Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Angew Chem Int Ed Engl ; 63(17): e202319170, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38230504

RESUMEN

Metal halide perovskites (MHPs) are considered ideal photovoltaic materials due to their variable crystal material composition and excellent photoelectric properties. However, this variability in composition leads to complex crystallization processes in the manufacturing of Metal halide perovskite (MHP) thin films, resulting in reduced crystallinity and subsequent performance loss in the final device. Thus, understanding and controlling the crystallization dynamics of perovskite materials are essential for improving the stability and performance of PSCs (Perovskite Solar Cells). To investigate the impact of crystallization characteristics on the properties of MHP films and identify corresponding modulation strategies, we primarily discuss the relevant aspects of MHP crystallization kinetics, systematically summarize theoretical methods, and outline modulation techniques for MHP crystallization, including solution engineering, additive engineering, and component engineering, which helps highlight the prospects and current challenges in perovskite crystallization kinetics.

2.
Environ Res ; 228: 115846, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024027

RESUMEN

Leersia hexandra Swartz (L. hexandra) is a promising hyperaccumulator for Cr pollution remediation, but whether its Cr phytoextraction is subject to the root surface-attached iron plaque (IP) remains unclear. In this research, the natural and artificial IPs were proven to be comprised of small amounts of exchangeable Fe as well as carbonate Fe, and dominantly Fe minerals involving amorphous two-line ferrihydrite (Fh), poorly crystalline lepidocrocite (Le) and highly crystalline goethite (Go). The Fe content in the artificial IPs augmented with increasing induced Fe(II) concentration, and the 50 mg/L Fe(II) led to the identical Fe content and different component proportions of artificial IP (Fe50) and natural IP. Fh was consisted of highly aggregated nanoparticles, and the aging of Fh caused its phase conversion to rod-like Le and Go. The Cr(VI) adsorption results of Fe minerals corroborated the coordination of Cr(VI) onto the Fh surface and the significantly greater equilibrium Cr(VI) adsorption amount of Fh over Le and Go. The greatest Cr(VI) reduction capacity of Fh among three Fe minerals was found to be related to its most abundant surface-adsorbed Fe(II) content. The results of hydroponic experiment of L. hexandra showed that the presence of IP facilitated the Cr(VI) removal by L. hexandra during the cultivation period of 10-45 days, and consequently, compared to the Fe0 group (without IP), around 60% of increase in the Cr accumulation of shoots was achieved by Fe50 group. The findings of this work are conductive to furthering our understanding of IP-regulated Cr phytoextraction of L. hexandra.


Asunto(s)
Cromo , Hierro , Cromo/química , Poaceae/química , Compuestos Ferrosos , Oxidación-Reducción
3.
Biodegradation ; 33(3): 239-253, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35461432

RESUMEN

This study constructed an up-flow anaerobic column reactor fed with synthetic sulfate-rich cadmium (Cd(II))-bearing wastewater, for investigating its Cd(II) removal performance and mechanism. Long-term experiment results manifest that introducing Cd(II) into influent led to an enhanced sulfate removal but did not increase the effluent sulfide concentration, implying the CdS formation. When influent Cd(II) concentration was shifted from 50 to 100 mg/L, the median Cd(II) removal rate was increased from 13.6 to 32.2 mg/(L·d). Batch tests indicate that the uptake and sequestration function of anaerobes merely led to a small portion of Cd(II) removal. A majority of aqueous Cd(II) (86.3%) was eliminated by precipitation reactions. The generated precipitates were found to be dominantly presented in carbonate, Fe-Mn oxide, sulfide bound and residue forms, which account for 92.6-93.9% of total Cd content of sludge obtained at diverse operation phases. The crystallographic CdS (i.e., residue fraction) particles have nano-scale sizes, and the relatively high atomic ratio of S to Cd was likely due to the adsorption/deposition of other sulfides. The dominant sulfate-reducing bacteria (SRB) were recognized as Desulfurella, Desulforhabdus and Desulfovibrio, and the primary competitor with them for substrate utilization were identified to be methanogens.


Asunto(s)
Microbiota , Purificación del Agua , Anaerobiosis , Biodegradación Ambiental , Reactores Biológicos/microbiología , Cadmio , Sulfatos/metabolismo , Sulfuros/química , Purificación del Agua/métodos
4.
Ecotoxicology ; 30(8): 1719-1730, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33792797

RESUMEN

Autotrophic ammonium removal by sulfate-dependent anaerobic ammonium oxidation (S-Anammox) process was studied in an upflow anaerobic sludge bed reactor inoculated with Anammox sludge. Over an operation period of 371 days, the reactor with a hydraulic retention time of 16 h was fed with influent in which NH4+ concentration was fixed at 70 mg N L-1, and the molar ratio of NO2-:NO3-:SO42- was 1:0.2:0.2, 0.5:0.1:0.3 and 0:0:0.5 in stages I, II and III, respectively. As the NO2- in influent was entirely replaced by SO42-, the NH4+ removal rate was 31.02 mg N L-1 d-1, and the conversion rate of SO42- was 8.18 mg S L-1 d-1. On grounds of the high NH4+:SO42- removal ratio (8.67:1), the S2- accumulation and pH drop in effluent, as well as the analysis results of microbial community structure, the S-Anammox process was speculated to play a dominant role in stage III. The NH4+ over-transformation was presumably as a consequence of the cyclic regeneration of SO42-. Concerning the microbial characteristics in the system, the Anammox bacteria (Candidatus Brocadia), sulfate-reducing bacteria (SRB) (Desulfatiglans and Desulfurivibrio) and sulfur-oxidizing bacteria (SOB) (Thiobacillus) in biomass was enriched in the case of without addition of NO2- in influent. Sulfate reduction driven ammonium anaerobic oxidation was probably attributed to the coordinated metabolism of nitrogen- and sulfur-utilizing bacteria consortium, in which Anammox bacteria dominates the nitrogen removal, and the SRB and SOB participates in the sulfur cycle as well as accepts required electrons from Anammox bacteria through a direct inter-species electron transfer (DIET) pathway.


Asunto(s)
Compuestos de Amonio , Microbiota , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitrógeno , Aguas del Alcantarillado , Sulfatos , Aguas Residuales
5.
Molecules ; 26(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34361645

RESUMEN

The deficiency of available silicon (Si) incurred by year-round agricultural and horticultural practices highlights the significance of Si fertilization for soil replenishment. This study focuses on a novel and economical route for the synthesis of Si fertilizer via the calcination method using talc and calcium carbonate (CaCO3) as starting materials. The molar ratio of talc to CaCO3 of 1:2.0, calcination temperature of 1150 °C and calcination time of 120 min were identified as the optimal conditions to maximize the available Si content of the prepared Si fertilizer. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) characterizations elucidate the principles of the calcination temperature-dependent microstructure evolution of Si fertilizers, and the akermanite Ca2Mg(Si2O7) and merwinite Ca3Mg(SiO4)2 were identified as the primary silicates products. The results of release and solubility experiments suggest the content of available metallic element and slow-release property of the Si fertilizer obtained at the optimum preparation condition (Si-OPC). The surface morphology and properties of Si-OPC were illuminated by the results of scanning electron microscope (SEM), surface area and nitrogen adsorption analysis. The acceleration action of CaCO3 in the decomposition process of talc was demonstrated by the thermogravimetry-differential scanning calorimetry (TG-DSC) test. The pot experiment corroborates that 5 g kg-1 soil Si-OPC application sufficed to facilitate the pakchoi growth by providing nutrient elements. This evidence indicates the prepared Si fertilizer as a promising candidate for Si-deficient soil replenishment.

6.
Environ Res ; 180: 108861, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31703975

RESUMEN

An electrochemical dynamic membrane filtration (EDMF) system for simultaneous solid-liquid separation (also protecting electrodes against fouling) and sewage disinfection was developed. At a low voltage of 2.5 V, efficient disinfection performance was achieved in the EDMF, with ~100% log removal efficiency (no detectable bacteria in the effluent). Results also demonstrated that the EDMF system, operated at membrane flux of 100 L/(m2 h), could maintain long-lasting bacterial disinfection efficiency of real wastewater (~100% log removal) in continuous flow tests. Transmembrane pressure (TMP) increased from 0.8 kPa to 22 kPa within 80 d (one operation cycle), and cleaning of EDMF could effectively restore TMP and biocidal behaviors for subsequent filtration cycles. In contrast, without dynamic membrane, the disinfection efficiency was decreased from initial ~100% log removal (with no detectable live bacteria) to ~44.4% log removal within 7 d. Reactive oxygen species (ROS)-mediated oxidation was responsible for bacteria disinfection in the EDMF, and HO• and H2O2 generated in this system played a dominant role, causing damage to cell membranes and K+ leakage from cytosol. Moreover, catalase and superoxide dismutase for intracellular ROS attenuation were inhibited, resulting in the increase of intracellular oxidative stress and thus high-efficient disinfection. These results highlight the potential of EDMF system to be used for wastewater treatment and disinfection.


Asunto(s)
Desinfección , Aguas Residuales , Purificación del Agua , Filtración , Peróxido de Hidrógeno , Aguas del Alcantarillado
7.
Environ Sci Technol ; 52(7): 4117-4126, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29543443

RESUMEN

Inability to remove low-molecular-weight anthropogenic contaminants is a critical issue in low-pressure membrane filtration processes for water treatment. In this work, a novel electrochemical ceramic membrane filtration (ECMF) system using TiO2@SnO2-Sb anode was developed for removing persistent p-chloroaniline (PCA). Results showed that the ECMF system achieved efficient removal of PCA from contaminated waters. At a charging voltage of 3 V, the PCA removal rate of TiO2@SnO2-Sb ECMF system under flow-through mode was 2.4 times that of flow-by mode. The energy consumption for 50% of PCA removal for TiO2@SnO2-Sb ECMF at 3 V under flow-through mode was 0.38 Wh/L, much lower than that of flow-by operation (1.5 Wh/L), which was attributed to the improved utilization of the surface adsorbed HO· and dissociated HO· driven by the enhanced mass transfer of PCA toward the anode surface. Benefiting from the increased production of reactive oxygen species such as O2•-, H2O2, and HO· arising from excitation of anatase TiO2, TiO2@SnO2-Sb ECMF exhibited a superior electrocatalytic activity to the SnO2-Sb ECMF system. The degradation pathways of PCA initiated by OH· attack were further proposed, with the biodegradable short-chain carboxylic acids (mainly formic, acetic, and oxalic acids) identified as the dominant oxidized products. These results highlight the potential of the ECMF system for cost-effective water purification.


Asunto(s)
Compuestos de Estaño , Purificación del Agua , Cerámica , Electrodos , Peróxido de Hidrógeno , Titanio
8.
Environ Sci Technol ; 51(5): 2757-2765, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28170232

RESUMEN

Removal of recalcitrant anthropogenic contaminants from water calls for the development of cost-effective treatment technologies. In this work, a novel electrochemical membrane filtration (EMF) process using a conducting microfiltration membrane as the cathode has been developed and the degradation of sulphanilic acid (SA) examined. The electrochemical degradation of SA in flow-by mode followed pseudo-first-order kinetics with the degradation rate enhanced with increase in charging voltage. Hydrogen peroxide as well as oxidants such as HO• and Fe(IV)O2+ were generated electrochemically with HO• found to be the dominant oxidant responsible for SA degradation. In addition to the anodic splitting of water, HO• was formed via a heterogeneous Fenton process with surface-bound Fe(II) resulting from aerobic corrosion of the steel mesh. In flow-through mode, the removal rate of SA was 13.0% greater than obtained in flow-by mode, presumably due to the better contact of the contaminant with the oxidants generated in the vicinity of the membrane surface. A variety of oxidized products including hydroquinone, p-benzoquinone, oxamic acid, maleic acid, fumaric acid, acetic acid, formic acid, and oxalic acid were identified and an electrochemical degradation pathway proposed. These findings highlight the potential of the cathodic EMF process as an effective technology for water purification.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Benzoquinonas , Electrodos , Peróxido de Hidrógeno , Cinética , Oxidación-Reducción
9.
PLoS One ; 19(5): e0302881, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776322

RESUMEN

In the context of innovative enterprises in China, the significance of sleep quality for employees' physical and mental well-being cannot be understated. This study explores the complex relationship between Mindfulness and sleep quality and examines the potential interaction between Social Interaction Anxiety and prolonged sleep behavior. To this end, a thorough evaluation involving the administration of the Mindfulness scale, Social Interaction Anxiety scale, sleep delay scale, and the Pittsburgh Sleep Quality Index (PSQI) was conducted among a significant sample of innovative enterprise employees (N = 1648). The findings reveal that a notable proportion of these employees, 31.1% to be precise (as per PSQI 8), grapple with compromised sleep quality. Subsequent analyses shed light on compelling patterns, underscoring a robust negative correlation between Mindfulness and factors like Social Interaction Anxiety, sleep delay, and sleep quality (ß = -0.71, -0.37, -0.35; P < 0.01). Conversely, a significant positive correlation emerges connecting Social Interaction Anxiety, sleep delay, and sleep quality (ß = 0.23, 0.37, 0.32; P < 0.01). Interestingly, mediation analysis demonstrates that Mindfulness significantly negatively influences sleep quality, independent of demographic factors such as sex and age. This impact is mediated by sleep delay, which also interacts with Social Interaction Anxiety. In summary, the research emphasizes the predictive function of Mindfulness in improving sleep quality among employees in innovative enterprises, achieved through its reduction of Social Interaction Anxiety and bedtime procrastination tendencies.


Asunto(s)
Ansiedad , Atención Plena , Procrastinación , Calidad del Sueño , Interacción Social , Humanos , Masculino , Femenino , Adulto , Atención Plena/métodos , Ansiedad/psicología , Persona de Mediana Edad , China , Encuestas y Cuestionarios , Sueño/fisiología
10.
Sci Rep ; 13(1): 1505, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707687

RESUMEN

The noise from other sources is inevitably mixed in the vibration information of CNC machine tools obtained using the sensors. In this work, a de-noising method based on joint analysis is proposed. The variational mode decomposition (VMD), correlation analysis (CA), and wavelet threshold (WT) denoising are used to denoise the original signal. First, VMD decomposes noisy signals into multiple intrinsic mode functions (IMFs). The penalty factor and decomposition level of VMD parameters are selected by the optimization algorithm by combining the whale optimization algorithm (WOA) and tabu search (TS). The minimum permutation entropy of IMF is used as the fitness function of the proposed fusion algorithm. Then, the IMF is divided into three categories by using the cross-correlation number. They include the pure components, signals containing noise, and complete noise components. Then, the WT method is used to further denoise the signals, and signal reconstruction is performed with the pure component to obtain the denoised signal. This joint analysis denoising method is named TS-WOA-VMD-CA-WT. The simulation results show that the fusion optimization algorithm proposed in this work has better performance as compared to the single optimization algorithm. It performs effectively when applied to the actual machine tool vibration signal denoising. Therefore, the proposed TS-WOA-VMD-CA-WT method is superior to other existing denoising techniques and has good generality, which is expected to be popularized and applied more widely.

11.
Front Bioeng Biotechnol ; 11: 1133613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970610

RESUMEN

Current microbial reduction technologies have been proven to be suitable for decontaminating industrial wastewaters containing high concentrations of selenium (Se) oxyanions, however, their application is strictly limited by the elemental Se (Se0) accumulation in the system effluents. In this work, a continuous-flow anaerobic membrane bioreactor (AnMBR) was employed for the first time to treat synthetic wastewater containing 0.2 mM soluble selenite (SeO3 2-). The SeO3 2- removal efficiency by the AnMBR was approachable to 100% in most of the time, regardless of the fluctuation in influent salinity and sulfate (SO4 2-) stress. Se0 particles were always undetectable in the system effluents, owing to their interception by the surface micropores and adhering cake layer of membranes. High salt stress led to the aggravated membrane fouling and diminished content ratio of protein to polysaccharide in the cake layer-contained microbial products. The results of physicochemical characterization suggested that the sludge-attached Se0 particles presented either sphere- or rod-like morphology, hexagonal crystalline structure and were entrapped by the organic capping layer. According to the microbial community analysis, increasing influent salinity led to the diminished population of non-halotolerant Se-reducer (Acinetobacter) and increased abundance of halotolerant sulfate reducing bacteria (Desulfomicrobium). In the absence of Acinetobacter, the efficient SeO3 2- abatement performance of the system could still be maintained, as a result of the abiotic reaction between SeO3 2- and S2- generated by Desulfomicrobium, which then gave rise to the production of Se0 and S0.

12.
Membranes (Basel) ; 13(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37367775

RESUMEN

The ubiquitous presence of tetrabromobisphenol A (TBBPA) in aquatic environments has caused severe environmental and public health concerns; it is therefore of great significance to develop effective techniques to remove this compound from contaminated waters. Herein, a TBBPA imprinted membrane was successfully fabricated via incorporating imprinted silica nanoparticles (SiO2 NPs). The TBBPA imprinted layer was synthesized on the 3-(methacryloyloxy) propyltrimethoxysilane (KH-570) modified SiO2 NPs via surface imprinting. Eluted TBBPA molecularly imprinted nanoparticles (E-TBBPA-MINs) were incorporated onto a polyvinylidene difluoride (PVDF) microfiltration membrane via vacuum-assisted filtration. The obtained E-TBBPA-MINs embedded membrane (E-TBBPA-MIM) showed appreciable permeation selectivity toward the structurally analogous to TBBPA (i.e., 6.74, 5.24 and 6.31 of the permselectivity factors for p-tert-butylphenol (BP), bisphenol A (BPA) and 4,4'-dihydroxybiphenyl (DDBP), respectively), far superior to the non-imprinted membrane (i.e., 1.47, 1.17 and 1.56 for BP, BPA and DDBP, respectively). The permselectivity mechanism of E-TBBPA-MIM could be attributed to the specific chemical adsorption and spatial complementation of TBBPA molecules by the imprinted cavities. The resulting E-TBBPA-MIM exhibited good stability after five adsorption/desorption cycles. The findings of this study validated the feasibility of developing nanoparticles embedded molecularly imprinted membrane for efficient separation and removal of TBBPA from water.

13.
Environ Technol ; : 1-15, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37729639

RESUMEN

ABSTRACTP-bromophenol (4-BP) is a toxic halogenated phenolic organic compound. The conventional treatment processes for 4-BP elimination are costly and inefficient, with complete mineralization remaining a challenge for water treatment. To overcome these limitations, we investigated the treatment of 4-BP in a membrane biofilm reactor (MBfR) using hydrogen as an electron donor. The pathway of 4-BP degradation within the H2-MBfR was investigated through long-term operational experiments by considering the effect of nitrate and 4-BP concentrations, hydrogen partial pressure, static experiments, and microbial community diversity, which was studied using 16S rRNA. The results showed that H2-MBfR could quickly remove approximately 100% of 4-BP (up to 20 mg/L), with minimal intermediate product accumulation and 10 mg/L of nitrate continuously reduced. The microbial community structure showed that the presence of H2 created an anaerobic environment, and Thauera was the dominant functional genus involved in the degradation of 4-BP. The genes encoding related enzymes were further enhanced. This study provides an economically viable and environmentally friendly bioremediation technique for water bodies that contain 4-BP and nitrates.

14.
Membranes (Basel) ; 12(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35448357

RESUMEN

Titanium dioxide (TiO2) nanoparticles have been applied in membrane antifouling performance modification for years. However, the influence of TiO2 nanoparticle dispersion status during the blending process on membrane properties and the inner mechanism has seldom been focused on. Herein, we investigated the influence of the various dispersing statuses of TiO2 nanoparticles on membrane properties and antifouling performance by exploring various blending processes without changing the original recipe. Polyethylene glycol (PEG) was employed as a pore-forming agent during the membrane preparation process, and also as a pre-dispersing agent for the TiO2 nanoparticles via the steric hindrance effect. Compared to the original preparation process of the PVDF/TiO2 composite membrane, the pre-dispersing of TiO2 via PEG ensured a modified membrane with uniform surface pores and structures on cross-sectional morphologies, larger porosity and water permeability, and more negative zeta potential. The contact angle was decreased by 6.0%, implying better hydrophilicity. The improved antifouling performance was corroborated by the increasing free energy of cohesion and adhesion, the interaction energy barrier (0.43 KT) between the membrane surfaces and approaching foulants assessed by classic XDLVO theory and the low flux decline in the filtration experiment. A kinetics mechanism analysis of the casting solutions, which found a low TSI value (<1.0), substantiated that the pre-dispersion of TiO2 with PEG contributed to the high stability and ultimately favorable antifouling behaviors. This study provides an optimized approach to the preparation of excellent nano-TiO2/polymeric composite membranes applied in the municipal sewage treatment field.

15.
Bioresour Technol ; 343: 126139, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34662738

RESUMEN

The occurrence of micropollutants (MPs) in water and wastewater imposes potential risks on ecological security and human health. Membrane biofilm reactor (MBfR), as an emerging technology, has attracted much attention for MPs removal from water and wastewater. The review aims to consolidate the recent advances in membrane biofilm reactor for MPs removal from the standpoint of fundamentals, removal performance and microbial communities. First, the configuration and working principles of MBfRs are reviewed prior to the discussion of the current status of the system. Thereafter, a comprehensive review of the MBfR performance for MPs elimination based on literature database is presented. Key information on the microbial communities that are of great significance for the removal performance is then synthesized. Perspectives on the future research needs are also provided in this review to ensure the development of MBfRs for more cost-effective elimination of MPs from water and wastewater.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Biopelículas , Reactores Biológicos , Humanos , Membranas Artificiales , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
16.
Membranes (Basel) ; 12(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36005689

RESUMEN

The H2-based membrane biofilm reactor (H2-MBfR) has been acknowledged as a cost-effective microbial reduction technology for oxyanion removal from drinking water sources, but it remains unknown how the evolution of biofilm characteristics responds to the changing critical operating parameters of the H2-MBfR for simultaneous bromate (BrO3-) and nitrate (NO3-) elimination. Therefore, an expanded multispecies model, applicable to mechanistically interpret the bromate-reducing bacteria (BRB)- and denitrifying bacteria (DNB)-dominated metabolic processes in the biofilm of the H2-MBfR, was developed in this study. The model outputs indicate that (1) increased BrO3- loading facilitated the metabolism of BRB by increasing BRB fraction and BrO3- gradients in the biofilm, but had a marginal influence on NO3- reduction; (2) H2 pressure of 0.04 MPa enabled the minimal loss of H2 and the extension of the active region of BRB and DNB in the biofilm; (3) once the influent NO3- concentration was beyond 10 mg N/L, the fraction and activity of BRB significantly declined; (4) BRB was more tolerant than DNB for the acidic aquatic environment incurred by the CO2 pressure over 0.02 MPa. The results corroborate that the degree of microbial competition for substrates and space in the biofilm was dependent on system operating parameters.

17.
Membranes (Basel) ; 12(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36363673

RESUMEN

Herein, the influence of various contents of polyethylene glycol (PEG) on the dispersion of TiO2 nanoparticles and the comprehensive properties of PVDF/TiO2 composite membranes via the steric hindrance interaction was systematically explored. Hydrophilic PEG was employed as a dispersing surfactant of TiO2 nanoparticles in the pre-dispersion process and as a pore-forming additive in the following membrane preparation process. The slight overlap shown in the TEM image and low TSI value (<1) of the composite casting solution indicated the effective dispersion and stabilization under the steric interaction with a PEG content of 6 wt.%. Properties such as the surface pore size, the development of finger-like structures, permeability, hydrophilicity and Zeta potential were obviously enhanced. The improved antifouling performance between the membrane surface and foulants was corroborated by less negative free energy of adhesion (about −42.87 mJ/m2), a higher interaction energy barrier (0.65 KT) and low flux declination during the filtration process. The high critical flux and low fouling rate both in winter and summer as well as the long-term running operation in A/O-MBR firmly supported the elevated antifouling performance, which implies a promising application in the municipal sewage treatment field.

18.
Front Microbiol ; 13: 1067782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466670

RESUMEN

The biological treatment of source-separated human urine to produce biofuel, nutraceutical, and high-value chemicals is getting increasing attention. Especially, photoautotrophic microalgae can use human urine as media to achieve environmentally and economically viable large-scale cultivation. This review presents a comprehensive overview of the up-to-date advancements in microalgae cultivation employing urine in photobioreactors (PBRs). The standard matrices describing algal growth and nutrient removal/recovery have been summarized to provide a platform for fair comparison among different studies. Specific consideration has been given to the critical operating factors to understand how the PBRs should be maintained to achieve high efficiencies. Finally, we discuss the perspectives that emphasize the impacts of co-existing bacteria, contamination by human metabolites, and genetic engineering on the practical microalgal biomass production in urine.

19.
Chemosphere ; 303(Pt 1): 134875, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35537631

RESUMEN

CO2 is a proven pH regulator in hydrogen-based membrane biofilm reactor (H2-MBfR) but how its pressure regulates microbial competition in this system remains unclear. This work evaluates the CO2 pressure dependent system performance, CO2 allocation, microbial structure and activity of CO2 source H2-MBfR. The optimum system performance was reached at the CO2 pressure of 0.008 MPa, and this pressure enabled 0.18 g C/(m2·d) of dissolved inorganic carbon (DIC) allocated to denitrifying bacteria (DNB) for carbon source anabolism and denitrification-related proton compensation, while inducing a bulk liquid pH (pH 7.4) in favor of DNB activity by remaining 0.21 g C/(m2·d) of DIC as pH buffer. Increasing CO2 pressure from 0.008 to 0.016 MPa caused the markedly changed DNB composition, and the diminished DNB population was accompanied by the enrichment of sulfate-reducing bacteria (SRB). A high CO2 pressure of 0.016 MPa was estimated to induce the enhanced SRB activity and weakened DNB activity.


Asunto(s)
Desnitrificación , Hidrógeno , Bacterias , Biopelículas , Reactores Biológicos/microbiología , Carbono , Dióxido de Carbono , Hidrógeno/química
20.
Bioresour Technol ; 338: 125527, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34274586

RESUMEN

An electrochemical membrane-aerated biofilm reactor (EMABR) was developed for removing sulfamethoxazole (SMX) and trimethoprim (TMP) from contaminated water. The exertion of electric field greatly enhanced the degradation of SMX and TMP in the EMABR (~60%) compared to membrane-aerated biofilm reactor (MABR, < 10%), due to the synergistic effects of the electro-oxidation (the generation of reactive oxygen species) and biological degradation. Microbial community analyses demonstrated that the EMABR enriched the genus of Xanthobacter, which was potentially capable of degrading aromatic intermediates. Moreover, the EMABR had a lower relative abundance of antibiotic resistance genes (ARGs) (0.23) compared to the MABR (0.56), suggesting the suppression of ARGs in the EMABR. Further, the SMX and TMP degradation pathways were proposed based on the detection of key intermediate products. This study demonstrated the potential of EMABR as an effective technology for removing antibiotics from micro-polluted surface water and suppressing the development of ARGs.


Asunto(s)
Antibacterianos , Aguas Residuales , Antibacterianos/farmacología , Biopelículas , Reactores Biológicos , Farmacorresistencia Microbiana/genética , Sulfametoxazol , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA