Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 24(6)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917573

RESUMEN

The longan industry produces a large amount of byproducts such as pericarp and seed, resulting in environmental pollution and resource wastage. The present study was performed to systematically evaluate functional components, i.e., polyphenols (phenolics and flavonoids) and alkaloids, in longan byproducts and their bioactivities, including antioxidant activities, nitrite scavenging activities in simulated gastric fluid and anti-hyperglycemic activities in vitro. Total phenolic and total flavonoid contents in pericarp were slightly higher than those in seeds, but seeds possessed higher alkaloid content than pericarp. Four polyphenolic substances, i.e., gallic acid, ethyl gallate, corilagin and ellagic acid, were identified and quantified using high-performance liquid chromatography. Among these polyphenolic components, corilagin was the major one in both pericarp and seed. Alkaloid extract in seed showed the highest DPPH radical scavenging activity and oxygen radical absorbance capacity. Nitrite scavenging activities were improved with extract concentration and reaction time increasing. Flavonoids in seed and alkaloids in pericarp had potential to be developed as anti-hyperglycemic agents. The research result was a good reference for exploring longan byproducts into various valuable health-care products.


Asunto(s)
Alcaloides/análisis , Polifenoles/análisis , Sapindaceae/química , Alcaloides/farmacología , Antioxidantes/análisis , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Hipoglucemiantes/análisis , Hipoglucemiantes/farmacología , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/farmacología , Semillas/química
2.
Front Microbiol ; 14: 1224666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608953

RESUMEN

Introduction: Due to their bioactive compounds and beneficial health effects, functional foods and plant-based natural medicines are widely consumed. Due to its bioactivities, vinegar is one of them that helps humans. Sugarcane original vinegar (SOV) is a special vinegar made from sugarcane as a raw material through biological fermentation processes. Methods: The objective of this study was to assess the effects of sugarcane original vinegar on growth performance, immune response, acute oral toxicity, bacterial reverse mutation, mammalian erythrocyte micronucleus, mouse spermatogonial chromosome aberration, mammalian bone marrow cell chromosome aberration changes, and serum characteristics in mice. Distortion parameters were used to assess its safety, and at the same time, the functionality of SOV was monitored during experimentation. Results: The results show that the SOV has no damage or inhibitory effect on the bone marrow red blood cells of mice and no mutagenic or distortion-inducing effects on the bone marrow cell chromosomes or spermatogonia chromosomes, so it is safe to eat. SOV can improve blood lipids and reduce blood lipid content. Discussion: The study results provide data basis for the intensive processing of sugarcane and the development of high-value SOV products. Sugarcane original vinegar has a beneficial impact on performance, immune response, and chromosomal aberration. The production application influences the vinegar's quality and, consequently, its health benefits.

3.
ACS Omega ; 8(13): 12538-12547, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033789

RESUMEN

Wine is an alcoholic beverage, consisting of several compounds in various ranges of concentrations. Wine quality is usually assessed by a sensory panel of trained personnel. Electronic tongues (e-tongues) and electronic noses (e-noses) have been established in recent years to assess the quality of beverages and foods. Response surface and electronic analysis tools were used to examine the quality of black tea wine. The results indicated the optimum initial sugar level (25 °Brix), yeast addition (0.5%), and fermentation temperature (25 °C) for Golden Peony black tea wine. The black tea wine produced under these conditions with 14.0% vol alcohol has as an orange-red color, full wine and tea flavor, and mild and mellow taste. The sourness of the wine was most affected by fermentation factors-yeast addition, fermentation temperature, and initial sugar level. Alcohols, aldehydes, ketones, and alkanes contributed to most of the volatile components under the influence of yeast addition and fermentation temperature. In contrast, nitrogen oxides, aromatics, and organic sulfides contributed under the influence of the initial sugar level. This study provided a facilitated strategy for obtaining the optimum black tea wine fermentation process through electronic nose and tongue-based techniques. The analysis of wines requires new technologies able to detect various different compounds simultaneously, providing worldwide information about the sample instead of information about specific compounds.

4.
Front Microbiol ; 14: 1281182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731917

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2023.1224666.].

5.
Front Nutr ; 10: 1145862, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006937

RESUMEN

Vinegar is one of the most widely used acidic condiments. Recently, rapid advances have been made in the area of vinegar research. Different types of traditional vinegar are available around the globe and have many applications. Vinegar can be made either naturally, through alcoholic and then acetic acid fermentation, or artificially, in laboratories. Vinegar is the product of acetic acid fermentation of dilute alcoholic solutions, manufactured by a two-step process. The first step is the production of ethanol from a carbohydrate source such as glucose, which is carried out by yeasts. The second step is the oxidation of ethanol to acetic acid, which is carried out by acetic acid bacteria. Acetic acid bacteria are not only producers of certain foods and drinks, such as vinegar, but they can also spoil other products such as wine, beer, soft drinks, and fruits. Various renewable substrates are used for the efficient biological production of acetic acid, including agro and food, dairy, and kitchen wastes. Numerous reports on the health advantages associated with vinegar ingredients have been presented. Fresh sugarcane juice was fermented with wine yeast and LB acetate bacteria to develop a high-quality original sugarcane vinegar beverage. To facilitate the current study, the bibliometric analysis method was adopted to visualize the knowledge map of vinegar research based on literature data. The present review article will help scientists discern the dynamic era of vinegar research and highlight areas for future research.

6.
Front Nutr ; 9: 868209, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662938

RESUMEN

Asparagus [Asparagus cochinchinensis (Lour.) Merr.] is a traditional herbal medicine plant commonly used to nourish yin, moisten dryness, and clear fire cough symptoms. Drying is an excellent option to conserve food materials, i.e., grains, fruits, vegetables, and herbs, reducing the raw materials volume and weight. This study aims to evaluate different drying approaches that could increase the value of asparagus, particularly as an ingredient in fast foods or as nutraceutical byproducts. The volatile components of asparagus roots were analyzed by using headspace-gas chromatography-ion mobility spectroscopy under different drying conditions, i.e., natural drying (ND) at ambient air temperature in the dark, well-ventilated room, temperature range 28-32°C, blast or oven drying at 50°C, heat pump or hot-air drying at temperature 50°C and air velocity at 1.5 ms-1 and vacuum freeze-drying at the temperature of -45°C and vacuum pressure of 10-30 Pa for 24 h. The findings revealed that the various drying processes had multiple effects on the color, odor index, and volatile compounds of the asparagus roots. As a result of the investigations, multiple characteristics of components, therefore, exploitation and comparison of various flavors; a total of 22 compounds were identified, such as alcohols, ketones, aldehydes, acids, esters, heterocyclic, and terpene. The present findings may help understand the flavor of the processed asparagus roots and find a better option for drying and processing.

7.
ACS Omega ; 5(47): 30587-30595, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283107

RESUMEN

This study aimed to explore the dynamic variations in the phenolic and volatile organic compounds of sugarcane vinegar subjected to different production processes. The determination of phenolic and volatile organic compounds was performed by UPLC-MS and solid phase micro extraction (SPME) coupled with gas chromatography combined with mass spectrometry (GC-MS). The complete fermentation process of sugarcane lasted nine days, and production of vinegar of up to 3.04% (w/v), total acids, and 4.1° alcoholicity was accomplished. Various phenolic compounds of sugarcane juice (non-sterilized) and those of alcoholic and acetic acid fermentation were obtained after nine days of fermentation. These were benzoic acid (2.024, 1.002, and 1.027 mg L-1), ferulic acid (0.060, 0.205, and 1.124 mg L-1), quinic acid (0.019, 0.074, and 0.031 mg L-1), chlorogenic acid (0.349, 1.635, and 1.217 mg L-1), apigenin (0.002, 0.099, and 0.004 mg L-1), kaempferol (0.003, 0.336, and 0.003 mg L-1), caffeic acid (-, 0.005, and 0.005 mg L-1), luteolin (0.003, 0.323, and 0.005 mg L-1), and p-coumaric acid (0.018, 0.015, and 0.027 mg L-1). Forty-five volatile organic compounds were also identified. The sugarcane juice can be commercialized as an alternative to wine as it presents characteristics of an alcoholic fermented beverage.

8.
Exp Ther Med ; 6(5): 1155-1158, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24223637

RESUMEN

Quercetin is a hydrophobic agent with potential anticancer activity. The aim of the present study was to observe the effects of quercetin on the proliferation of the breast cancer cell line MCF-7 and the gene expression of survivin. The molecular mechanism underlying the antiproliferative effect of quercetin was also investigated. MCF-7 breast cancer cells were treated with various concentrations of quercetin. The inhibitory effect of quercetin on proliferation was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and the inhibition rate was calculated. Cellular apoptosis was detected by immunocytochemistry and survivin mRNA expression levels were observed using reverse transcription-polymerase chain reaction (RT-PCR). Western blot analysis was used to analyze changes in the expression levels of survivin protein. Quercetin induced the apoptosis of MCF-7 cells and inhibited the proliferation of the MCF-7 breast cancer cells in a time- and concentration-dependent manner. The mRNA and protein expression levels of survivin were reduced as the concentration of quercetin increased. Quercetin inhibited the growth of MCF-7 cells and promoted apoptosis by inducing G0/ G1 phase arrest. It also regulated the expression of survivin mRNA in MCF-7 cells, which may be the mechanism underlying its antitumor effect.

9.
Asian Pac J Cancer Prev ; 13(8): 3751-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23098466

RESUMEN

AIM: Tea polyphenols are known to play roles in critical steps of human lung carcinoma cell metastasis. For understanding the mechanisms whereby they inhibit tumor metastasis, the present study was conducted to investigate their effects on the adhesion of highly metastatic lung carcinoma cell lines (PG cells) to endothelial cells (EC cells) and adhesion molecule expression in vitro. METHODS: The expression of CD44 or CD54 in the PG cells was detected by flow cytometry and adhesion of PG cells to EC cells was assessed by confocal microscopy double fluorescence staining. RESULTS: The results showed that tea polyphenols: (1) inhibited the expression of CD44 and CD54, two important adhesion molecules in the PG cells in a dose-dependent manner; (2) significantly blocked the adhesion of PG cells to EC cells not only in a state of rest but also when active; and (3) influenced CD44 and CD54 expression during the adhesion process of PG cells to EC cells. CONCLUSION: The data indicated that the blocking role of tea polyphenols in the adhesion of PG cells to EC cells is related to CD44 and CD54. The mechanism of tea polyphenol prevention of human lung carcinoma metastasis might be through inhibiting adhesion molecule expression to block cancer cell adhesion.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Neoplasias Pulmonares/secundario , Polifenoles/farmacología , Té/química , Western Blotting , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Citometría de Flujo , Humanos , Receptores de Hialuranos/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA