Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Bacteriol ; 206(2): e0039823, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38240570

RESUMEN

Gene transfer agents (GTAs) are enigmatic elements that resemble small viruses and are known to be produced during nutritional stress by some bacteria and archaea. The production of GTAs is regulated by quorum sensing, under which a small fraction of the population acts as GTA producers, while the rest becomes GTA recipients. In contrast to canonical viruses, GTAs cannot propagate themselves because they package pieces of the producing cell's genome. In alphaproteobacteria, GTAs are mostly vertically inherited and reside in their hosts' genomes for hundreds of millions of years. While GTAs' ability to transfer genetic material within a population and their long-term preservation suggest an increased fitness of GTA-producing microbes, the associated benefits and type of selection that maintains GTAs are poorly understood. By comparing rates of evolutionary change in GTA genes to the rates in gene families abundantly present across 293 alphaproteobacterial genomes, we detected 59 gene families that likely co-evolve with GTA genes. These gene families are predominantly involved in stress response, DNA repair, and biofilm formation. We hypothesize that biofilm formation enables the physical proximity of GTA-producing cells, limiting GTA-derived benefits only to a group of closely related cells. We further conjecture that the population structure of biofilm-forming sub-populations ensures that the trait of GTA production is maintained despite the inevitable rise of "cheating" genotypes. Because release of GTA particles kills the producing cell, maintenance of GTAs is an exciting example of social evolution in a microbial population.IMPORTANCEGene transfer agents (GTAs) are viruses domesticated by some archaea and bacteria as vehicles for carrying pieces of the host genome. Produced under certain environmental conditions, GTA particles can deliver DNA to neighboring, closely related cells. The function of GTAs remains uncertain. While making GTAs is suicidal for a cell, GTA-encoding genes are widespread in genomes of alphaproteobacteria. Such GTA persistence implies functional benefits but raises questions about how selection maintains this lethal trait. By showing that GTA genes co-evolve with genes involved in stress response, DNA repair, and biofilm formation, we provide support for the hypothesis that GTAs facilitate DNA exchange during the stress conditions and present a model for how GTAs persist in biofilm-forming bacterial populations despite being lethal.


Asunto(s)
Alphaproteobacteria , Bacterias , Humanos , Bacterias/genética , Archaea/genética , ADN , Alphaproteobacteria/genética , Transferencia de Gen Horizontal
2.
Environ Microbiol ; 25(9): 1644-1658, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37032561

RESUMEN

Many Archaea produce membrane-spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy-limited conditions. Recently, the genes encoding GDGT ring synthases, grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance of grs homologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution of grs homologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single-cell and cultivar genomes. The abundance of grs homologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome-assembled genomes (MAGs) that carry two or more grs copies are more abundant in low pH springs. We also find grs in 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role of grs-catalysed lipid cyclization in archaeal diversification across hot and acidic environments.


Asunto(s)
Manantiales de Aguas Termales , Glicerol , Ciclización , Éteres de Glicerilo/química , Archaea/genética , Archaea/química , Lípidos de la Membrana/química , Concentración de Iones de Hidrógeno
3.
Environ Microbiol ; 23(11): 7105-7120, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34398506

RESUMEN

Phylogenomic analyses of bacteria from the phylum Thermotogota have shown extensive lateral gene transfer with distantly related organisms, particularly with Firmicutes. One likely mechanism of such DNA transfer is viruses. However, to date, only three temperate viruses have been characterized in this phylum, all infecting bacteria from the Marinitoga genus. Here we report 17 proviruses integrated into genomes of bacteria belonging to eight Thermotogota genera and induce viral particle production from one of the proviruses. All except an incomplete provirus from Mesotoga fall into two groups based on sequence similarity, gene synteny and taxonomic classification. Proviruses of Group 1 are found in the genera Geotoga, Kosmotoga, Marinitoga, Thermosipho and Mesoaciditoga and are similar to the previously characterized Marinitoga viruses, while proviruses from Group 2 are distantly related to the Group 1 proviruses, have different genome organization and are found in Petrotoga and Defluviitoga. Genes carried by both groups are closely related to Firmicutes and Firmicutes (pro)viruses in phylogenetic analyses. Moreover, one of the groups show evidence of recent gene exchange and may be capable of infecting cells from both phyla. We hypothesize that viruses are responsible for a large portion of the observed gene flow between Firmicutes and Thermotogota.


Asunto(s)
Provirus , Virus , Bacterias/genética , Filogenia , Provirus/genética , Virión/genética , Virus/genética
4.
J Biol Chem ; 294(39): 14333-14344, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31391250

RESUMEN

Cyanobacteria of the Prochlorococcus and marine Synechococcus genera are the most abundant photosynthetic microbes in the ocean. Intriguingly, the genomes of these bacteria are strongly divergent even within each genus, both in gene content and at the amino acid level of the encoded proteins. One striking exception to this is a 62-amino-acid protein, termed Prochlorococcus/ Synechococcushyper-conserved protein (PSHCP). PSHCP is not only found in all sequenced Prochlorococcus and marine Synechococcus genomes, but it is also nearly 100% identical in its amino acid sequence across all sampled genomes. Such universal distribution and sequence conservation suggest an essential cellular role of PSHCP in these bacteria. However, its function is unknown. Here, we used NMR spectroscopy to determine its structure, finding that 53 of the 62 amino acids in PSHCP form a Tudor domain, whereas the remainder of the protein is disordered. NMR titration experiments revealed that PSHCP has only a weak affinity for DNA, but an 18.5-fold higher affinity for tRNA, hinting at an involvement of PSHCP in translation. Isothermal titration calorimetry experiments further revealed that PSHCP also binds single-stranded, double-stranded, and hairpin RNAs. These results provide the first insight into the structure and function of PSHCP, suggesting that PSHCP appears to be an RNA-binding protein that can recognize a broad array of RNA molecules.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas de Unión al ARN/química , Dominio Tudor , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Proteínas Intrínsecamente Desordenadas/metabolismo , Prochlorococcus/química , Prochlorococcus/metabolismo , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Synechococcus/química , Synechococcus/metabolismo
5.
New Phytol ; 226(3): 921-938, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31930503

RESUMEN

Plants must rearrange the network of complex carbohydrates in their cell walls during normal growth and development. To accomplish this, all plants depend on proteins called expansins that nonenzymatically loosen noncovalent bonding between cellulose microfibrils. Surprisingly, expansin genes have more recently been found in some bacteria and microbial eukaryotes, where their biological functions are largely unknown. Here, we reconstruct a comprehensive phylogeny of microbial expansin genes. We find these genes in all eukaryotic microorganisms that have structural cell wall cellulose, suggesting expansins evolved in ancient marine microorganisms long before the evolution of land plants. We also find expansins in an unexpectedly high diversity of bacteria and fungi that do not have cellulosic cell walls. These bacteria and fungi inhabit varied ecological contexts, mirroring the diversity of terrestrial and aquatic niches where plant and/or algal cellulosic cell walls are present. The microbial expansin phylogeny shows evidence of multiple horizontal gene transfer events within and between bacterial and eukaryotic microbial lineages, which may in part underlie their unusually broad phylogenetic distribution. Overall, expansins are unexpectedly widespread in bacteria and eukaryotes, and the contribution of these genes to microbial ecological interactions with plants and algae has probbaly been underappreciated.


Asunto(s)
Celulosa , Transferencia de Gen Horizontal , Biomasa , Pared Celular , Filogenia , Proteínas de Plantas/genética
6.
Proc Natl Acad Sci U S A ; 114(27): E5414-E5423, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630293

RESUMEN

Whether prokaryotes (Bacteria and Archaea) are naturally organized into phenotypically and genetically cohesive units comparable to animal or plant species remains contested, frustrating attempts to estimate how many such units there might be, or to identify the ecological roles they play. Analyses of gene sequences in various closely related prokaryotic groups reveal that sequence diversity is typically organized into distinct clusters, and processes such as periodic selection and extensive recombination are understood to be drivers of cluster formation ("speciation"). However, observed patterns are rarely compared with those obtainable with simple null models of diversification under stochastic lineage birth and death and random genetic drift. Via a combination of simulations and analyses of core and phylogenetic marker genes, we show that patterns of diversity for the genera Escherichia, Neisseria, and Borrelia are generally indistinguishable from patterns arising under a null model. We suggest that caution should thus be taken in interpreting observed clustering as a result of selective evolutionary forces. Unknown forces do, however, appear to play a role in Helicobacter pylori, and some individual genes in all groups fail to conform to the null model. Taken together, we recommend the presented birth-death model as a null hypothesis in prokaryotic speciation studies. It is only when the real data are statistically different from the expectations under the null model that some speciation process should be invoked.


Asunto(s)
Evolución Molecular , Genes Bacterianos , Flujo Genético , Animales , Técnicas de Tipificación Bacteriana , Biodiversidad , Borrelia/genética , Análisis por Conglomerados , Simulación por Computador , Escherichia/genética , Especiación Genética , Variación Genética , Helicobacter pylori/genética , Modelos Genéticos , Neisseria/genética , Filogenia , ARN Ribosómico 16S/genética , Especificidad de la Especie
7.
Mol Biol Evol ; 33(10): 2530-43, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27343288

RESUMEN

Gene transfer agents (GTAs) are phage-like particles that can package and transfer a random piece of the producing cell's genome, but are unable to transfer all the genes required for their own production. As such, GTAs represent an evolutionary conundrum: are they selfish genetic elements propagating through an unknown mechanism, defective viruses, or viral structures "repurposed" by cells for gene exchange, as their name implies? In Rhodobacter capsulatus, production of the R. capsulatus GTA (RcGTA) particles is associated with a cluster of genes resembling a small prophage. Utilizing transcriptomic, genetic and biochemical approaches, we report that the RcGTA "genome" consists of at least 24 genes distributed across five distinct loci. We demonstrate that, of these additional loci, two are involved in cell recognition and binding and one in the production and maturation of RcGTA particles. The five RcGTA "genome" loci are widespread within Rhodobacterales, but not all loci have the same evolutionary histories. Specifically, two of the loci have been subject to frequent, probably virus-mediated, gene transfer events. We argue that it is unlikely that RcGTA is a selfish genetic element. Instead, our findings are compatible with the scenario that RcGTA is a virus-derived element maintained by the producing organism due to a selective advantage of within-population gene exchange. The modularity of the RcGTA "genome" is presumably a result of selection on the host organism to retain GTA functionality.


Asunto(s)
Evolución Biológica , Transferencia de Gen Horizontal , Rhodobacter capsulatus/genética , Proteínas Bacterianas/genética , Bacteriófagos/genética , Regulación Bacteriana de la Expresión Génica , Transferencia de Gen Horizontal/genética , Profagos/genética
8.
Extremophiles ; 21(6): 963-979, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28894932

RESUMEN

Temperature is one of the defining parameters of an ecological niche. Most organisms thrive within a temperature range that rarely exceeds ~30 °C, but the deep subsurface bacterium Kosmotoga olearia can grow over a temperature range of 59 °C (20-79 °C). To identify genes correlated with this flexible phenotype, we compared transcriptomes of K. olearia cultures grown at its optimal 65 °C to those at 30, 40, and 77 °C. The temperature treatments affected expression of 573 of 2224 K. olearia genes. Notably, this transcriptional response elicits re-modeling of the cellular membrane and changes in metabolism, with increased expression of genes involved in energy and carbohydrate metabolism at high temperatures and up-regulation of amino acid metabolism at lower temperatures. At sub-optimal temperatures, many transcriptional changes were similar to those observed in mesophilic bacteria at physiologically low temperatures, including up-regulation of typical cold stress genes and ribosomal proteins. Comparative genomic analysis of additional Thermotogae genomes indicates that one of K. olearia's strategies for low-temperature growth is increased copy number of some typical cold response genes through duplication and/or lateral acquisition. At 77 °C one-third of the up-regulated genes are of hypothetical function, indicating that many features of high-temperature growth are unknown.


Asunto(s)
Genoma Bacteriano , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/genética , Respuesta al Choque Térmico , Transcriptoma , Aclimatación , Regulación Bacteriana de la Expresión Génica , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/metabolismo
9.
Environ Microbiol ; 17(9): 3278-88, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25630351

RESUMEN

Prokaryotic viruses play a major role in the microbial ecology and evolution. However, the virosphere associated with deep-sea hydrothermal ecosystems remains largely unexplored. Numerous instances of lateral gene transfer have contributed to the complex and incongruent evolutionary history of Thermotogales, an order well represented in deep-sea hydrothermal vents. The presence of clustered regularly interspaced short palindromic repeats (CRISPR) loci has been reported in all Thermotogales genomes, suggesting that these bacteria have been exposed to viral infections that could have mediated gene exchange. In this study, we isolated and characterized the first virus infecting bacteria from the order Thermotogales, Marinitoga piezophila virus 1 (MPV1). The host, Marinitoga piezophila is a thermophilic, anaerobic and piezophilic bacterium isolated from a deep-sea hydrothermal chimney. MPV1 is a temperate Siphoviridae-like virus with a 43.7 kb genome. Surprisingly, we found that MPV1 virions carry not only the viral DNA but preferentially package a plasmid of 13.3 kb (pMP1) also carried by M. piezophila. This 'ménage à trois' highlights potential relevance of selfish genetic elements in facilitating lateral gene transfer in the deep-sea biosphere.


Asunto(s)
Bacterias/virología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Transferencia de Gen Horizontal/genética , Respiraderos Hidrotermales/microbiología , Plásmidos/genética , Siphoviridae/genética , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Viral/genética , Dosificación de Gen/efectos de los fármacos , Dosificación de Gen/genética , Respiraderos Hidrotermales/virología , Mitomicina/farmacología
10.
Can J Microbiol ; 61(9): 655-70, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26211682

RESUMEN

Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.


Asunto(s)
Archaea/fisiología , Evolución Biológica , Adaptación Fisiológica/genética , Archaea/clasificación , Archaea/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Calor , Proteómica
11.
Photosynth Res ; 115(1): 43-54, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23504483

RESUMEN

All oxygenic photoautotrophs suffer photoinactivation of their Photosystem II complexes, at a rate driven by the instantaneous light level. To maintain photosynthesis, PsbA subunits are proteolytically removed from photoinactivated Photosystem II complexes, primarily by a membrane-bound FtsH protease. Diatoms thrive in environments with fluctuating light, such as coastal regions, in part because they enjoy a low susceptibility to photoinactivation of Photosystem II. In a coastal strain of the diatom Thalassiosira pseudonana growing across a range of light levels, active Photosystem II represents only about 42 % of the total Photosystem II protein, with the remainder attributable to photoinactivated Photosystem II awaiting recycling. The rate constant for removal of PsbA protein increases with growth light, in parallel with an increasing content of the FtsH protease relative to the substrate PsbA. An offshore strain of Thalassiosira pseudonana, originating from a more stable light environment, had a lower content of FtsH and slower rate constants for removal of PsbA. We used this data to generate the first estimates for in vivo proteolytic degradation of photoinactivated PsbA per FtsH6 protease, at ~3.9 × 10(-2) s(-1), which proved consistent across growth lights and across the onshore and offshore strains.


Asunto(s)
Diatomeas/enzimología , Oxígeno/metabolismo , Péptido Hidrolasas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Secuencia de Aminoácidos , Diatomeas/crecimiento & desarrollo , Diatomeas/fisiología , Diatomeas/efectos de la radiación , Luz , Datos de Secuencia Molecular , Fotosíntesis
12.
Extremophiles ; 17(2): 265-75, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23358730

RESUMEN

Biogeography of microbial populations remains to be poorly understood, and a novel technique of single cell sorting promises a new level of resolution for microbial diversity studies. Using single cell sorting, we compared saturated NaCl brine environments (32-35 %) of the South Bay Salt Works in Chula Vista in California (USA) and Santa Pola saltern near Alicante (Spain). Although some overlap in community composition was detected, both samples were significantly different and included previously undiscovered 16S rRNA sequences. The community from Chula Vista saltern had a large bacterial fraction, which consisted of diverse Bacteroidetes and Proteobacteria. In contrast, Archaea dominated Santa Pola's community and its bacterial fraction consisted of the previously known Salinibacter lineages. The recently reported group of halophilic Archaea, Nanohaloarchaea, was detected at both sites. We demonstrate that cell sorting is a useful technique for analysis of halophilic microbial communities, and is capable of identifying yet unknown or divergent lineages. Furthermore, we argue that observed differences in community composition reflect restricted dispersal between sites, a likely mechanism for diversification of halophilic microorganisms.


Asunto(s)
Bacteroidetes/aislamiento & purificación , Euryarchaeota/aislamiento & purificación , Proteobacteria/aislamiento & purificación , Microbiología del Agua , Bacteroidetes/clasificación , Bacteroidetes/genética , California , Euryarchaeota/clasificación , Euryarchaeota/genética , Citometría de Flujo , Genes Arqueales , Genes Bacterianos , Genes de ARNr , Especiación Genética , Filogenia , Proteobacteria/clasificación , Proteobacteria/genética , Salinidad , Análisis de Secuencia de ADN , España
13.
Microbiol Resour Announc ; 12(4): e0002223, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36856423

RESUMEN

Oceanotoga sp. strain T3B was isolated from an estuarine sinkhole in the Bahamas. Here, we report its complete genome, which is currently the only sequenced genome from the genus Oceanotoga. The genome sequence provides new data for the genus Oceanotoga.

14.
Genome Biol Evol ; 15(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37616556

RESUMEN

The placement of a nonhyperthermophilic order Mesoaciditogales as the earliest branching clade within the Thermotogota phylum challenges the prevailing hypothesis that the last common ancestor of Thermotogota was a hyperthermophile. Yet, given the long branch leading to the only two Mesoaciditogales described to date, the phylogenetic position of the order may be due to the long branch attraction artifact. By testing various models and applying data recoding in phylogenetic reconstructions, we observed that early branching of Mesoaciditogales within Thermotogota is strongly supported by the conserved marker genes assumed to be vertically inherited. However, based on the taxonomic content of 1,181 gene families and a phylogenetic analysis of 721 gene family trees, we also found that a substantial number of Mesoaciditogales genes are more closely related to species from the order Petrotogales. These genes contribute to coenzyme transport and metabolism, fatty acid biosynthesis, genes known to respond to heat and cold stressors, and include many genes of unknown functions. The Petrotogales comprise moderately thermophilic and mesophilic species with similar temperature tolerances to that of Mesoaciditogales. Our findings hint at extensive horizontal gene transfer (HGT) between, or parallel independent gene gains by, the two ecologically similar lineages and suggest that the exchanged genes may be important for adaptation to comparable temperature niches.


Asunto(s)
Bacterias , Evolución Biológica , Filogenia , Archaea , Aclimatación
15.
BMC Bioinformatics ; 13: 123, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22676320

RESUMEN

BACKGROUND: The frequent exchange of genetic material among prokaryotes means that extracting a majority or plurality phylogenetic signal from many gene families, and the identification of gene families that are in significant conflict with the plurality signal is a frequent task in comparative genomics, and especially in phylogenomic analyses. Decomposition of gene trees into embedded quartets (unrooted trees each with four taxa) is a convenient and statistically powerful technique to address this challenging problem. This approach was shown to be useful in several studies of completely sequenced microbial genomes. RESULTS: We present here a web server that takes a collection of gene phylogenies, decomposes them into quartets, generates a Quartet Spectrum, and draws a split network. Users are also provided with various data download options for further analyses. Each gene phylogeny is to be represented by an assessment of phylogenetic information content, such as sets of trees reconstructed from bootstrap replicates or sampled from a posterior distribution. The Quartet Decomposition server is accessible at http://quartets.uga.edu. CONCLUSIONS: The Quartet Decomposition server presented here provides a convenient means to perform Quartet Decomposition analyses and will empower users to find statistically supported phylogenetic conflicts.


Asunto(s)
Familia de Multigenes , Filogenia , Programas Informáticos , Genes Bacterianos , Genómica/métodos , Internet
16.
Proc Natl Acad Sci U S A ; 106(14): 5865-70, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19307556

RESUMEN

Since publication of the first Thermotogales genome, Thermotoga maritima strain MSB8, single- and multi-gene analyses have disagreed on the phylogenetic position of this order of Bacteria. Here we present the genome sequences of 4 additional members of the Thermotogales (Tt. petrophila, Tt. lettingae, Thermosipho melanesiensis, and Fervidobacterium nodosum) and a comprehensive comparative analysis including the original T. maritima genome. While ribosomal protein genes strongly place Thermotogales as a sister group to Aquificales, the majority of genes with sufficient phylogenetic signal show affinities to Archaea and Firmicutes, especially Clostridia. Indeed, on the basis of the majority of genes in their genomes (including genes that are also found in Aquificales), Thermotogales should be considered members of the Firmicutes. This result highlights the conflict between the taxonomic goal of assigning every species to a unique position in an inclusive Linnaean hierarchy and the evolutionary goal of understanding phylogenesis in the presence of pervasive horizontal gene transfer (HGT) within prokaryotes. Amino acid compositions of reconstructed ancestral sequences from 423 gene families suggest an origin of this gene pool even more thermophilic than extant members of this order, followed by adaptation to lower growth temperatures within the Thermotogales.


Asunto(s)
Filogenia , Thermotoga maritima/clasificación , Thermotoga maritima/genética , Ambiente , Transferencia de Gen Horizontal , Genes Bacterianos , Genoma Bacteriano , Datos de Secuencia Molecular , Temperatura
17.
mSystems ; 7(6): e0089222, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36374047

RESUMEN

Gene transfer agents (GTAs) are virus-like elements that are encoded by some bacterial and archaeal genomes. The production of GTAs can be induced by carbon depletion and results in host lysis and the release of virus-like particles that contain mostly random fragments of the host DNA. The remaining members of a GTA-producing population act as GTA recipients by producing proteins needed for GTA-mediated DNA acquisition. Here, we detected a codon usage bias toward codons with more readily available tRNAs in the RcGTA-like GTA genes of alphaproteobacterial genomes. Such bias likely improves the translational efficacy during GTA gene expression. While the strength of codon usage bias fluctuates substantially among individual GTA genes and across taxonomic groups, it is especially pronounced in Sphingomonadales, whose members are known to inhabit nutrient-depleted environments. By screening genomes for gene families with trends in codon usage biases similar to those in GTA genes, we found a gene that likely encodes head completion protein in some GTAs where it appeared missing, and 13 genes previously not implicated in the GTA life cycle. The latter genes are involved in various molecular processes, including the homologous recombination and transport of scarce organic matter. Our findings provide insights into the role of selection for translational efficiency in the evolution of GTA genes and outline genes that are potentially involved in the previously hypothesized integration of GTA-delivered DNA into the host genome. IMPORTANCE Horizontal gene transfer (HGT) is a fundamental process that drives evolution of microorganisms. HGT can result in a rapid dissemination of beneficial genes within and among microbial communities and can be achieved via multiple mechanisms. One peculiar HGT mechanism involves viruses "domesticated" by some bacteria and archaea (their hosts). These so-called gene transfer agents (GTAs) are encoded in hosts' genomes, produced under starvation conditions, and cannot propagate themselves as viruses. We show that GTA genes are under selection to improve the efficiency of their translation when the host activates GTA production. The selection is especially pronounced in bacteria that occupy nutrient-depleted environments. Intriguingly, several genes involved in incorporation of DNA into a genome are under similar selection pressure, suggesting that they may facilitate the integration of GTA-delivered DNA into the host genome. Our findings underscore the potential importance of GTAs as a mechanism of HGT under nutrient-limited conditions, which are widespread in microbial habitats.


Asunto(s)
Alphaproteobacteria , Virus , Bacterias , ADN
18.
Virus Evol ; 8(2): veac100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36381234

RESUMEN

Morphological and genetic features strongly suggest that gene transfer agents (GTAs) are caudoviricete-derived entities that have evolved in concert with cellular genomes to such a degree that they should not be considered viruses. Indeed, GTA particles resemble caudoviricete virions, but, in contrast to caudoviricetes (or any viruses), GTAs can encapsidate at best only part of their own genomes, are induced solely in small subpopulations of prokaryotic host cells, and are transmitted vertically as part of cellular genomes during replication and division. Therefore, the lifecycles of GTAs are analogous to virus-derived entities found in the parasitoid wasps, which have recently been recognized as non-virus entities and therefore reclassified as viriforms. We evaluated three distinct, independently exapted GTA groups, for which the genetic basis for GTA particle production has been established. Based on the evidence, we outline a classification scheme for these viriforms.

20.
ISME J ; 15(10): 2853-2864, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33846564

RESUMEN

All environments including hypersaline ones harbor measurable concentrations of dissolved extracellular DNA (eDNA) that can be utilized by microbes as a nutrient. However, it remains poorly understood which eDNA components are used, and who in a community utilizes it. For this study, we incubated a saltern microbial community with combinations of carbon, nitrogen, phosphorus, and DNA, and tracked the community response in each microcosm treatment via 16S rRNA and rpoB gene sequencing. We show that microbial communities used DNA only as a phosphorus source, and provision of other sources of carbon and nitrogen was needed to exhibit a substantial growth. The taxonomic composition of eDNA in the water column changed with the availability of inorganic phosphorus or supplied DNA, hinting at preferential uptake of eDNA from specific organismal sources. Especially favored for growth was eDNA from the most abundant taxa, suggesting some haloarchaea prefer eDNA from closely related taxa. The preferential eDNA consumption and differential growth under various nutrient availability regimes were associated with substantial shifts in the taxonomic composition and diversity of microcosm communities. Therefore, we conjecture that in salterns the microbial community assembly is driven by the available resources, including eDNA.


Asunto(s)
Microbiota , Fósforo , ADN , Suplementos Dietéticos , Nutrientes , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA