB2 level were both negatively correlated with stress perception (p<0.01&0.05, respectively), which fully mediated the amygdaloid positive association with PLXNB2 expression (ß=0.9318, 95% CI: 0.058~1.886) in FES-hs patients. In mice, Plxnb2 was enriched in astrocytes and microglia and CUS reduced its expression in astrocytes (p<0.05). Inhibition of amygdaloid Plxnb2 by its functional blocking monoclonal antibody (mAb)-102 induced mice anxiety (p<0.05), amygdaloid enlargement (p<0.05), and microglial ramification (p<0.001) compared to saline. These data suggest that PLXNB2 regulates amygdala-dependent stress responses.


Asunto(s)
Esquizofrenia , Semaforinas , Animales , Ratones , Amígdala del Cerebelo/metabolismo , Ligandos , Percepción , Esquizofrenia/genética , Esquizofrenia/metabolismo , Semaforinas/metabolismo
15.
Eur J Neurosci ; 33(1): 161-74, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21073553

RESUMEN

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 subunit-deficient (GluA1-/-) mice display novelty-induced hyperactivity, cognitive and social defects and may model psychiatric disorders, such as schizophrenia and depression/mania. We used c-Fos expression in GluA1-/- mice to identify brain regions responsible for novelty-induced hyperlocomotion. Exposure to a novel cage for 2 h significantly increased c-Fos expression in many brain regions in both wild-type and knockout mice. Interestingly, the clearest genotype effect was observed in the hippocampus and its main input region, the entorhinal cortex, where the novelty-induced c-Fos expression was more strongly enhanced in GluA1-/- mice. Their novelty-induced hyperlocomotion partly depended on the activity of AMPA receptors, as it was diminished by the AMPA receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulphonamide (NBQX) and unaffected by the AMPA receptor potentiator 2,3-dihydro-1,4-benzodioxin-6-yl-1-piperidinylmethanone (CX546). The hyperlocomotion of GluA1-/- mice was normalised to the level of wild-type mice within 5-6 h, after which their locomotion followed normal circadian rhythm and was not affected by acute or chronic treatments with the selective serotonin reuptake inhibitor escitalopram. We propose that hippocampal dysfunction, as evidenced by the excessive c-Fos response to novelty, is the major contributor to novelty-induced hyperlocomotion in GluA1-/- mice. Hippocampal dysfunction was also indicated by changes in proliferation and survival of adult-born dentate gyrus cells in the knockout mice. These results suggest focusing on the functions of hippocampal formation, such as novelty detection, when using the GluA1-/- mouse line as a model for neuropsychiatric and cognitive disorders.


Asunto(s)
Conducta Exploratoria/fisiología , Hipocampo/fisiología , Actividad Motora/fisiología , Neurogénesis/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores AMPA/metabolismo , Animales , Conducta Animal/fisiología , Citalopram/metabolismo , Femenino , Genotipo , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades del Sistema Nervioso/fisiopatología , Proteínas Proto-Oncogénicas c-fos/genética , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/genética , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Distribución Tisular
16.
Brain ; 133(Pt 8): 2281-94, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20435631

RESUMEN

Erythropoietin, a member of the type 1 cytokine superfamily, controls proliferation and differentiation of erythroid progenitor cells through binding to and dimerization of the erythropoietin receptor. Both erythropoietin and its receptor are also expressed in the central nervous system, where they are involved in tissue protection. However, the use of erythropoietin as a neuroprotective agent may be hampered by its erythropoietic activity. Therefore, developing non-haematopoietic erythropoietin mimetics is important. Based on the crystal structure of the complex of erythropoietin and its receptor, we designed a peptide, termed Epotris, corresponding to the C α-helix region (amino-acid residues 92-111) of human erythropoietin. The peptide specifically bound to the erythropoietin receptor and promoted neurite outgrowth and survival of primary neurons with the same efficiency as erythropoietin, but with 10(3)-fold lower potency. Knockdown of the erythropoietin receptor or interference with its downstream signalling inhibited the Epotris-induced neuritogenic and pro-survival effect. Similarly to erythropoietin, Epotris penetrated the blood-brain barrier. Moreover, treatment with the peptide attenuated seizures, decreased mortality and reduced neurodegeneration in an in vivo model of kainic acid-induced neurotoxicity. In contrast to erythropoietin, Epotris did not stimulate erythropoiesis upon chronic administration. Thus, Epotris is a novel neuroprotective non-haematopoietic erythropoietin mimetic that may offer new opportunities for the treatment of neurological disorders.


Asunto(s)
Eritropoyetina/farmacología , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/farmacología , Receptores de Eritropoyetina/agonistas , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Células Cultivadas , Eritropoyesis/efectos de los fármacos , Eritropoyesis/fisiología , Eritropoyetina/química , Eritropoyetina/metabolismo , Eritropoyetina/farmacocinética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuritas/efectos de los fármacos , Neuritas/fisiología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/mortalidad , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacocinética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacocinética , Ratas , Ratas Wistar , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/mortalidad
17.
Front Cell Neurosci ; 15: 750373, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899189

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has generated a lot of stress and anxiety among not only infected patients but also the general population across the globe, which disturbs cerebral immune homeostasis and potentially exacerbates the SARS-CoV-2 virus-induced neuroinflammation, especially among people susceptible to neuropsychiatric disorders. Here, we used a chronic unpredictable mild stress (CUMS) mouse model to study its effects on glia-mediated neuroinflammation and expression of SARS-CoV2 viral receptors. We observed that female mice showed depressive-like behavior after CUMS, whereas male mice showed enhanced anxiety and social withdrawal. Interestingly, CUMS led to increased amounts of total and MHCII+ microglia in the hippocampi of female mice but not male mice. mRNA levels of SARS-CoV-2 viral receptors angiotensin-converting enzyme 2 (Ace2) and basigin (Bsg) were also upregulated in the prefrontal cortices of stressed female mice but not male mice. Similarly, sex-specific changes in SARS-CoV-2 viral receptors FURIN and neuropilin-1 (NRP1) were also observed in monocytes of human caregivers enduring chronic stress. Our findings provided evidence on detrimental effects of chronic stress on the brain and behavior and implied potential sex-dependent susceptibility to SARS-CoV-2 infection after chronic stress.

18.
Brain Res ; 1758: 147329, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33539793

RESUMEN

Chronic-pain patients often suffer from depression. In rodent models of neuropathic pain, animals develop depression-like and anxiety behaviors, indicating a relationship between chronic pain and affective disorders. However, the underlying neurobiological mechanisms linking chronic pain and depression are not yet fully understood. Neurogenesis in the hippocampus is a fundamental process related to brain plasticity. Reduced neurogenesis has been associated with the development of mood disorders and cognitive impairments. The current study aims to elucidate the underlying long-term changes in brain plasticity induced by neuropathic pain in mice at a time point when depression-like behavior has already developed. Furthermore, our focus is set on alterations in neurogenesis in the hippocampus. We found that manifestation of anxiety- and depressive-like behavior as well as cognitive impairment co-occur with decreased survival of newly generated cells but not with impaired proliferative activity or reduced number of immature neurons in the dentate gyrus area of the hippocampus. Moreover, we detected an impairment of differentiation of newly generated cells into mature calbindin-positive neurons, accompanied with a shift towards increased differentiation into astroglial cells. These findings indicate that a reduction in mature functional neurons, rather than reduced proliferation or neuronal progenitor cells, are the long-term changes in hippocampal plasticity that manifest in neuropathic pain conditions after depression-like behavior has developed.


Asunto(s)
Dolor Crónico/patología , Giro Dentado/patología , Depresión/etiología , Neuralgia/patología , Neurogénesis/fisiología , Animales , Diferenciación Celular , Dolor Crónico/complicaciones , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/complicaciones
19.
J Neurosci Res ; 88(5): 1074-82, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19937811

RESUMEN

Metallothioneins I and II (MTI/II) are metal-binding proteins overexpressed in response to brain injury. Recently, we have designed a peptide, termed EmtinB, which is modeled after the beta-domain of MT-II and mimics the biological effects of MTI/II in vitro. Here, we demonstrate the neuroprotective effect of EmtinB in the in vitro and in vivo models of kainic acid (KA)-induced neurotoxicity. We show that EmtinB passes the blood-brain barrier and is detectable in plasma for up to 24 hr. Treatment with EmtinB significantly attenuates seizures in C57BL/6J mice exposed to moderate (20 mg/kg) and high (30 mg/kg) KA doses and tends to decrease mortality induced by the high KA dose. Histopathological evaluation of hippocampal (CA3 and CA1) and cortical areas of mice treated with 20 mg/kg KA shows that EmtinB treatment reduces KA-induced neurodegeneration in the CA1 region. These findings establish EmtinB as a promising target for therapeutic development.


Asunto(s)
Ácido Kaínico/antagonistas & inhibidores , Metalotioneína/agonistas , Fármacos Neuroprotectores/farmacocinética , Neurotoxinas/antagonistas & inhibidores , Péptidos/farmacocinética , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiopatología , Péptidos y Proteínas de Señalización Intercelular , Ácido Kaínico/toxicidad , Masculino , Metalotioneína/metabolismo , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/fisiopatología , Fármacos Neuroprotectores/sangre , Fármacos Neuroprotectores/uso terapéutico , Neurotoxinas/toxicidad , Péptidos/sangre , Péptidos/uso terapéutico , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología
20.
Neurotoxicology ; 72: 101-106, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30772382

RESUMEN

BACKGROUND: Neural cell adhesion molecule (NCAM) belongs to the immunoglobulin superfamily of adhesion molecules. Polysialic acid (PSA) is attached to NCAM post-translationally. PSA residues are considered to reduce the adhesive properties of NCAM and play an important role in the regulation of cell interactions. PSA-NCAM is largely expressed in the mature retina by glial cells adjacent to retinal ganglion cells (RGCs) but its functions remain unclear. The objective of this study was to explore the role of PSA-NCAM with respect to RGC survival following kainic acid (KA)-induced excitotoxicity. METHODS: Experiments were performed on C57BL/6NTac male mice. KA was injected intravitreally to induce RGC damage. RGCs were visualized using an anti-Brn3a antibody. Endoneuraminidase N (NA) was administrated intravitreally to cleave PSA chains from NCAM. RESULTS: KA induced an 80% reduction in the density of RGCs that was accompanied by a decrease in PSA-NCAM in the RGC layer. KA treatment induced a pronounced increase in the level of matrix metalloproteinase-9 (MMP-9) in the inner layers of the retina. Inhibition of MMP-9 reduced both RGC death and PSA-NCAM shedding in the retina. PSA-NCAM cleavage induced by NA abolished the protective action of the MMP-9 inhibitor and decreased RGC survival following KA-treatment. CONCLUSIONS: A decrease in retinal PSA-NCAM levels following KA administration is due to the induction of active MMP-9, which removes extracellular PSA-NCAM from the surface of astroglial and Müller cells. The MMP-9 induced shedding of PSA-NCAM enhances KA-induced toxicity and at least in part contributes to the observed loss of RGCs following excitotoxic damage.


Asunto(s)
Agonistas de Aminoácidos Excitadores/toxicidad , Ácido Kaínico/toxicidad , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Ácidos Siálicos/metabolismo , Animales , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA