Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 239(Pt 1): 117245, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774999

RESUMEN

The squeezed liquid from fruit and vegetable waste (LW) presents a unique wastewater challenge, marked by recalcitrance in treatment and amplified design risks with the application of conventional processes. Following coagulation of the squeezed liquid, the majority of particulate matter precipitates. The resulting precipitated floc (LWF) is reclaimed and subsequently utilized for the synthesis of biochar. The present study primarily explores the viability of repurposing LWF as biochar to enhance soil quality and mitigate N2O emissions. Findings indicate that the introduction of a 2% proportion of LWFB led to a remarkable 99.5% reduction in total N2O emissions in contrast to LWF. Concurrently, LWFB substantially enhanced nutrients content by elevating soil organic carbon (SOC) and nitrogen levels. Utilizing high-throughput sequencing in conjunction with qPCR, the investigation unveiled that the porous structure and substantial specific surface area of LWFB potentially fostered microbial adhesion and heightened diversity within the soil microbial community. Furthermore, LWFB notably diminished the relative abundance of AOB (Nitrosospira, Nitrosomonas), and NOB (Candidatus_Nitrotoga), thereby curbing the conversion of NH4+ into NO3-. The pronounced elevation in nosZ abundance implies that LWFB holds the potential to mitigate N2O emissions through a conversion to N2.


Asunto(s)
Microbiota , Suelo , Suelo/química , Carbono , Verduras , Frutas/química , Óxido Nitroso , Microbiología del Suelo
2.
J Environ Manage ; 329: 117052, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535139

RESUMEN

Effluents from wastewater treatment plants (WWTPs) is the main source of pollution in rivers in developing countries. In this case study, three bypass ecological treatment systems along urban rivers achieved high removal efficiencies for chemical oxygen demand (COD; 55.7-64.0%), ammonium N (NH4+-N; 63.1-89.4%) and total phosphorous (TP; 27.6-76.7%). 16 S rRNA gene sequencing analysis confirmed that Proteobacteria was the main bacterial phylum (44.4%) in the ecological treatment system, and members were enriched significantly in the non-aeration area (59.3%). The relative abundance of Nitrospirae was highest in the inflow area (25.0%), but restrained in the non-aeration area (5.7%). 18 S rRNA gene annotation results indicated that phylum Rotifer was gradually inhibited with the direction of water flow and diffusion, while phylum Rhodophyta displayed the opposite trend. After implementation of bypass ecological treatment systems, receiving rivers were improved significantly from Grade Ⅴ to Ⅳ, and the biodiversity of zooplankton, zoobenthos and fish communities was greatly improved.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Calidad del Agua , Aguas Residuales , Ecosistema , Ríos/microbiología , Bacterias/genética , Purificación del Agua/métodos , China , Contaminantes Químicos del Agua/análisis
3.
Appl Microbiol Biotechnol ; 106(11): 4329-4340, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35604440

RESUMEN

Cyanobacterial harmful algal blooms are a worldwide problem with substantial adverse effects on the aquatic environment as well as human health. Among the multiple physicochemical and biotic approaches, algicidal bacterium is one of the most promising and eco-friendly ways to control bloom expansion. In this study, Stenotrophomonas sp. KT48 isolated from the pond where cyanobacterial blooms occurred exhibited a strong inhibitory effect on Microcystis aeruginosa. However, the algicidal performance and mechanisms of Stenotrophomonas sp. remain under-documented. To explore the algicidal performance and physiological response againt M. aeruginosa, further works were implemented here. Our results indicated that the algicidal rate of strain KT48 cultured in 1/8 LB medium supplemented with 0.3% starch or glucose was about 30% higher than that in 1/8 LB medium. Strain KT48 culture, cell-free filtrate, and cells re-suspended were inoculated into the M. aeruginosa culture, and the Chl-a content was determined. Those results indicated that the algicidal activity of cells re-suspended was far higher than that of cell-free filtrate and culture. Thus, strain KT48 exhibited algicidal activity mainly through direct attacking M. aeruginosa rather than excretion of algicides. Furthermore, strain KT48 led to an increase in cellular reactive oxygen species (ROS) and caused lipid peroxidation as supported by the increase in malondialdehyde (MDA) levels. The ROS and MDA levels in algal cells treated with strain KT48 cells re-suspended were about 3.23-fold and 2.80-fold higher than those of untreated algal cells on day 11. And a further inhibition to the antioxidant system is suggested by a sharp decrease in the superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities. In addition, we also observed that the morphology of most algal cells changed from integrity to break. This study not only indicated strain KT48 with strong algicidal activity, but also explored the underlying algicidal mechanisms to provide a source of bacterial agent for the biocontrol of cyanobacterial blooms. KEY POINTS: • Strain KT48 exhibited strong algicidal activity mainly through direct attacking M. aeruginosa. • The addition of glucose could enhance the algicidal rate of strain KT48 by about 30%. • Strain KT48 led to an increase in cellular reactive oxygen species (ROS) level that causes membrane damage as supported by the increase in malondialdehyde (MDA) levels.


Asunto(s)
Microcystis , Antioxidantes/farmacología , Glucosa/farmacología , Floraciones de Algas Nocivas , Malondialdehído , Estrés Oxidativo , Especies Reactivas de Oxígeno/farmacología , Stenotrophomonas
4.
FASEB J ; 34(5): 6999-7017, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32259353

RESUMEN

Effective receptor signaling is anchored on the preferential localization of the receptor in lipid rafts, which are plasma membrane platforms replete with cholesterol and sphingolipids. We hypothesized that the dopamine D1 receptor (D1 R) contains structural features that allow it to reside in lipid rafts for its activity. Mutation of C347 palmitoylation site and Y218 of a newly identified Cholesterol Recognition Amino Acid Consensus motif resulted in the exclusion of D1 R from lipid rafts, blunted cAMP response, impaired sodium transport, and increased oxidative stress in renal proximal tubule cells (RPTCs). Kidney-restricted silencing of Drd1 in C57BL/6J mice increased blood pressure (BP) that was normalized by renal tubule-restricted rescue with D1 R-wild-type but not the mutant D1 R 347A that lacks a palmitoylation site. Kidney-restricted disruption of lipid rafts by ß-MCD jettisoned the D1 R from the brush border, decreased sodium excretion, and increased oxidative stress and BP in C57BL/6J mice. Deletion of the PX domain of the novel D1 R-binding partner sorting nexin 19 (SNX19) resulted in D1 R partitioning solely to non-raft domains, while silencing of SNX19 impaired D1 R function in RPTCs. Kidney-restricted silencing of Snx19 resulted in hypertension in C57BL/6J mice. Our results highlight the essential role of lipid rafts for effective D1 R signaling.


Asunto(s)
Riñón/metabolismo , Microdominios de Membrana/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Sitios de Unión/genética , Presión Sanguínea/genética , Presión Sanguínea/fisiología , Células Cultivadas , AMP Cíclico/metabolismo , Silenciador del Gen , Humanos , Túbulos Renales Proximales/metabolismo , Lipoilación , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Estrés Oxidativo , Receptores de Dopamina D1/deficiencia , Receptores de Dopamina D1/genética , Sodio/metabolismo
5.
Am J Physiol Renal Physiol ; 316(3): F506-F516, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30566002

RESUMEN

G protein-coupled receptors (GPCRs) in the kidney regulate the reabsorption of essential nutrients, ions, and water from the glomerular filtrate. Abnormalities in renal epithelial ion transport play important roles in the pathogenesis of essential hypertension. The orphan G protein-coupled receptor 37L1 (GPR37L1), also known as endothelin receptor type B-like protein (ETBR-LP2), is expressed in several regions in the brain, but its expression profile and function in peripheral tissues are poorly understood. We found that GPR37L1 mRNA expression is highest in the brain, followed by the stomach, heart, testis, and ovary, with moderate expression in the kidney, pancreas, skeletal muscle, liver, lung, and spleen. Immunofluorescence analyses revealed the expression of GPR37L1 in specific regions within some organs. In the kidney, GPR37L1 is expressed in the apical membrane of renal proximal tubule cells. In human renal proximal tubule cells, the transient expression of GPR37LI increased intracellular sodium, whereas the silencing of GPR37LI decreased intracellular sodium. Inhibition of Na+/H+ exchanger isoform 3 (NHE3) activity abrogated the GPR37L1-mediated increase in intracellular sodium. Renal-selective silencing of Gpr37l1 in mice increased urine output and sodium excretion and decreased systolic and diastolic blood pressures. The renal-selective silencing of GPR37L1 decreased the protein expression of NHE3 but not the expression of Na+-K+-ATPase or sodium-glucose cotransporter 2. Our findings show that in the kidney, GPR37L1 participates in renal proximal tubule luminal sodium transport and regulation of blood pressure by increasing the renal expression and function of NHE3 by decreasing cAMP production. The role of GPR37L1, expressed in specific cell types in organs other than the kidney, remains to be determined.


Asunto(s)
Presión Sanguínea/fisiología , Transporte Iónico/fisiología , Riñón/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sodio/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Humanos , Túbulos Renales Proximales/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Ratones , Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
6.
Am J Physiol Cell Physiol ; 308(4): C289-96, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25428883

RESUMEN

Diversity of smooth muscle within the vascular system is generated by alternative splicing of exons, yet there is limited understanding of its timing or control mechanisms. We examined splicing of myosin phosphatase regulatory subunit (Mypt1) exon 24 (E24) in relation to smooth muscle myosin heavy chain (Smmhc) and smoothelin (Smtn) alternative exons (Smmhc E6 and Smtn E20) during maturation of mouse mesenteric artery (MA) smooth muscle. The role of transformer 2ß (Tra2ß), a master regulator of splicing in flies, in maturation of arterial smooth muscle was tested through gene inactivation. Splicing of alternative exons in bladder smooth muscle was examined for comparative purposes. MA smooth muscle maturation began after postnatal week 2 and was complete at maturity, as indicated by switching to Mypt1 E24+ and Smtn E20- splice variants and 11-fold induction of Smmhc. Similar changes in bladder were complete by postnatal day 3. Splicing of Smmhc E6 was temporally dissociated from Mypt1 E24 and Smtn E20 and discordant between arteries and bladder. Tamoxifen-induced smooth muscle-specific inactivation of Tra2ß within the first week of life but not in maturity reduced splicing of Mypt1 E24 in MAs. Inactivation of Tra2ß causing a switch to the isoform of MYPT1 containing the COOH-terminal leucine zipper motif (E24-) increased arterial sensitivity to cGMP-mediated relaxation. In conclusion, maturation of mouse MA smooth muscle begins postnatally and continues until sexual maturity. TRA2ß is required for specification during this period of maturation, and its inactivation alters the contractile properties of mature arterial smooth muscle.


Asunto(s)
Empalme Alternativo , Diferenciación Celular , Exones , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Edad , Animales , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Regulación del Desarrollo de la Expresión Génica , Genotipo , Técnicas In Vitro , Masculino , Arterias Mesentéricas/enzimología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Fosfatasa de Miosina de Cadena Ligera , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fenotipo , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina , Miosinas del Músculo Liso/genética , Miosinas del Músculo Liso/metabolismo , Vasodilatación , Vasodilatadores/farmacología
7.
Am J Physiol Heart Circ Physiol ; 308(9): H1039-50, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25724497

RESUMEN

Microcirculatory dysfunction may cause tissue malperfusion and progression to organ failure in the later stages of sepsis, but the role of smooth muscle contractile dysfunction is uncertain. Mice were given intraperitoneal LPS, and mesenteric arteries were harvested at 6-h intervals for analyses of gene expression and contractile function by wire myography. Contractile (myosin and actin) and regulatory [myosin light chain kinase and phosphatase subunits (Mypt1, CPI-17)] mRNAs and proteins were decreased in mesenteric arteries at 24 h concordant with reduced force generation to depolarization, Ca(2+), and phenylephrine. Vasodilator sensitivity to DEA/nitric oxide (NO) and cGMP under Ca(2+) clamp were increased at 24 h after LPS concordant with a switch to Mypt1 exon 24- splice variant coding for a leucine zipper (LZ) motif required for PKG-1α activation of myosin phosphatase. This was reproduced by smooth muscle-specific deletion of Mypt1 exon 24, causing a shift to the Mypt1 LZ+ isoform. These mice had significantly lower resting blood pressure than control mice but similar hypotensive responses to LPS. The vasodilator sensitivity of wild-type mice to DEA/NO, but not cGMP, was increased at 6 h after LPS. This was abrogated in mice with a redox dead version of PKG-1α (Cys42Ser). Enhanced vasorelaxation in early endotoxemia is mediated by redox signaling through PKG-1α but in later endotoxemia by myosin phosphatase isoform shifts enhancing sensitivity to NO/cGMP as well as smooth muscle atrophy. Muscle atrophy and modulation may be a novel target to suppress microcirculatory dysfunction; however, inactivation of inducible NO synthase, treatment with the IL-1 antagonist IL-1ra, or early activation of α-adrenergic signaling did not suppressed this response.


Asunto(s)
Lipopolisacáridos , Proteínas Musculares/metabolismo , Músculo Liso Vascular/enzimología , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Óxido Nítrico/metabolismo , Fosfoproteínas/metabolismo , Sepsis/enzimología , Transducción de Señal , Vasodilatación , Animales , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/deficiencia , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Genotipo , Péptidos y Proteínas de Señalización Intracelular , Isoenzimas , Masculino , Arterias Mesentéricas/enzimología , Arterias Mesentéricas/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Microcirculación , Proteínas Musculares/genética , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/enzimología , Atrofia Muscular/fisiopatología , Quinasa de Cadena Ligera de Miosina/deficiencia , Quinasa de Cadena Ligera de Miosina/genética , Fosfatasa de Miosina de Cadena Ligera/genética , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/genética , Oxidación-Reducción , Fenotipo , Fosfoproteínas/genética , ARN Mensajero/metabolismo , Sepsis/inducido químicamente , Sepsis/genética , Sepsis/fisiopatología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
8.
Microvasc Res ; 98: 166-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24534069

RESUMEN

Myosin phosphatase (MP) is a key target of signaling pathways that regulate smooth muscle tone and blood flow. Alternative splicing of MP targeting subunit (MYPT1) exon 24 (E24) generates isoforms with variable presence of a C-terminal leucine zipper (LZ) required for activation of MP by NO/cGMP. Here we examined the expression of MP and associated genes in a disease model in the coronary circulation. Female Yucatan miniature swine remained sedentary or were exercise-trained beginning eight weeks after placement of an ameroid constrictor around the left circumflex (LCX) artery. Fourteen weeks later epicardial arteries (~1mm) and resistance arterioles (~125 µm) were harvested and assayed for gene expression. MYPT1 isoforms were distinct in the epicardial arteries (E24-/LZ+) and resistance arterioles (E24+/LZ-) and unchanged by exercise training or coronary occlusion. MYPT1, CPI-17 and PDE5 mRNA levels were not different between arteries and arterioles while Kir2.1 and eNOS were 6.6-fold and 3.9-fold higher in the arterioles. There were no significant changes in transcript abundance in epicardial arteries of the collateralized (LCX) vs. non-occluded left anterior descending (LAD) territories, or in exercise-trained vs. sedentary pigs. There was a significant 1.2 fold increase in CPI-17 in collateral-dependent arterioles, independent of exercise, and a significant 1.7 fold increase in PDE5 in arterioles from exercise-trained pigs, independent of occlusion. We conclude that differences in MYPT1 E24 (LZ) isoforms, eNOS, and Kir2.1 distinguish epicardial arteries and resistance coronary arterioles. Up-regulation of coronary arteriolar PDE5 by exercise and CPI-17 by chronic occlusion could contribute to altered vasomotor responses and requires further study.


Asunto(s)
Oclusión Coronaria/enzimología , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Condicionamiento Físico Animal , Empalme Alternativo , Animales , Arteriolas/metabolismo , Secuencia de Bases , Circulación Coronaria , Modelos Animales de Enfermedad , Femenino , Humanos , Isoenzimas/metabolismo , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Porcinos , Porcinos Enanos
9.
Am J Physiol Heart Circ Physiol ; 306(2): H163-72, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24186099

RESUMEN

Each regional circulation has unique requirements for blood flow and thus unique mechanisms by which it is regulated. In this review we consider the role of smooth muscle contractile diversity in determining the unique properties of selected regional circulations and its potential influence on drug targeting in disease. Functionally smooth muscle diversity can be dichotomized into fast versus slow contractile gene programs, giving rise to phasic versus tonic smooth muscle phenotypes, respectively. Large conduit vessel smooth muscle is of the tonic phenotype; in contrast, there is great smooth muscle contractile diversity in the other parts of the vascular system. In the renal circulation, afferent and efferent arterioles are arranged in series and determine glomerular filtration rate. The afferent arteriole has features of phasic smooth muscle, whereas the efferent arteriole has features of tonic smooth muscle. In the splanchnic circulation, the portal vein and hepatic artery are arranged in parallel and supply blood for detoxification and metabolism to the liver. Unique features of this circulation include the hepatic-arterial buffer response to regulate blood flow and the phasic contractile properties of the portal vein. Unique features of the pulmonary circulation include the low vascular resistance and hypoxic pulmonary vasoconstriction, the latter attribute inherent to the smooth muscle cells but the mechanism uncertain. We consider how these unique properties may allow for selective drug targeting of regional circulations for therapeutic benefit and point out gaps in our knowledge and areas in need of further investigation.


Asunto(s)
Circulación Hepática , Contracción Muscular , Músculo Liso Vascular/metabolismo , Circulación Pulmonar , Circulación Renal , Animales , Humanos , Músculo Liso Vascular/fisiología
10.
Am J Physiol Heart Circ Physiol ; 307(4): H563-73, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24929853

RESUMEN

There is evidence for developmental origins of vascular dysfunction yet little understanding of maturation of vascular smooth muscle (VSM) of regional circulations. We measured maturational changes in expression of myosin phosphatase (MP) and the broader VSM gene program in relation to mesenteric small resistance artery (SRA) function. We then tested the role of the sympathetic nervous system (SNS) in programming of SRAs and used genetically engineered mice to define the role of MP isoforms in the functional maturation of the mesenteric circulation. Maturation of rat mesenteric SRAs as measured by qPCR and immunoblotting begins after the second postnatal week and is not complete until maturity. It is characterized by induction of markers of VSM differentiation (smMHC, γ-, α-actin), CPI-17, an inhibitory subunit of MP and a key target of α-adrenergic vasoconstriction, α1-adrenergic, purinergic X1, and neuropeptide Y1 receptors of sympathetic signaling. Functional correlates include maturational increases in α-adrenergic-mediated force and calcium sensitization of force production (MP inhibition) measured in first-order mesenteric arteries ex vivo. The MP regulatory subunit Mypt1 E24+/LZ- isoform is specifically upregulated in SRAs during maturation. Conditional deletion of mouse Mypt1 E24 demonstrates that splicing of E24 causes the maturational reduction in sensitivity to cGMP-mediated vasorelaxation (MP activation). Neonatal chemical sympathectomy (6-hydroxydopamine) suppresses maturation of SRAs with minimal effect on a conduit artery. Mechanical denervation of the mature rat renal artery causes a reversion to the immature gene program. We conclude that the SNS captures control of the mesenteric circulation by programming maturation of the SRA smooth muscle.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Arterias Mesentéricas/metabolismo , Arteria Renal/metabolismo , Sistema Nervioso Simpático/fisiología , Actinas/genética , Actinas/metabolismo , Animales , Diferenciación Celular , GMP Cíclico/metabolismo , Masculino , Arterias Mesentéricas/crecimiento & desarrollo , Arterias Mesentéricas/inervación , Ratones , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/genética , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Ratas , Ratas Sprague-Dawley , Arteria Renal/crecimiento & desarrollo , Arteria Renal/inervación , Sistema Nervioso Simpático/crecimiento & desarrollo , Vasoconstricción , Vasodilatadores/farmacología
11.
Cardiology ; 129(3): 163-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25301476

RESUMEN

OBJECTIVES: Ischemic preconditioning (IPC) induces cardioprotection against ischemia-reperfusion (IR) injury by inhibiting the mitochondrial permeability transition pore (mPTP). Here, we tested the hypothesis that IPC-induced cardioprotection is mediated by the phosphatase PTEN and PDE4 (phosphodiesterase 4). METHODS: Isolated hearts from wild-type mice (WT, n = 110) and myocyte-specific PTEN-knockout mice (PKO, n = 94) were exposed to IPC or control conditions followed by IR. Subcellular fractionation was performed by sucrose gradient ultracentrifugation. RESULTS: IPC limited myocardial infarct size (IS) in WT mice. The PDE4 inhibitor rolipram abolished the protective effect of IPC. However, small IS was found in PKO hearts after IR, and IPC did not decrease IS but enlarged it in PKO hearts. IPC promoted PDE4D localization to caveolin-3-enriched fractions in WT mice by increasing Akt levels at the caveolae. In PKO hearts, basal PDE4D levels were elevated at the caveolae, and IPC decreased PDE4D levels. Consistent with the subcellular PDE4D protein levels and its activity, elevation in intracellular Ca(2+) levels in the ischemic heart and opening of mPTP after IR were inhibited by IPC in WT mice, but not by IPC in PKO mice. CONCLUSIONS: IPC inhibits mPTP opening by regulating the PTEN/PDE4 signaling pathway.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Proteínas de Transporte de Membrana Mitocondrial , Fosfohidrolasa PTEN/metabolismo , Inhibidores de Fosfodiesterasa 4/metabolismo , Daño por Reperfusión/prevención & control , Transducción de Señal , Animales , Técnicas In Vitro/métodos , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Sci Rep ; 14(1): 15407, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965251

RESUMEN

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.


Asunto(s)
Comunicación Autocrina , Presión Sanguínea , AMP Cíclico , Oligopéptidos , Transducción de Señal , Animales , Humanos , Ratones , AMP Cíclico/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/metabolismo , Receptores de Neuropéptido/metabolismo , Túbulos Renales Proximales/metabolismo , Masculino , Riñón/metabolismo , Ratones Endogámicos C57BL , Receptores de Dopamina D1/metabolismo
13.
J Cardiovasc Pharmacol ; 62(1): 1-5, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23232843

RESUMEN

Sulfhydryl-dependent formation of interprotein disulfide bonds in response to physiological oxidative stimuli is emerging as an important mechanism in the regulation of various biological activities. Soluble guanylyl cyclase (sGC) and cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) are key enzymes for actions caused by cGMP-elevating agents, including nitric oxide (NO). Both sGC and PKG are dimers. The dimerization of sGC is obligatory for its activity, whereas the dimerization of PKG improving its signaling efficacy. sGC dimerization is decreased by endogenous and exogenous thiol reductants, associated with reduced cGMP elevation and attenuated vasodilatation to NO. The dimerization of PKG Iα is increased by oxidative stress, coincident with improved PKG signaling and augmented vasodilatation to NO. In coronary arteries, the dimerizations and activities of sGC and PKG are increased by hypoxia, accompanied by enhanced relaxation induced by NO. In contrast, the dimerizations and activities of these enzymes and NO-induced relaxation of pulmonary arteries are reduced by hypoxia. These opposite effects may result from divergent changes in the redox status of cytoplasmic reduced nicotinamide adenine dinucleotide phosphate between coronary and pulmonary arteries in response to hypoxia.


Asunto(s)
GMP Cíclico/fisiología , Compuestos de Sulfhidrilo/metabolismo , Vasodilatación/fisiología , Animales , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/fisiología , Dimerización , Disulfuros/química , Humanos , Oxidación-Reducción
14.
Biomolecules ; 13(7)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37509171

RESUMEN

Aging is a key independent risk factor of various vascular diseases, for which the regulatory mechanisms remain largely unknown. Bromodomain-containing protein 4 (BRD4) is a member of the Bromodomain and Extra-Terminal domain (BET) family and is an epigenetic reader playing diverse roles in regulating transcriptional elongation, chromatin remodeling, DNA damage response, and alternative splicing in various cells and tissues. While BRD4 was initially recognized for its involvement in cancer progression, recent studies have revealed that the aberrant expression and impaired function of BRD4 were highly associated with aging-related vascular pathology, affecting multiple key biological processes in the vascular cells and tissues, providing new insights into the understanding of vascular pathophysiology and pathogenesis of vascular diseases. This review summarizes the recent advances in BRD4 biological function, and the progression of the studies related to BRD4 in aging-associated vascular pathologies and diseases, including atherosclerosis, aortic aneurism vascular neointima formation, pulmonary hypertension, and essential hypertension, providing updated information to advance our understanding of the epigenetic mechanisms in vascular diseases during aging and paving the way for future research and therapeutic approaches.


Asunto(s)
Hipertensión Pulmonar , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Epigénesis Genética , Hipertensión Pulmonar/genética , Envejecimiento/genética
15.
Autophagy ; 19(5): 1491-1511, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36300763

RESUMEN

Ischemia-induced angiogenesis is critical for blood flow restoration and tissue regeneration, but the underlying molecular mechanism is not fully understood. ATG7 (autophagy related 7) is essential for classical degradative macroautophagy/autophagy and cell cycle regulation. However, whether and how ATG7 influences endothelial cell (EC) function and regulates post-ischemic angiogenesis remain unknown. Here, we showed that in mice subjected to femoral artery ligation, EC-specific deletion of Atg7 significantly impaired angiogenesis, delayed the recovery of blood flow reperfusion, and displayed reduction in HIF1A (hypoxia inducible factor 1 subunit alpha) expression. In addition, in cultured human umbilical vein endothelial cells (HUVECs), overexpression of HIF1A prevented ATG7 deficiency-reduced tube formation. Mechanistically, we identified STAT1 (signal transducer and activator of transcription 1) as a transcription suppressor of HIF1A and demonstrated that ablation of Atg7 upregulated STAT1 in an autophagy independent pathway, increased STAT1 binding to HIF1A promoter, and suppressed HIF1A expression. Moreover, lack of ATG7 in the cytoplasm disrupted the association between ATG7 and the transcription factor ZNF148/ZFP148/ZBP-89 (zinc finger protein 148) that is required for STAT1 constitutive expression, increased the binding between ZNF148/ZFP148/ZBP-89 and KPNB1 (karyopherin subunit beta 1), which promoted ZNF148/ZFP148/ZBP-89 nuclear translocation, and increased STAT1 expression. Finally, inhibition of STAT1 by fludarabine prevented the inhibition of HIF1A expression, angiogenesis, and blood flow recovery in atg7 KO mice. Our work reveals that lack of ATG7 inhibits angiogenesis by suppression of HIF1A expression through upregulation of STAT1 independently of autophagy under ischemic conditions, and suggest new therapeutic strategies for cancer and cardiovascular diseases.Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; atg7 KO: endothelial cell-specific atg7 knockout; BECN1: beclin 1; ChIP: chromatin immunoprecipitation; CQ: chloroquine; ECs: endothelial cells; EP300: E1A binding protein p300; HEK293: human embryonic kidney 293 cells; HIF1A: hypoxia inducible factor 1 subunit alpha; HUVECs: human umbilical vein endothelial cells; IFNG/IFN-γ: Interferon gamma; IRF9: interferon regulatory factor 9; KPNB1: karyopherin subunit beta 1; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; MEFs: mouse embryonic fibroblasts; MLECs: mouse lung endothelial cells; NAC: N-acetyl-l-cysteine; NFKB1/NFκB: nuclear factor kappa B subunit 1; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; RELA/p65: RELA proto-oncogene, NF-kB subunit; ROS: reactive oxygen species; SP1: Sp1 transcription factor; SQSTM1/p62: sequestosome 1; STAT1: signal transducer and activator of transcription 1; ULK1: unc-51 like autophagy activating kinase 1; ulk1 KO: endothelial cell-specific ulk1 knockout; VSMCs: mouse aortic smooth muscle cells; WT: wild type; ZNF148/ZFP148/ZBP-89: zinc finger protein 148.


Asunto(s)
Autofagia , Fibroblastos , Ratones , Humanos , Animales , Autofagia/genética , Células HEK293 , Factor de Transcripción STAT1 , Células Endoteliales de la Vena Umbilical Humana , Isquemia , Factor 1 Inducible por Hipoxia , Carioferinas , Proteínas de Unión al ADN , Factores de Transcripción , Subunidad alfa del Factor 1 Inducible por Hipoxia
16.
J Phys Chem Lett ; 14(14): 3397-3402, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36999661

RESUMEN

Nuclear magnetic resonance (NMR) is one of the most powerful analytical techniques. In order to obtain high-quality NMR spectra, a real-time Zangger-Sterk (ZS) pulse sequence is employed to collect low-quality pure shift NMR data with high efficiency. Then, a neural network named AC-ResNet and a loss function named SM-CDMANE are developed to train a network model. The model with excellent abilities of suppressing noise, reducing line widths, discerning peaks, and removing artifacts is utilized to process the acquired NMR data. The processed spectra with noise and artifact suppression and small line widths are ultraclean and high-resolution. Peaks overlapped heavily can be resolved. Weak peaks, even hidden in the noise, can be discerned from noise. Artifacts, even as high as spectral peaks, can be removed completely while not suppressing peaks. Eliminating perfectly noise and artifacts and smoothing baseline make spectra ultraclean. The proposed methodology would greatly promote various NMR applications.

17.
Sci Total Environ ; 880: 163335, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030360

RESUMEN

The issue of greenhouse gas (GHG) emissions resulting from the upgrading and reconstruction of municipal wastewater treatment plants (MWWTPs) along with improved water quality is receiving attention and research. There is an urgent need to explore the impact of upgrading and reconstruction on carbon footprint (CF) in order to address concerns that the upgrading and reconstruction will increase GHG emissions while improving water quality. Here we accounted for the CF of five MWWTPs in Zhejiang Province, China, before and after three different upgrading and reconstruction models - "Improving quality and efficiency" ("Mode I"), "Upgrading and renovation" ("Mode U") and "Improving quality and efficiency plus Upgrading and renovation" ("Mode I plus U"). The upgrading and reconstruction was found to not necessarily result in more GHG emissions. In contrast, the "Mode I" had a more significant advantage in terms of CF reduction (1.82-12.6 % reduction in CF). Overall, the ratio of indirect emissions to direct emissions (indirect emissions/direct emissions) and the amount of GHG emitted per unit of pollutant removed (CFCOD、CFTN、CFTP) decreased, while both the carbon and energy neutral rates increased significantly (up to 33.29 % and 79.36 % respectively) after all three upgrading and reconstruction modes. In addition, the wastewater treatment efficiency and capacity are the main factors that affect the level of carbon emission. The results of this study can provide a calculation model that can be used for other similar MWWTPs during the upgrading and reconstruction processes. More importantly, it can provide a new research perspective as well as valuable information to revisit the impact of upgrading and reconstruction in MWWTPs on GHG emissions.

18.
Basic Res Cardiol ; 107(4): 277, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22752341

RESUMEN

Remote ischemic preconditioning (RIPC) induces a prolonged late phase of multi-organ protection against ischemia-reperfusion (IR) injury. In the present study, we tested the hypothesis that RIPC confers late protection against myocardial IR injury by upregulating expression of interleukin (IL)-10. Mice were exposed to lower limb RIPC or sham ischemia. After 24 h, mice with RIPC demonstrated decreased myocardial infarct size and improved cardiac contractility following 30-min ischemia and 120-min reperfusion (I-30/R-120). These effects of RIPC were completely blocked by anti-IL-10 receptor antibodies. In IL-10 knockout mice, RIPC cardioprotection was lost, but it was mimicked by exogenous IL-10. Administration of IL-10 to isolated perfused hearts increased phosphorylation of the protein kinase Akt and limited infarct size after I-30/R-120. In wild-type mice, RIPC increased plasma and cardiac IL-10 protein levels and caused activation of Akt and endothelial nitric oxide synthase in the heart at 24 h, which was also blocked by anti-IL-10 receptor antibodies. In the gastrocnemius muscle, RIPC resulted in immediate inactivation of the phosphatase PTEN and activation of Stat3, with increased IL-10 expression 24 h later. Myocyte-specific PTEN inactivation led to increased Stat3 phosphorylation and IL-10 protein expression in the gastrocnemius muscle. Taken together, these results suggest that RIPC induces late protection against myocardial IR injury by increasing expression of IL-10 in the remote muscle, followed by release of IL-10 into the circulation, and activation of protective signaling pathways in the heart. This study provides a scientific basis for the use of RIPC to confer systemic protection against IR injury.


Asunto(s)
Interleucina-10/biosíntesis , Precondicionamiento Isquémico Miocárdico/métodos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Animales , Western Blotting , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regulación hacia Arriba
19.
Basic Res Cardiol ; 107(2): 248, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22298084

RESUMEN

The inflammatory cytokines interleukin (IL)-10 and tumor necrosis factor (TNF)-α play an important role in left ventricular (LV) remodeling after myocardial infarction (MI). Phosphatase and tensin homolog deleted on chromosome ten (PTEN) inactivates protein kinase Akt and promotes cell death in the heart. However, it is not known whether PTEN promotes post-MI remodeling by regulating IL-10 and TNF-α. MI was induced in wild-type (WT) mice and Pten heterozygous mutant (HET) mice. Pten adenoviruses (adPten) or empty vectors (adNull) were injected into the peri-infarct area of WT mice. LV dilation was attenuated and fractional shortening was increased in HET mice compared to WT mice. Survival rate and fractional shortening were decreased in adPten mice compared to adNull mice. Leukocyte infiltration into the peri-infarct area was attenuated in HET mice and worsened in adPten mice. PTEN expression was upregulated in the infarcted heart of WT mice. Partial inactivation of PTEN increased the production of IL-10 and decreased the expression of TNF-α and matrix metalloproteinase (MMP)-2 and -9 after MI in HET mice. PTEN overexpression caused opposite effects in the infarcted heart. Moreover in the infarcted heart of HET mice, Akt inhibition decreased Stat3 phosphorylation and IL-10 expression, and blockade of the IL-10 receptor increased TNF-α and MMP-2 expression. Both Akt inhibition and IL-10 receptor blockade abolished the attenuation of post-MI remodeling in HET mice. In conclusion, PTEN is critically involved in post-MI remodeling through the Akt/IL-10 signaling pathway. Therefore, targeting PTEN may be an effective approach to post-MI remodeling.


Asunto(s)
Interleucina-10/metabolismo , Infarto del Miocardio/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Remodelación Ventricular/fisiología , Animales , Western Blotting , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Infarto del Miocardio/patología
20.
Circ J ; 76(7): 1792-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22498562

RESUMEN

BACKGROUND: cGMP-dependent protein kinase type I (PKG I) plays a key role in vasodilatation caused by cGMP-elevating agents. It is a homodimer in mammalian cells, existing as 2 isoforms, Iα and Iß. The aim of the present study was both to determine whether PKG I dimerization and activity are modulated by hydrogen peroxide (H(2)O(2)) and its influence on vasodilatation. METHODS AND RESULTS: The dimers and monomers of total PKG I and PKG Iß were analyzed by Western blotting. PKG I activity was assayed by measuring the incorporation of (32)P into BPDEtide. Changes in vessels tension were determined by organ chamber technique. In isolated porcine coronary arteries, H(2)O(2) increased the dimers of total PKG I in a concentration-dependent manner, but had no effect on dimerization of PKG Iß. The dimerization of PKG I caused by H(2)O(2) was prevented by catalase but not by deferoxamine and tiron. H(2)O(2) promoted the translocation of PKG I from cytoplasm to membrane. H(2)O(2) enhanced the activity of PKG I and relaxations of porcine coronary arteries to the nitric oxide donor and 8-Br-cGMP. Inhibition of catalase under in vivo conditions significantly decreased rat mean arterial pressure, which was associated with increased dimerization of PKG I. CONCLUSIONS: The present study suggests that H(2)O(2) may enhance the activity of PKG Iα-and PKG I-dependent vasodilatation via increased dimerization of the enzyme.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Peróxido de Hidrógeno/farmacología , Músculo Liso Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Sal Disódica del Ácido 1,2-Dihidroxibenceno-3,5-Disulfónico/farmacología , Amitrol (Herbicida)/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/enzimología , Presión Sanguínea/efectos de los fármacos , Western Blotting , Catalasa/farmacología , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/enzimología , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Deferoxamina/farmacología , Dimerización , Relación Dosis-Respuesta a Droga , Activación Enzimática , Masculino , Músculo Liso Vascular/enzimología , Ratas , Ratas Sprague-Dawley , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA