Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 357(2): e2300528, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37974540

RESUMEN

The genus Stachys L., one of the largest genera of the Lamiaceae family, is highly represented in Turkey. This study was conducted to determine the bio-pharmaceutical potential and phenolic contents of six different extracts from aerial parts of Stachys tundjeliensis. The obtained results showed that the ethanol extract exhibited the highest antioxidant activity in the antioxidant assays. Meanwhile, the ethanol extract displayed strong inhibitory activity against α-tyrosinase, the dichloromethane extract exhibited potent inhibition against butyrylcholinesterase, and the n-hexane extract against α-amylase. Based on ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry analysis, more than 90 secondary metabolites, including hydroxybenzoic acid, hydroxycinnamic acid, and their glycosides, acylquinic acids, phenylethanoid glycosides, and various flavonoids were identified or tentatively annotated in the studied S. tundjeliensis extracts. It was observed that the application of S. tundjeliensis eliminated H2 O2 -induced oxidative stress. It was determined that protein levels of phospho-nuclear factor kappa B (NF-κB), receptor for advanced glycation endproducts, and activator protein-1, which are activated in the nucleus, decreased, and the synthesis of matrix metalloproteinase (MMP)-2 and MMP-9 also decreased to basal levels. Overall, these findings suggest that S. tundjeliensis contains diverse bioactive compounds for the development of nutraceuticals or functional foods with potent biological properties.


Asunto(s)
Stachys , Stachys/química , Extractos Vegetales/química , Butirilcolinesterasa , Receptor para Productos Finales de Glicación Avanzada , Relación Estructura-Actividad , Antioxidantes/farmacología , Antioxidantes/química , Glicósidos , Etanol
2.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762452

RESUMEN

Oxidative stress is a common phenomenon of many liver disorders; it both affects patient survival and directly influences the applicability, effectiveness, and toxicity of drugs. In the pursuit of reliable natural remedies for hepatoprotection, this study reports on the complete phytochemical characterization, antioxidant, and hepatoprotective activities of the Prenanthes purpurea methanol-aqueous extract in an in vitro model of diclofenac-induced liver injury (DILI). An ultra high-performance liquid chromatography-high-resolution mass spectrometry analysis (UHPLC-HRMS) was conducted, delineating more than 100 secondary metabolites for the first time in the species, including a series of phenolic acid-hexosides, acylquinic, acylhydroxyquinic and acyltartaric acids, and flavonoids. Quinic acid, chlorogenic, 3,5-dicaffeoylquinic and 5-feruloylhydroxyquinic acid, caffeoyltartaric and cichoric acids, eryodictiol-O-hexuronide, and luteolin O-hexuronide dominated the phytochemical profile and most likely contributed to the observed hepatoprotective activity of the studied P. purpurea leaf extract. The potency and molecular basis of cellular protection were investigated in parallel with pure caffeoylquinic acids in a series of pretreatment experiments that verified the antiapoptotic and antioxidant properties of the natural products.


Asunto(s)
Asteraceae , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Antioxidantes/farmacología , Diclofenaco/toxicidad , Células Hep G2 , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
3.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37373147

RESUMEN

Echinops ritro L. (Asteraceae) is traditionally used in the treatment of bacterial/fungal infections and respiratory and heart ailments. The aim of this study was to evaluate the potential of extracts from E. ritro leaves (ERLE) and flowering heads (ERFE) as antioxidant and hepatoprotective agents on diclofenac-induced lipid peroxidation and oxidative stress under in vitro and in vivo conditions. In isolated rat microsomes and hepatocytes, the extracts significantly alleviated oxidative stress by increasing cell viability and GSH levels and reducing LDH efflux and MDA production. During in vivo experiments, the administration of the ERFE alone or in combination with diclofenac resulted in a significant increase in cellular antioxidant protection and a decrease in lipid peroxidation witnessed by key markers and enzymes. A beneficial influence on the activity of the drug-metabolizing enzymes ethylmorphine-N-demetylase and aniline hydroxylase in liver tissue was found. In the acute toxicity test evaluation, the ERFE showed no toxicity. In the ultrahigh-performance liquid chromatography-high-resolution mass spectrometry analysis, 95 secondary metabolites were reported for the first time, including acylquinic acids, flavonoids, and coumarins. Protocatechuic acid O-hexoside, quinic, chlorogenic and 3, 5-dicaffeoylquinic acid, apigenin; apigenin 7-O-glucoside, hyperoside, jaceosidene, and cirsiliol dominated the profiles. The results suggest that both extracts should be designed for functional applications with antioxidant and hepatoprotective capacity.


Asunto(s)
Antioxidantes , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratas , Animales , Antioxidantes/metabolismo , Apigenina/metabolismo , Tenrecidae , Diclofenaco/metabolismo , Extractos Vegetales/química , Estrés Oxidativo , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
4.
Molecules ; 29(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38202787

RESUMEN

Sideritis scardica Griseb, also known as "mountain tea" and "Olympus tea" (Lamiaceae family) is an endemic plant from the mountainous regions of the Balkan Peninsula. In this study, we focused on an in-depth phytochemical analysis of S. scardica infusion using ultra-high-performance liquid chromatography hyphenated with high-resolution mass spectrometry (UHPLC-HRMS). Quantitative determination of the main secondary metabolites was carried out by UHPLC-HRMS analyses using the external standard method. The results revealed more than 100 metabolites, including five sugar acids and saccharides, 21 carboxylic, hydroxybenzoic, hydroxycinnamic acids, and derivatives, 15 acylquinic acids, 10 phenylpropanoid glycosides, four iridoid glycosides, 28 flavonoids, seven fatty acids, and four organosulfur compounds. Furthermore, a dereplication and fragmentation patterns of five caffeic acids oligomers and four acylhexaric acids was performed for the first time in S. scardica. Regarding the quantitative analysis, the phenylethanoid verbascoside (53) (151.54 ± 10.86 mg/g lyophilized infusion, li), the glycosides of isoscutellarein (78) (151.70 ± 14.78 mg/g li), methylisoscutelarein (82) (107.4 ± 9.07 mg/g li), and hypolaetin (79) (78.33 ± 3.29 mg/g li), as well as caffeic acid (20) (87.25 ± 6.54 mg/g li), were found to be the major compounds in S. scardica infusion. The performed state-of-the-art phytochemical analysis of S. scardica provides additional knowledge for the chemical constituents and usage of this valuable medicinal plant.


Asunto(s)
Lamiaceae , Sideritis , Cromatografía Líquida de Alta Presión , Ácidos Carboxílicos , Glicósidos Iridoides ,
5.
Chem Biodivers ; 19(4): e202200068, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35263005

RESUMEN

This study focused on the biological evaluation and chemical characterization of Malabaila lasiocarpa Boiss. (M. lasiocarpa) (Family: Apiaceae). The phytochemical profile, antioxidant, enzyme inhibitory of the methanolic, aqueous, dichloromethane, hexane extracts were investigated. Based on UHPLC-HRMS analyses, a total of 101 peaks were annotated or identified for the first time in M. lasiocarpa extracts. They include hydroxybenzoic, hydroxycinnamic, acylquinic acids and their glycosides, C- and O-glycosyl and O-diglycosyl flavonoids. In addition, 10 simple mono- and disubstituted coumarins together with 10 furanocoumarins were tentatively annotated. The methanolic extract possessing the highest phenolic (24.36±0.60 mg gallic acid equivalent/g extract) and flavonoid (69.15±0.37 mg rutin equivalent/g extract) content also exhibited the strongest radical scavenging potential against 2,2-diphenyl-1 picrylhydrazyl (21.73±0.42 mg Trolox equivalent/g extract, respectively), and highest reducing capacity (57.81±0.97 and 28.00±0.40 mg Trolox equivalent/g extract, for cupric reducing antioxidant capacity and ferric reducing antioxidant power, respectively). The dichloromethane extract substantially depressed the tyrosinase (73.92±5.37 mg kojic acid equivalent/g extract), α-amylase (0.63±0.01 mmol acarbose equivalent/g extract) and α-glucosidase (0.69±0.02 mmol acarbose equivalent/g extract) enzymes. This study has produced critical scientific data on M. lasiocarpa which are potential contenders for the development of novel phyto-pharmaceuticals.


Asunto(s)
Antioxidantes , Apiaceae , Acarbosa , Antioxidantes/química , Antioxidantes/farmacología , Flavonoides/análisis , Cloruro de Metileno/análisis , Extractos Vegetales/química , Turquía
6.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630613

RESUMEN

Acetylcholinesterase (AChE) is one of the classical targets in the treatment of Alzheimer's disease (AD). Inhibition of AChE slows down the hydrolysis of acetycholine and increases choline levels, improving the cognitive function. The achieved success of plant-based natural drugs acting as AChE inhibitors, such as galantamine (GAL) from Galanthus genus and huperzine A from Huperzia serrate (approved drug in China), in the treatment of AD, and the fact that natural compounds (NCs) are considered as safer and less toxic compared to synthetic drugs, led us to screen the available NCs (almost 150,000) in the ZINC12 database for AChE inhibitory activity. The compounds were screened virtually by molecular docking, filtered for suitable ADME properties, and 32 ligands from 23 structural groups were selected. The stability of the complexes was estimated via 1 µs molecular dynamics simulation. Ten compounds formed stable complexes with the enzyme and had a vendor and a reasonable price per mg. They were tested for AChE inhibitory and antioxidant activity. Five compounds showed weak AChE inhibition and three of them exhibited high antioxidant activity.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Inhibidores de la Colinesterasa/química , Galantamina/farmacología , Humanos , Simulación del Acoplamiento Molecular
7.
Molecules ; 27(15)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35956963

RESUMEN

The bioactive content, antioxidant properties, and enzyme inhibition properties of extracts of Alcea fasciculiflora from Turkey prepared with different solvents (water, methanol, ethyl acetate) and extraction methods (maceration, soxhlet, homogenizer assisted extraction, and ultrasound assisted extraction) were examined in this study. UHPLC-HRMS analysis detected or annotated a total of 50 compounds in A. fasciculiflora extracts, including 18 hydroxybenzoic and hydroxycinnamic acids, 7 Hexaric acids, 7 Coumarins, 15 Flavonoids, and 3 hydroxycinnamic acid amides. The extracts had phenolic and flavonoid levels ranging from 14.25 to 24.87 mg GAE/g and 1.68 to 25.26 mg RE/g, respectively, in the analysis. Both DPPH and ABTS tests revealed radical scavenging capabilities (between 2.63 and 35.33 mg TE/g and between 13.46 and 76.27 mg TE/g, respectively). The extracts had reducing properties (CUPRAC: 40.38-78 TE/g and FRAP: 17.51-42.58 TE/g). The extracts showed metal chelating activity (18.28-46.71 mg EDTAE/g) as well as total antioxidant capacity (phosphomolybdenum test) (0.90-2.12 mmol TE/g). DPPH, ABTS, FRAP, and metal chelating tests indicated the water extracts to be the best antioxidants, while the ethyl acetate extracts had the highest overall antioxidant capacity regardless of the extraction technique. Furthermore, anti-acetylcholinesterase activity was identified in all extracts (0.17-2.80 mg GALAE/g). The water extracts and the ultrasound-assisted ethyl acetate extract were inert against butyrylcholinesterase, but the other extracts showed anti-butyrylcholinesterase activity (1.17-5.80 mg GALAE/g). Tyrosine inhibitory action was identified in all extracts (1.79-58.93 mg KAE/g), with the most effective methanolic extracts. Only the ethyl acetate and methanolic extracts produced by maceration and homogenizer aided extraction showed glucosidase inhibition (0.11-1.11 mmol ACAE/g). These findings showed the overall bioactivity of the different extracts of A. fasciculiflora and provided an overview of the combination of solvent type and extraction method that could yield bioactive profile and pharmacological properties of interest and hence, could be a useful reference for future studies on this species.


Asunto(s)
Extractos Vegetales , Solventes , Acetatos/química , Antioxidantes/química , Antioxidantes/farmacología , Metanol/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Solventes/química , Turquía , Agua/química
8.
Molecules ; 27(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35056838

RESUMEN

Small-scale photobioreactors (PBRs) in the inoculum stage were designed with internal (red or green) and external white LED light as an initial step of a larger-scale installation aimed at fulfilling the integral biorefinery concept for maximum utilization of microalgal biomass in a multifunctional laboratory. The specific growth rate of Scenedesmus obliquus (Turpin) Kützing biomass for given cultural conditions was analyzed by using MAPLE software. For the determination of total polyphenols, flavonoids, chlorophyll "a" and "b", carotenoids and lipids, UHPLC-HRMS, ISO-20776/1, ISO-10993-5 and CUPRAC tests were carried out. Under red light growing, a higher content of polyphenols was found, while the green light favoured the flavonoid accumulation in the biomass. Chlorophylls, carotenoids and lipids were in the same order of magnitude in both samples. The dichloromethane extracts obtained from the biomass of each PBR synergistically potentiated at low concentrations (0.01-0.05 mg/mL) the antibacterial activity of penicillin, fluoroquinolones or oregano essential oil against the selected food-borne pathogens (Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) without showing any in vitro cytotoxicity. Both extracts exhibited good cupric ion-reducing antioxidant capacity at concentrations above 0.042-0.08 mg/mL. The UHPLC-HRMS analysis revealed that both extracts contained long chain fatty acids and carotenoids thus explaining their antibacterial and antioxidant potential. The applied engineering approach showed a great potential to modify microalgae metabolism for the synthesis of target compounds by S. obliquus with capacity for the development of health-promoting nutraceuticals for poultry farming.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Biocombustibles/análisis , Microalgas/crecimiento & desarrollo , Fotobiorreactores , Scenedesmus/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Biomasa , Fermentación , Luz , Microalgas/metabolismo , Microalgas/efectos de la radiación , Scenedesmus/metabolismo , Scenedesmus/efectos de la radiación
9.
Molecules ; 27(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35011479

RESUMEN

This study evaluated the in vitro antineoplastic and antiviral potential and in vivo toxicity of twelve extracts with different polarity obtained from the herbaceous perennial plant Geum urbanum L. (Rosaceae). In vitro cytotoxicity was determined by ISO 10993-5/2009 on bladder cancer, (T-24 and BC-3C), liver carcinoma (HEP-G2) and normal embryonic kidney (HEK-293) cell lines. The antineoplastic activity was elucidated through assays of cell clonogenicity, apoptosis induction, nuclear factor kappa B p65 (NFκB p65) activation and total glutathione levels. Neutral red uptake study was applied for antiviral activity. The most promising G. urbanum extract was analyzed by UHPLC-HRMS. The acute in vivo toxicity analysis was carried out following OEDC 423. The ethyl acetate extract of aerial parts (EtOAc-AP) exhibited the strongest antineoplastic activity on bladder cancer cell lines (IC50 = 21.33-25.28 µg/mL) by inducing apoptosis and inhibiting NFκB p65 and cell clonogenicity. EtOAc and n-butanol extracts showed moderate antiviral activity against human adenovirus type 5 and human simplex virus type I. Seventy four secondary metabolites (gallic and ellagic acid derivatives, phenolic acids, flavonoids, etc.) were identified in EtOAc-AP by UHPLC-HRMS. This extract induced no signs of acute toxicity in liver and kidney specimens of H-albino mice in doses up to 210 mg/kg. In conclusion, our study contributes substantially to the detailed pharmacological characterization of G. urbanum, thus helping the development of health-promoting phytopreparations.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antivirales/farmacología , Geum/química , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/química , Antivirales/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Especificidad de Órganos/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Espectrometría de Masas en Tándem
10.
Molecules ; 25(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340217

RESUMEN

Achyranthes aspera Linn. (Amaranthaceae), commonly known as the Prickly Chaff flower, is used as herbal medicine in the Ivorian's culture, Africa. Nonetheless, there is currently a paucity of scientific information on A. aspera from the Ivory Coast. Herein, the antioxidant activity of A. aspera extracts (methanol, dichloromethane, ethyl acetate and infusion) as well as the enzymatic inhibitory potentials towards key enzymes in human diseases, namely Alzheimer's disease, (cholinesterases: AchE and BChE), type 2 diabetes (α-glucosidase and α-amylase) and hyperpigmentation (tyrosinase) were assessed. The total phenolic (TPC) and flavonoid (TFC) content was determined using colorimetric methods and the individual compounds were characterized using ultra-high performance liquid chromatography coupled with hybrid quadrupole-Orbitrap high resolution mass spectrometry (UHPLC-HRMS). Furthermore, a network pharmacology analysis was conducted to predict putative targets of identified phenolic compounds. The highest TPC was observed in the infused extract (28.86 ± 0.12 mg GAE/g), while the dichloromethane extract (38.48 ± 1.48 mg RE/g) showed the highest level of TFC. UHPLC-HRMS analysis has revealed an abundance of fatty acids, flavonoids, phenols and acylquinic acids. Among tested extracts, the infused extract displayed the highest free radical quenching, reducing and metal-chelating ability. The extracts (except infusion) were effective as enzyme inhibitors against AChE, while only methanolic and infused extracts showed noteworthy anti-BChE effects. The methanolic extract showed a remarkable antityrosinase effect (56.24 ± 5.05 mg KAE/g), as well. Modest to moderate inhibitory activity was observed against α-amylase (all extracts) and α-glucosidase (only dichloromethane extract). Finally, the network pharmacology analysis suggested the carbonic anhydrase II enzyme as a putative target for explaining, at least in part, the traditional use of A. aspera preparations as diuretic and blood clotting agent. Data amassed herein tend to validate the use of A. aspera in traditional medicine, as well as act as a stepping stone for further studies in the quest for novel phytopharmaceuticals. In this context, it is desirable that this study will contribute to the validation of the traditional uses of this plant in the African herbal medicine, and to the valorization of the whole chain production of A. aspera, as a local and sustainable botanical resource.


Asunto(s)
Achyranthes/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Biología Computacional/métodos , Simulación por Computador , Monitoreo de Drogas , Ácidos Grasos no Esterificados/química , Flavonoides/química , Glicósidos/química , Humanos , Metaboloma , Metabolómica/métodos , Fenoles/química , Relación Estructura-Actividad
11.
Molecules ; 24(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315236

RESUMEN

Ethyl acetate (EA), methanol (MeOH), and aqueous extracts of aerial parts of Anthemis tinctoria var. pallida (ATP) and A. cretica subsp. tenuiloba (ACT) were investigated for their phenol and flavonoid content, antioxidant, and key enzyme inhibitory potentials. All extracts displayed antiradical effects, with MeOH and aqueous extracts being a superior source of antioxidants. On the other hand, EA and MeOH extracts were potent against AChE and BChE. Enzyme inhibitory effects against tyrosinase and α-glucosidase were observed, as well. We also studied Anthemis extracts in an ex vivo experimental neurotoxicity paradigm. We assayed extract influence on oxidative stress and neurotransmission biomarkers, including lactate dehydrogenase (LDH) and serotonin (5-HT), in isolated rat cortex challenged with K+ 60 mM Krebs-Ringer buffer (excitotoxicity stimulus). An untargeted proteomic analysis was finally performed in order to explore the putative mechanism in the brain. The pharmacological study highlighted the capability of ACT water extract to blunt K+ 60 mM increase in LDH level and 5-HT turnover, and restore physiological activity of specific proteins involved in neuron morphology and neurotransmission, including NEFMs, VAMP-2, and PKCγ, thus further supporting the neuroprotective role of ACT water extract.


Asunto(s)
Anthemis/química , Flavonoides/química , Fármacos Neuroprotectores/química , Fenoles/química , Acetilcolinesterasa/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Flavonoides/farmacología , Proteínas Ligadas a GPI/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Fenoles/farmacología , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , alfa-Glucosidasas/metabolismo
12.
J Enzyme Inhib Med Chem ; 33(1): 768-776, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29651876

RESUMEN

The inhibition of the enzyme acetylcholinesterase (AChE) increases the levels of the neurotransmitter acetylcholine and symptomatically improves the affected cognitive function. In the present study, we searched for novel AChE inhibitors by docking-based virtual screening of the standard lead-like set of ZINC database containing more than 6 million small molecules using GOLD software. The top 10 best-scored hits were tested in vitro for AChE affinity, neurotoxicity, GIT and BBB permeability. The main pharmacokinetic parameters like volume of distribution, free fraction in plasma, total clearance, and half-life were predicted by previously derived models. Nine of the compounds bind to the enzyme with affinities from 0.517 to 0.735 µM, eight of them are non-toxic. All hits permeate GIT and BBB and bind extensively to plasma proteins. Most of them are low-clearance compounds. In total, seven of the 10 hits are promising for further lead optimisation. These are structures with ZINC IDs: 00220177, 44455618, 66142300, 71804814, 72065926, 96007907, and 97159977.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/química , Bases de Datos Factuales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Relación Estructura-Actividad
13.
Phytochem Anal ; 28(3): 176-184, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27910164

RESUMEN

INTRODUCTION: Geigeria alata is a traditional plant used in Sudanese folk medicine for treatment of diabetes, cough, epilepsy and intestinal complaints. OBJECTIVE: To analyze phenolic acids in Geigeria alata roots and leaves and to evaluate their antioxidant and antimicrobial activities. METHODOLOGY: Phenolic acids in the aqueous-methanol extracts were identified by LC-MS. Major compounds were isolated using low-pressure liquid chromatography. The quantitative analysis of phenolic acids was performed by a validated HPLC-UV method with limits of detection ranging from 0.04 to 0.57 µg/mL. 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazine-6-sulphonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) methods were used for antioxidant activity evaluation. In addition, the minimal inhibitory concentration and the minimal bactericidal concentration against a panel of pathogenic bacteria and fungi were determined by the broth microdilution test. RESULTS: For the first time protocatechuic, caffeic, p-coumaroylquinic, caffeoylsinapoylquinic, caffeoylferuloylquinic, three feruloylquinic, six caffeoylquinic acids, and a caffeic acid hexoside were detected in Geigeria alata roots by LC-MS. HPLC-UV analyses showed that 3,5-dicaffeoylquinic acid (25.96 ± 2.08 mg/g dry weight (DW)) was the most abundant phenolic acid in roots, while 4,5-dicaffeoylquinic acid (8.99 ± 0.56 mg/g DW) was the main compound present in leaves. 3,5-Dicaffeoylquinic acid demonstrated stronger radical scavenging activity and reducing power compared with the crude extracts and the positive control 5-caffeoylquinic acid. 3,4,5-Tricaffeoylquinic acid revealed the highest antibacterial potential against the penicillin sensitive and resistant Staphylococcus aureus strains, as well as methicillin-resistant S. aureus. CONCLUSION: The caffeoylquinic acids content of up to 6.22% in Geigeria alata roots establishes this species as a new source rich in these bioactive molecules. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión/métodos , Geigeria/química , Antiinfecciosos/análisis , Antiinfecciosos/química , Antioxidantes/análisis , Antioxidantes/química , Ácidos Cafeicos/análisis , Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/análisis , Cromatografía Liquida , Flavonoides/análisis , Espectrometría de Masas/métodos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Raíces de Plantas/química , Plantas Medicinales/química , Polifenoles/análisis , Ácido Quínico/análogos & derivados , Ácido Quínico/análisis
14.
J Enzyme Inhib Med Chem ; 30(5): 722-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25265324

RESUMEN

Some of the environmental toxicants acting as endocrine disruptors have been associated with health hazards in human and wildlife by modulating hormonal actions. Atrazine, a strong endocrine disruptor, induces detrimental effects on gonads in male and female, and causes impairment of fertility and developmental problems as well as sex alterations. Atrazine decreases the activities of antioxidant enzymes and thus responsible for oxidative stress. Natural antioxidants have shown ability to reduce/slow down the apoptotic effect of atrazine on testicular tissue. In the present study, some N-phenyl-4-aryl-polyhydroquinolines bearing phenolic or/and alkoxy group(s) (6a-6g) were synthesized and evaluated for antioxidant activity in four different assays. Three best compounds (6e-6g) were studied for their ameliorative effect on testicular tissue supplemented with atrazine in vitro.


Asunto(s)
Antioxidantes/farmacología , Atrazina/antagonistas & inhibidores , Polímeros/farmacología , Quinolinas/farmacología , Testículo/efectos de los fármacos , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Atrazina/farmacología , Relación Dosis-Respuesta a Droga , Cabras , Masculino , Estructura Molecular , Polímeros/síntesis química , Polímeros/química , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad , Testículo/patología
15.
Biotechnol Biotechnol Equip ; 28(6): 1165-1171, 2014 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26019603

RESUMEN

Piperazine nucleus is one of the most important heterocyclic systems exhibiting remarkable pharmacological activities. Thus, in the current study six new aryl/aralkyl substituted piperazine derivatives, containing methylxanthine moiety were synthesized and their structures were confirmed by IR and 1H NMR analysis. All compounds were in vitro screened for their activity as antioxidants using DPPH (2,2'-Diphenyl-1-picrylhydrazyl), ABTS (2,2'-azinobis-(3-ethylbenzo thiazine-6-sulfonic acid)) and FRAP (ferric reducing/antioxidant power) methods. The antioxidant activity of the studied compounds against lipid peroxidation was also measured. The highest antioxidant activity was demonstrated by compound 3c. It is obvious that the presence of a hydroxyl group in the structure is essential for the antioxidant properties and should be taken into consideration in further design of structures with potential antioxidant properties.

16.
Plants (Basel) ; 13(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124206

RESUMEN

The metabolic syndrome and its associated co-morbidities have been recognized as predisposing risk factors for the development of metabolic-associated fatty liver disease (MAFLD). The present study reports on the beneficial effect of the Tanacetum balsamita methanol-aqueous extract (ETB) at 150 and 300 mg/kg bw on biochemical parameters related to oxidative stress, metabolic syndrome, and liver function in rat animal models with induced MAFLD. ETB was found to be non-toxic with LD50 > 3000 mg/kg and did not affect cell viability of hepatic HEP-G2 cells in a concentration up to 800 µg/mL. The pathology was established by a high-calorie diet and streptozotocin. Acarbose and atorvastatin were used as positive controls. At the higher dose, ETB reduced significantly (p < 0.05) the blood glucose levels by about 20%, decreased lipase activity by 52%, total cholesterol and triglycerides by 50% and 57%, respectively, and restored the amylase activity and leukocytes compared to the MAFLD group. ETB ameliorated oxidative stress biomarkers reduced glutathione and malondialdehyde in a dose-dependent manner. At 300 mg/kg, the beneficial effect of the extract on antioxidant enzymes was evidenced by the elevated catalase, glutathione peroxidase, and superoxide dismutase activity by 70%, 29%, and 44%, accordingly, compared to the MAFLD rats. ETB prevents the histopathological changes related to MAFLD. ETB, rich in 3,5-dicafeoylquinic, chlorogenic, and rosmarinic acids together with the isorhamnetin- and luteolin-glucoside provides a prominent amelioration of MAFLD.

17.
Plants (Basel) ; 12(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36679103

RESUMEN

Herein, a chemophenetic significance, based on the phenolic metabolite profiling of three Senecio (S. hercynicus, S. ovatus, and S. rupestris) and two Jacobaea species (J. pancicii and J. maritima), coupled to morphometric data, is presented. A set of twelve morphometric characters were recorded from each plant species and used as predictor variables in a linear discriminant analysis (LDA) model. From a total 75 observations (15 from each of the five species), the model correctly assumed their species' membership, except for 2 observations. Among the studied species, S. hercynicus and S. ovatus presented the greatest morphological similarity. A phytochemical profiling of phenolic specialized metabolites by UHPLC-Orbitrap-MS revealed 46 hydroxybenzoic, hydroxycinnamic, and acylquinic acids and their derivatives, 1 coumarin and 21 flavonoids. Hierarchical and PCA clustering applied to the phytochemical data corroborated the similarity of S. hercynicus and S. ovatus, observed in the morphometric analysis. This study contributes to the phylogenetic relationships between the tribe Senecioneae taxa and highlights the chemophenetic similarity/dissimilarity of the studied species belonging to Senecio and Jacobaea genera.

18.
Plants (Basel) ; 12(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570911

RESUMEN

This study aimed at the evaluation of the antioxidant and cognitive-enhancing effect of methanol-aqueous extract from Helichrysum italicum ssp. italicum aerial parts. Significant radical scavenging activity (110.33 ± 3.47 and 234.70 ± 5.21 mg TE/g for DPPH and ABTS) and reducing power (354.23 ± 17.51 and 210.24 ± 8.68 mg TE/g for CUPRAC and FRAP) were observed. The extract showed average acetylcholinesterase and low butyrylcholinesterase inhibitory potential. H. italicum extract (200 mg/kg/po) administered in combination with galantamine (3 mg/kg/po) for 12 days significantly improved the memory and learning process compared with galantamine alone in the passive avoidance test. The effect was comparable to that of Ginkgo biloba extract (100 mg/kg/po). In deep secondary metabolite annotation of the extract by UHPLC-HRMS, more than 90 hydroxybenzoic and hydroxicinnamic acid-glycosides, phenylethanoid glycosides, a series of acylquinic and caffeoylhexaric acids, methoxylated derivatives of scutellarein, quercetagetin and 6-hydroxyluteolin, and prenylated phloroglucinol-α-pyrones were reported for the first time in H. italicum. Fragmentation patterns of four subclasses of heterodimer-pyrones were proposed. In-depth profiling of the pyrones revealed 23 compounds undescribed in the literature. Pyrones and acylphloroglucinols together with acylquinic acids could account for memory improvement. The presented research advanced our knowledge of H. italicum, highlighting the species as a rich source of secondary metabolites with cognitive-enhancing potential.

19.
Antioxidants (Basel) ; 12(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37891923

RESUMEN

Within this particular framework, the extracts obtained from Inula sarana using a variety of solvents, included n-hexane, ethyl acetate, dichloromethane (DCM), 70% ethanol, ethanol, and water. The extracts obtained from n-hexane, ethyl acetate, and DCM were then subjected to a specific method for their incorporation into ß-cyclodextrin (ß-CD). The establishment of complex formation was validated through the utilization of scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The identification of phytochemical components was executed using UHPLC-HRMS. Furthermore, the total phenolic and flavonoid content was evaluated using the Folin-Ciocalteu assay and the AlCl3 method. Subsequently, the determination of antioxidant capacity was conducted utilizing DPPH, ABTS, CUPRAC, Frap, PBD, and MCA assays. The enzyme inhibitory activities of the samples (extracts and ß-CD complexes) were also examined by AChE, BChE, tyrosinase, α-glucosidase, and α-amylase. The findings indicated that water and 70% ethanol extracts contained the highest phenolic content. One hundred and fourteen bioactive compounds were identified by UHPLC-HRMS analysis. This study unveiled a substantial array of flavonoids, phenolic acid-hexosides and caffeoylhexaric acids within I. sarana, marking their initial identification in this context. Among the various extracts tested, the 70% ethanol extract stood out due to its high flavonoid content (jaceosidin, cirsiliol, and eupatilin) and hydroxybenzoic and hydroxycinnamic acid hexosides. This extract also displayed notably enhanced antioxidant activity, with ABTS, CUPRAC, and FRAP test values of 106.50 mg TE/g dry extract, 224.31 mg TE/g dry extract, and 110.40 mg TE/g, respectively. However, the antioxidant values of the complex extracts with ß-CD were generally lower than those of the pure extracts, an observation warranting significant consideration. In terms of enzyme inhibition activity, the ethanol and 70% ethanol extracts exhibited higher inhibitory effects on AChE, tyrosinase, and α-glucosidase. Conversely, n-hexane displayed stronger inhibitory activity against BChE. The ethyl acetate extract demonstrated elevated amylase inhibitory activity. However, the antioxidant values of the complex extracts with ß-CD were generally lower than those of the pure extracts, a noteworthy observation, while water and extracts from the I. sarana complex with ß-CD exhibited minimal or negatable inhibitory activity against specific enzymes.

20.
Plants (Basel) ; 12(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375878

RESUMEN

The study aimed at the metabolite profiling and evaluation of antioxidant and enzyme inhibitory properties of methanol extracts from flowers, leaves, and tubers of unexplored Eminium intortum (Banks & Sol.) Kuntze and E. spiculatum (Blume) Schott (Araceae). A total of 83 metabolites, including 19 phenolic acids, 46 flavonoids, 11 amino, and 7 fatty acids were identified by UHPLC-HRMS in the studied extracts for the first time. E. intortum flower and leaf extracts had the highest total phenolic and flavonoid contents (50.82 ± 0.71 mg GAE/g and 65.08 ± 0.38 RE/g, respectively). Significant radical scavenging activity (32.20 ± 1.26 and 54.34 ± 0.53 mg TE/g for DPPH and ABTS) and reducing power (88.27 ± 1.49 and 33.13 ± 0.68 mg TE/g for CUPRAC and FRAP) were observed in leaf extracts. E. intortum flowers showed the maximum anticholinesterase activity (2.72 ± 0.03 mg GALAE/g). E. spiculatum leaves and tubers exhibited the highest inhibition towards α-glucosidase (0.99 ± 0.02 ACAE/g) and tirosinase (50.73 ± 2.29 mg KAE/g), respectively. A multivariate analysis revealed that O-hydroxycinnamoylglycosyl-C-flavonoid glycosides mostly accounted for the discrimination of both species. Thus, E. intortum and E. spiculatum can be considered as potential candidates for designing functional ingredients in the pharmaceutical and nutraceutical industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA