Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(23): 7012-7018, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38820129

RESUMEN

Light management is critical to maximizing the external quantum efficiency of perovskite light-emitting diodes (PeLEDs), but strategies for enhancing light out-coupling are typically complex and expensive. Here, using a facile solvent treatment strategy, we create a layer of lithium fluoride (LiF) nanoislands that serve as a template to reconstruct the light-extracting interfaces for PeLEDs. The nanoisland interface rearranges the near-field light distribution in order to maximize the efficiency of internal light extraction. With the proper adjustment of the nanoisland size and distribution, we have achieved an optimal balance between charge injection and light out-coupling, resulting in bright, pure-red quasi-two-dimensional PeLEDs with a 21.8% peak external quantum efficiency.

2.
Nano Lett ; 24(21): 6410-6416, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38767286

RESUMEN

CsPbI3 perovskite quantum dots (QDs) could achieve pure-red emission by reducing their size, but the increased exciton binding energy (EB) and surface defects for the small-sized QDs (SQDs) cause severe Auger and trap recombinations, thus worsening their electroluminescence (EL) performance. Herein, we utilize the dangling bonds of the SQDs as a driving force to accelerate KI dissolution to solve its low solubility in nonpolar solvents, thereby allowing K+ and I- to bond to the surface of SQDs. The EB of the SQDs was decreased from 305 to 51 meV because of the attraction of K+ to electrons, meanwhile surface vacancies were passivated by K+ and I-. The Auger and trap recombinations were simultaneously suppressed by this difunctional ligand. The SQD-based light-emitting diode showed a stable pure-red EL peak of 639 nm, an external quantum efficiency of 25.1% with low roll-off, and a brightness of 5934 cd m-2.

3.
Nano Lett ; 24(13): 3952-3960, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38527956

RESUMEN

Despite light-emitting diodes (LEDs) based on quasi-two-dimensional (Q-2D) perovskites being inexpensive and exhibiting high performance, defects still limit the improvement of electroluminescence efficiency and stability by causing nonradiative recombination. Here, an organic molecule, 1-(o-tolyl) biguanide, is used to simultaneously inhibit and passivate defects of Q-2D perovskites via in situ synchronous crystallization. This molecule not only prevents surface bromine vacancies from forming through hydrogen bonding with the bromine of intermediaries but also passivates surface defects through its interaction with uncoordinated Pb. Via combination of defect inhibition and passivation, the trap density of Q-2D perovskite films can be significantly reduced, and the emission efficiency of the film can be improved. Consequently, the corresponding LED shows an external quantum efficiency of 24.3%, and its operational stability has been increased nearly 15 times.

4.
Nano Lett ; 24(11): 3347-3354, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451030

RESUMEN

Understanding the photosensitization mechanisms in Yb3+-doped perovskite nanocrystals is crucial for developing their anticipated photonic applications. Here, we address this question by investigating near-infrared photoluminescence of Yb3+-doped mixed-halide CsPbClxBr3-x nanocrystals as a function of temperature and revealing its strong dependence on the stoichiometry of the host perovskite matrix. To explain the observed experimental trends, we developed a theoretical model in which energy transfer from the perovskite matrix to Yb3+ ions occurs through intermediate trap states situated beneath the conduction band of the host. The developed model provides an excellent agreement with experimental results and is further validated through the measurements of emission saturation at high excitation powers and near-infrared photoluminescence quantum yield as a function of the anion composition. Our findings establish trap-mediated energy transfer as a dominant photosensitization mechanism in Yb3+-doped CsPbClxBr3-x nanocrystals and open up new ways of engineering their optical properties for light-emitting and light-harvesting applications.

5.
Small ; 20(4): e2305021, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712116

RESUMEN

The rapid evolution of smart grid system urges researchers on exploiting systems with properties of high-energy, low-cost, and eco-friendly beyond lithium-ion batteries. Under the circumstances, sodium- and potassium-ion batteries with the semblable work mechanism to commercial lithium-ion batteries, hold the merits of cost-effective and earth-abundant. As a result, it is deemed a promising candidate for large-scale energy storage devices. Exploiting appropriate active electrode materials is in the center of the spotlight for the development of batteries. Metal selenides with special structures and relatively high theoretical capacity have aroused broad interest and achieved great achievements. To push the smooth development of metal selenides and enhancement of the electrochemical performance of sodium- and potassium-ion batteries, it is vital to grasp the inherent properties and electrochemical mechanisms of these materials. Herein, the state-of-the-art development and challenges of metal selenides are summarized and discussed. Meanwhile, the corresponding electrochemical mechanism and future development directions are also highlighted.

6.
Small ; 20(19): e2309249, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38152975

RESUMEN

Achieving a balance between H-atom adsorption and binding with H2 desorption is crucial for catalyzing hydrogen evolution reaction (HER). In this study, the feasibility of designing and implementing built-in opposite electric fields (OEF) is demonstrated to enable optimal H atom adsorption and H2 desorption using the Ni3(BO3)2/Ni5P4 heterostructure as an example. Through density functional theory calculations of planar averaged potentials, it shows that opposite combinations of inward and outward electric fields can be achieved at the interface of Ni3(BO3)2/Ni5P4, leading to the optimization of the H adsorption free energy (ΔGH*) near electric neutrality (0.05 eV). Based on this OEF concept, the study experimentally validated the Ni3(BO3)2/Ni5P4 system electrochemically forming Ni3(BO3)2 through cyclic voltammetry scanning of B-doped Ni5P4. The surface of Ni3(BO3)2 undergoes reconstruction, as characterized by Grazing Incidence Wide-Angle X-ray Scattering (GIWAXS) and in situ Raman spectroscopy. The resulting catalyst exhibits excellent HER activity in alkaline media, with a low overpotential of 33 mV at 10 mA cm-2 and stability maintained for over 360 h. Therefore, the design strategy of build-in opposite electric field enables the development of high-performance HER catalysts and presents a promising approach for electrocatalyst advancement.

7.
Small ; : e2311461, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386310

RESUMEN

PbS quantum dot (QD) solar cells harvest near-infrared solar radiation. Their conventional hole transport layer has limited hole collection efficiency due to energy level mismatch and poor film quality. Here, how to resolve these two issues by using Ag-doped PbS QDs are demonstrated. On the one hand, Ag doping relieves the compressive stress during layer deposition and thus improves film compactness and homogeneity to suppress leakage currents. On the other hand, Ag doping increases hole concentration, which aligns energy levels and increases hole mobility to boost hole collection. Increased hole concentration also broadens the depletion region of the active layer, decreasing interface charge accumulation and promoting carrier extraction efficiency. A champion power conversion efficiency of 12.42% is achieved by optimizing the hole transport layer in PbS QD solar cells, compared to 9.38% for control devices. Doping can be combined with compressive strain relief to optimize carrier concentration and energy levels in QDs, and even introduce other novel phenomena such as improved film quality.

8.
BMC Cancer ; 24(1): 732, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877472

RESUMEN

BACKGROUND: Considering the age relevance of prostate cancer (PCa) and the involvement of the cGAS-STING pathway in aging and cancer, we aim to classify PCa into distinct molecular subtypes and identify key genes from the novel perspective of the cGAS-STING pathway. It is of significance to guide personalized intervention of cancer-targeting therapy based on genetic evidence. METHODS: The 430 patients with PCa from the TCGA database were included. We integrated 29 key genes involved in cGAS-STING pathway and analyzed differentially expressed genes and biochemical recurrence (BCR)-free survival-related genes. The assessments of tumor stemness and heterogeneity and tumor microenvironment (TME) were conducted to reveal potential mechanisms. RESULTS: PCa patients were classified into two distinct subtypes using AURKB, TREX1, and STAT6, and subtype 1 had a worse prognosis than subtype 2 (HR: 21.19, p < 0.001). The findings were validated in the MSKCC2010 cohort. Among subtype 1 and subtype 2, the top ten mutation genes were MUC5B, DNAH9, SLC5A10, ZNF462, USP31, SIPA1L3, PLEC, HRAS, MYOM1, and ITGB6. Gene set variation analysis revealed a high enrichment of the E2F target in subtype 1, and gene set enrichment analysis showed significant enrichment of base excision repair, cell cycle, and DNA replication in subtype 1. TME evaluation indicated that subtype 1 had a significantly higher level of T cells follicular helper and a lower level of plasma cells than subtype 2. CONCLUSIONS: The molecular subtypes mediated by the cGAS-STING pathway and the genetic risk score may aid in identifying potentially high-risk PCa patients who may benefit from pharmacologic therapies targeting the cGAS-STING pathway.


Asunto(s)
Proteínas de la Membrana , Nucleotidiltransferasas , Neoplasias de la Próstata , Transducción de Señal , Humanos , Masculino , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transducción de Señal/genética , Pronóstico , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Mutación , Anciano , Perfilación de la Expresión Génica , Transcriptoma
9.
Phys Chem Chem Phys ; 26(9): 7896-7906, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38376501

RESUMEN

Metallene materials can provide a large number of active catalytic sites for the efficient use of noble metals as catalysts for hydrogen evolution reaction (HER), whereas the intrinsic activity on the surface is insufficient in crystal phase. The amorphous phase with an inherent long-range disorder can offer a rich coordinate environment and charge polarization on the surface is proposed for promoting the intrinsic catalytic activity on the surface of noble metals. Herein, we designed an amorphous RuPd (am-RuPd) structure by the first principles molecular dynamics method. The performance of the acidic HER on am-RuPd can have a huge enhancement due to the free energy change of hydrogen adsorption close to zero. In alkaline conditions, the H2O dissociation energy barrier on am-RuPd is just 0.49 eV, and it is predicted that the alkaline HER performance of am-RuPd will largely exceed that of Pt nanocrystalline sheets. This work provides a strategy for enhancing the intrinsic catalytic activity on the surface and a way to design an efficient HER catalyst based on metallene materials used in both acidic and alkaline conditions.

10.
Nano Lett ; 23(20): 9555-9562, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37787483

RESUMEN

The effective design and construction of high-performance methanol oxidation reaction (MOR) electrocatalysts are significant for the development of direct methanol fuel cells. But the active sites of the MOR electrocatalysts are susceptible to being poisoned by CO, resulting in poor durability. Herein, we report an atomically dispersed CrOX species anchored on Pd metallene through bridging O atoms. This catalyst shows an outstanding MOR performance with 7 times higher mass activity and 100 mV lower CO electrooxidation potential than commercial Pd/C. The results of operando electrochemical Fourier transform infrared spectroscopy demonstrate the rapid removal of CO* on CrOX-Pd metallene. Theoretical calculations reveal that atomically dispersed CrOX can lower the adsorption energy of CO* on Pd sites and enhance that of OH* through the formation of a hydrogen bond, decreasing the formation energy of COOH*. This work provides a new strategy for improving MOR performance via atomically engineering oxide/metal interfaces.

11.
Nano Lett ; 23(11): 5307-5316, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37276017

RESUMEN

The dissolution of transition metal ions causes the notorious peeling of active substances and attenuates electrochemical capacity. Frustrated by the ceaseless task of pushing a boulder up a mountain, Sisyphus of the Greek myth yearned for a treasure to be unearthed that could bolster his efforts. Inspirationally, by using ferricyanide ions (Fe(CN)63-) in an electrolyte as a driving force and taking advantage of the fast nucleation rate of copper hexacyanoferrate (CuHCF), we successfully reversed the dissolution of Fe and Cu ions that typically occurs during cycling. The capacity retention increased from 5.7% to 99.4% at 0.5 A g-1 after 10,000 cycles, and extreme stability of 99.8% at 1 A g-1 after 40,000 cycles was achieved. Fe(CN)63- enables atom-by-atom substitution during the electrochemical process, enhancing conductivity and reducing volume change. Moreover, we demonstrate that this approach is applicable to various aqueous batteries (i.e., NH4+, Li+, Na+, K+, Mg2+, Ca2+, and Al3+).

12.
Angew Chem Int Ed Engl ; 63(15): e202400765, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38349119

RESUMEN

Metal single-atom catalysts represent one of the most promising non-noble metal catalysts for the oxygen reduction reaction (ORR). However, they still suffer from insufficient activity and, particularly, durability for practical applications. Leveraging density functional theory (DFT) and machine learning (ML), we unravel an unexpected collective effect between FeN4OH sites, CeN4OH motifs, Fe nanoparticles (NPs), and Fe-CeO2 NPs. The collective effect comprises differently-weighted electronic and geometric interactions, whitch results in significantly enhanced ORR activity for FeN4OH active sites with a half-wave potential (E1/2) of 0.948 V versus the reversible hydrogen electrode (VRHE) in alkaline, relative to a commercial Pt/C (E1/2, 0.851 VRHE). Meanwhile, this collective effect endows the shortened Fe-N bonds and the remarkable durability with negligible activity loss after 50,000 potential cycles. The ML was used to understand the intricate geometric and electronic interactions in collective effect and reveal the intrinsic descriptors to account for the enhanced ORR performance. The universality of collective effect was demonstrated effective for the Co, Ni, Cu, Cr, and Mn-based multicomponent ensembles. These results confirm the importance of collective effect to simultaneously improve catalytic activity and durability.

13.
Angew Chem Int Ed Engl ; 63(26): e202405592, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38647330

RESUMEN

In aqueous aluminum-ion batteries (AAIBs), the insertion/extraction chemistry of Al3+ often leads to poor kinetics, whereas the rapid diffusion kinetics of hydronium ions (H3O+) may offer the solution. However, the presence of considerable Al3+ in the electrolyte hinders the insertion reaction of H3O+. Herein, we report how oxygen-deficient α-MoO3 nanosheets unlock selective H3O+ insertion in a mild aluminum-ion electrolyte. The abundant oxygen defects impede the insertion of Al3+ due to excessively strong adsorption, while allowing H3O+ to be inserted/diffused through the Grotthuss proton conduction mechanism. This research advances our understanding of the mechanism behind selective H3O+ insertion in mild electrolytes.

14.
Angew Chem Int Ed Engl ; 63(26): e202403996, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38679568

RESUMEN

Decreasing perovskite nanocrystal size increases radiative recombination due to the quantum confinement effect, but also increases the Auger recombination rate which leads to carrier imbalance in the emitting layers of electroluminescent devices. Here, we overcome this trade-off by increasing the exciton effective mass without affecting the size, which is realized through the trace Cd2+ doping of formamidinium lead bromide perovskite nanocrystals. We observe an ~2.7 times increase in the exciton binding energy benefiting from a slight distortion of the [BX6]4- octahedra caused by doping in the case of that the Auger recombination rate is almost unchanged. As a result, bright color-saturated green emitting perovskite nanocrystals with a photoluminescence quantum yield of 96 % are obtained. Cd2+ doping also shifts up the energy levels of the nanocrystals, relative to the Fermi level so that heavily n-doped emitters convert into only slightly n-doped ones; this boosts the charge injection efficiency of the corresponding light-emitting diodes. The light-emitting devices based on those nanocrystals reached a high external quantum efficiency of 29.4 % corresponding to a current efficiency of 123 cd A-1, and showed dramatically improved device lifetime, with a narrow bandwidth of 22 nm and Commission Internationale de I'Eclairage coordinates of (0.20, 0.76) for color-saturated green emission for the electroluminescence peak centered at 534 nm, thus being fully compliant with the latest standard for wide color gamut displays.

15.
Angew Chem Int Ed Engl ; 63(6): e202318246, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38102742

RESUMEN

Addressing the limitations arising from the consistent catalytic behavior observed for various intermediates during the electrochemical carbon dioxide reduction reaction (CO2 RR) poses a significant challenge in the optimization of catalytic activity. In this study, we aimed to address this challenge by constructing an asymmetric coordination Fe single atom catalyst (SCA) with a dynamically evolved structure. Our catalyst, consisting of a Fe atom coordinated with one S atom and three N atoms (Fe-S1 N3 ), exhibited exceptional selectivity (CO Faradaic efficiency of 99.02 %) and demonstrated a high intrinsic activity (TOF of 7804.34 h-1 ), and remarkable stability. Using operando XAFS spectra and Density Functional Theory (DFT) calculations, we elucidated the self-relaxation of geometric distortion and dynamic evolution of bond lengths within the catalyst. These structure changes enabled independent regulation of the *COOH and *CO intermediate adsorption energies, effectively breaking the linear scale relationship and enhancing the intrinsic activity of CO2 RR. This study provides valuable insights into the dynamic evolution of SACs and paves the way for targeted catalyst designs aimed to disrupt the linear scaling relationships.

16.
J Am Chem Soc ; 145(10): 5710-5717, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36877096

RESUMEN

Hydride metallenes show great potential for hydrogen-related catalytic applications due to favorable electronic structures modulated by interstitial hydrogen atoms and large active surface areas of metallenes. Metallene nanostructures generally have compressive strain relative to bulk, which can affect both the stability and the catalytic behavior of hydride metallenes but in general cannot be controlled. Here, we demonstrate highly stable PdHx metallenes with a tensile strained Ru surface layer and reveal the spatial confinement effect of the Ru skin by multiple spectroscopic characterizations and molecular dynamics simulations. These PdHx@Ru metallenes with a 4.5% expanded Ru outer layer exhibit outstanding alkaline hydrogen evolution reaction activity with a low overpotential of 30 mV at 10 mA cm-2 and robust stability with negligible activity decay after 10,000 cycles, which are superior to commercial Pt/C and most reported Ru-based electrocatalysts. Control experiments and first-principles calculations reveal that the tensile strained Ru outer layer lowers the energy barrier of H2O dissociation and provides a moderate hydrogen adsorption energy.

17.
Small ; 19(47): e2303959, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37496085

RESUMEN

Metallic sodium is regarded as the most potential anode for sodium-ion batteries due to its high capacity and earth-abundancy. Nevertheless, uncontrolled Na dendrite growth and infinite volume change remain great challenges for developing high-performance sodium metal batteries. This work provides a simple and general approach to stabilize sodium metal anode (SMA) by constructing Sn nanoparticles-anchored laser-induced graphene on copper foil (Sn@LIG@Cu) consisting of Sn@LIG composite, polyimide (PI) columns, and Cu current collector. The Sn-based sodiophilic species effectively reduce the Na nucleation overpotential and regulate the dendrite Na-free deposition. While the flexible PI columns act as binder and buffer the volume variation of Na during cycling. Besides, the unique patterned structure provides continuous and rapid channels for ion transportation, promoting the Na+ transport kinetics. Therefore, the as-fabricated Sn@LIG@Cu electrode exhibits outstanding rate performance to 40 mA cm-2 and excellent cycling stability without dendrite growth, which is confirmed by in-situ optical microscopy observation. Moreover, the practical full cell based on such an anode displays a favorable rate capability of up to 10 C and cycling performance at 5 C for 600 cycles. This work thus demonstrates a facile, highly-efficient, and scalable approach to stabilize SMAs and can be extended to other battery systems.

18.
Small ; 19(44): e2301721, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37386796

RESUMEN

Heterogenous catalysis is important for future clean and sustainable energy systems. However, an urgent need to promote the development of efficient and stable hydrogen evolution catalysts still exists. In this study, ruthenium nanoparticles (Ru NPs) are in situ grown on Fe5 Ni4 S8 support (Ru/FNS) by replacement growth strategy. An efficient Ru/FNS electrocatalyst with enhanced interfacial effect is then developed and successfully applied for pH-universal hydrogen evolution reaction (HER). The Fe vacancies formed by FNS during the electrochemical process are found to be conducive to the introduction and firm anchoring of Ru atoms. Compared to Pt atoms, Ru atoms get easily aggregated and then grow rapidly to form NPs. This induces more bonding between Ru NPs and FNS, preventing the fall-off of Ru NPs and maintaining the structural stability of FNS. Moreover, the interaction between FNS and Ru NPs can adjust the d-band center of Ru NPs, as well as balance the hydrolytic dissociation energy and hydrogen binding energy. Consequently, the as-prepared Ru/FNS electrocatalyst exhibits excellent HER activity and improved cycle stability under pH-universal conditions. The developed pentlandite-based electrocatalysts with low cost, high activity, and good stability are promising candidates for future applications in water electrolysis.

19.
Nano Lett ; 22(20): 8266-8273, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36251485

RESUMEN

It is still challenging to achieve high-efficiency pure-red (620-650 nm wavelength) perovskite light-emitting diodes (PeLEDs). Herein, we report pure-red PeLEDs with Commission Internationale de l'Eclairage coordinates (0.703, 0.297) meeting the Rec. 2020, an external quantum efficiency of 20.8%, and a luminance of 3775 cd/m2. This design is based on the strong quantum confinement CsPbI3 quantum dots (QDs) capped by composite ligands of 3-phenyl-1-propylamine and tetrabutylammonium iodide. This strategy stabilized the structure of the strong-confined QDs and reduced the influence of the electric field-induced Stark effect on the PeLEDs. Furthermore, the exciton binding energy of the QDs was decreased by the composited ligands to suppress Auger recombination within the devices. Additionally, the valence-band maximum of the QDs was lifted to match the hole-transport layer, thus balancing charge injection in the PeLEDs. Our device also demonstrated a stable electroluminescence spectrum and a lifetime of 5.6 times longer than the control device.

20.
Angew Chem Int Ed Engl ; 62(26): e202303462, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37102637

RESUMEN

Colloidal perovskite nanocrystals (NCs) have risen rapidly in luminescence efficiency and color purity. However, their high performance requires careful and complex pre-treatment of precursors and precise regulation of the reaction atmosphere; otherwise, their emission will be weak and broad. To overcome these limitations, we develop a facile ligand exchange method using a new type of bidentate ligand, which is obtained by reacting cheap sulfur with tributylphosphine (S-TBP). During ligand exchange, the double bond between P and S atoms breaks and a single bond is formed between them, after which S-TBP switches into a bidentate ligand and binds to a perovskite NC at two points. With short-chain S-TBP ligands that have high spatial position resistance, both NC spacing and surface ligand density can be reduced, thereby improving carrier injection and transport. On the NC surface after ligand exchange, halogen vacancies were substantially filled, leading to a PbSP (Pb, S, and P elements) component-dominated shell that greatly decreases trap density and enhances material stability. The resulting perovskite NCs are stable and bright with a photoluminescence quantum yield of ≈96 %, and an external quantum efficiency of 22 %. Note that our ligand-exchange strategy remains effective even when scaling up, which should accelerate commercialization.


Asunto(s)
Atmósfera , Nanopartículas , Ligandos , Compuestos de Calcio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA