Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Med ; 19(5): e1003987, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617363

RESUMEN

BACKGROUND: Debate about the level of asymptomatic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection continues. The amount of evidence is increasing and study designs have changed over time. We updated a living systematic review to address 3 questions: (1) Among people who become infected with SARS-CoV-2, what proportion does not experience symptoms at all during their infection? (2) What is the infectiousness of asymptomatic and presymptomatic, compared with symptomatic, SARS-CoV-2 infection? (3) What proportion of SARS-CoV-2 transmission in a population is accounted for by people who are asymptomatic or presymptomatic? METHODS AND FINDINGS: The protocol was first published on 1 April 2020 and last updated on 18 June 2021. We searched PubMed, Embase, bioRxiv, and medRxiv, aggregated in a database of SARS-CoV-2 literature, most recently on 6 July 2021. Studies of people with PCR-diagnosed SARS-CoV-2, which documented symptom status at the beginning and end of follow-up, or mathematical modelling studies were included. Studies restricted to people already diagnosed, of single individuals or families, or without sufficient follow-up were excluded. One reviewer extracted data and a second verified the extraction, with disagreement resolved by discussion or a third reviewer. Risk of bias in empirical studies was assessed with a bespoke checklist and modelling studies with a published checklist. All data syntheses were done using random effects models. Review question (1): We included 130 studies. Heterogeneity was high so we did not estimate a mean proportion of asymptomatic infections overall (interquartile range (IQR) 14% to 50%, prediction interval 2% to 90%), or in 84 studies based on screening of defined populations (IQR 20% to 65%, prediction interval 4% to 94%). In 46 studies based on contact or outbreak investigations, the summary proportion asymptomatic was 19% (95% confidence interval (CI) 15% to 25%, prediction interval 2% to 70%). (2) The secondary attack rate in contacts of people with asymptomatic infection compared with symptomatic infection was 0.32 (95% CI 0.16 to 0.64, prediction interval 0.11 to 0.95, 8 studies). (3) In 13 modelling studies fit to data, the proportion of all SARS-CoV-2 transmission from presymptomatic individuals was higher than from asymptomatic individuals. Limitations of the evidence include high heterogeneity and high risks of selection and information bias in studies that were not designed to measure persistently asymptomatic infection, and limited information about variants of concern or in people who have been vaccinated. CONCLUSIONS: Based on studies published up to July 2021, most SARS-CoV-2 infections were not persistently asymptomatic, and asymptomatic infections were less infectious than symptomatic infections. Summary estimates from meta-analysis may be misleading when variability between studies is extreme and prediction intervals should be presented. Future studies should determine the asymptomatic proportion of SARS-CoV-2 infections caused by variants of concern and in people with immunity following vaccination or previous infection. Without prospective longitudinal studies with methods that minimise selection and measurement biases, further updates with the study types included in this living systematic review are unlikely to be able to provide a reliable summary estimate of the proportion of asymptomatic infections caused by SARS-CoV-2. REVIEW PROTOCOL: Open Science Framework (https://osf.io/9ewys/).


Asunto(s)
COVID-19 , Infecciones Asintomáticas/epidemiología , COVID-19/epidemiología , Humanos , Tamizaje Masivo , Estudios Prospectivos , SARS-CoV-2
2.
BMC Med Res Methodol ; 21(1): 50, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33706715

RESUMEN

BACKGROUND: Outbreaks of infectious diseases generate outbreaks of scientific evidence. In 2016 epidemics of Zika virus emerged, and in 2020, a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic of coronavirus disease 2019 (COVID-19). We compared patterns of scientific publications for the two infections to analyse the evolution of the evidence. METHODS: We annotated publications on Zika virus and SARS-CoV-2 that we collected using living evidence databases according to study design. We used descriptive statistics to categorise and compare study designs over time. RESULTS: We found 2286 publications about Zika virus in 2016 and 21,990 about SARS-CoV-2 up to 24 May 2020, of which we analysed a random sample of 5294 (24%). For both infections, there were more epidemiological than laboratory science studies. Amongst epidemiological studies for both infections, case reports, case series and cross-sectional studies emerged first, cohort and case-control studies were published later. Trials were the last to emerge. The number of preprints was much higher for SARS-CoV-2 than for Zika virus. CONCLUSIONS: Similarities in the overall pattern of publications might be generalizable, whereas differences are compatible with differences in the characteristics of a disease. Understanding how evidence accumulates during disease outbreaks helps us understand which types of public health questions we can answer and when.


Asunto(s)
COVID-19/prevención & control , Publicaciones/estadística & datos numéricos , Publicaciones/tendencias , SARS-CoV-2/aislamiento & purificación , Infección por el Virus Zika/prevención & control , Virus Zika/aislamiento & purificación , COVID-19/epidemiología , COVID-19/virología , Estudios de Casos y Controles , Estudios Transversales , Brotes de Enfermedades , Humanos , Pandemias , Publicaciones Periódicas como Asunto/estadística & datos numéricos , Publicaciones Periódicas como Asunto/tendencias , SARS-CoV-2/fisiología , Virus Zika/fisiología , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología
3.
BMJ Open ; 13(10): e072280, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813543

RESUMEN

OBJECTIVES: Infections by SARS-CoV-2 variants of concern (VOCs) might affect children and adolescents differently than earlier viral lineages. We aimed to address five questions about SARS-CoV-2 VOC infections in children and adolescents: (1) symptoms and severity, (2) risk factors for severe disease, (3) the risk of infection, (4) the risk of transmission and (5) long-term consequences following a VOC infection. DESIGN: Systematic review. DATA SOURCES: The COVID-19 Open Access Project database was searched up to 1 March 2022 and PubMed was searched up to 9 May 2022. ELIGIBILITY CRITERIA: We included observational studies about Alpha, Beta, Gamma, Delta and Omicron VOCs among ≤18-year-olds. We included studies in English, German, French, Greek, Italian, Spanish and Turkish. DATA EXTRACTION AND SYNTHESIS: Two reviewers extracted and verified the data and assessed the risk of bias. We descriptively synthesised the data and assessed the risks of bias at the outcome level. RESULTS: We included 53 articles. Most children with any VOC infection presented with mild disease, with more severe disease being described with the Delta or the Gamma VOC. Diabetes and obesity were reported as risk factors for severe disease during the whole pandemic period. The risk of becoming infected with a SARS-CoV-2 VOC seemed to increase with age, while in daycare settings the risk of onward transmission of VOCs was higher for younger than older children or partially vaccinated adults. Long-term symptoms following an infection with a VOC were described in <5% of children and adolescents. CONCLUSION: Overall patterns of SARS-CoV-2 VOC infections in children and adolescents are similar to those of earlier lineages. Comparisons between different pandemic periods, countries and age groups should be improved with complete reporting of relevant contextual factors, including VOCs, vaccination status of study participants and the risk of exposure of the population to SARS-CoV-2. PROSPERO REGISTRATION NUMBER: CRD42022295207.


Asunto(s)
COVID-19 , Adulto , Humanos , Adolescente , Niño , COVID-19/epidemiología , SARS-CoV-2 , Guarderías Infantiles , Bases de Datos Factuales
4.
Folia Med (Plovdiv) ; 60(4): 617-623, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31188765

RESUMEN

Chronic myeloid leukemia (CML) arises from the fusion of the BCR and the ABL1 genes. The BCR gene (chromosome 22q11.2) and the ABL1 gene (chromosome 9q34) fuse together due to reciprocal chromosome translocation forming the Philadelphia chromosome (Ph). This fusion gene codes tyrosine kinase which accelerates the cell division and reduces DNA repair. Imatinib mesylate is a selective inhibitor of this tyrosine kinase. It is the first-line treatment for CML-patients. However, it became clear that Philadelphia-positive (Ph+) cells could evolve to elude inhibition due to point mutations within the BCR-ABL kinase domain. To date more than 40 mutations have been identified and their early detection is important for clinical treatment. With the development of the new tyrosine kinase inhibitors (TKIs), associated with these mutations, the resistance problem seems to diminish, as some of the new drugs are less prone to resistance. The aim of this review is to focus on the diff erent mutations leading to resistance.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl/genética , Mesilato de Imatinib/farmacología , Mutación Puntual , Sustitución de Aminoácidos , Proteínas de Fusión bcr-abl/química , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Modelos Moleculares , Dominios Proteicos , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA