Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Phys Chem Chem Phys ; 25(1): 402-409, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36477748

RESUMEN

8-Hydroxy-5-nitroquinoline (NO2-QN-OH) is an antimicrobial, anti-inflammatory and anticancer agent, and has been approved for use in the treatment of diseases. Its photosensitivity, however, cannot be overlooked. The photochemistry of 8-hydroxy-5-nitroquinoline in acetonitrile is investigated using transient absorption and time-resolved resonance Raman spectroscopies. By identifying the short-lived intermediates during the photoreaction, it is clear that the Tn state NO2-QN-OH is generated in 0.8 ps via an ultrafast ISC, followed by the IC in 8.5 ps to produce the T1 state. In neat acetonitrile, the T1 state NO2-QN-OH undergoes intramolecular proton transfer and tautomerizes to form T1 state NO2-QNH-O. To our knowledge, this is the first time that the intramolecular excited state proton transfer of hydroxyl-quinolines in an aprotic polar solvent is observed.


Asunto(s)
Dióxido de Nitrógeno , Protones , Espectrometría Raman , Solventes/química
2.
Phys Chem Chem Phys ; 24(30): 18427-18434, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35881619

RESUMEN

Hydroxyaromatic compounds (ArOHs) have a wide range of applications in catalytic synthesis and biological processes due to their increased acidity upon photo-excitation. The proton transfer of ArOHs via the excited singlet state has been extensively studied. However, there has still been a debate on the unique type of ArOH that can undergo an ultrafast intersystem crossing. The nitro group in p-nitrophenylphenol (NO2-Bp-OH) enhances the spin-orbit coupling between excited singlet states and the triplet manifold, enabling ultrafast intersystem crossing and the formation of the long-lived lowest excited triplet state (T1) with a high yield. In this work, we used time-resolved transient absorption to investigate the excited state proton transfer of NO2-Bp-OH in its T1 state to t-butylamine, methanol, and ethanol. The T1 state of the deprotonated form NO2-Bp-O- was first observed and identified in the case of t-butylamine. Kinetic analysis demonstrates that the formation of the hydrogen-bonded complex with methanol and ethanol as proton acceptors involves their trimers. The alcohol oligomer size required in the excited state proton transfer process is dependent on the excited acidity of photoacid.


Asunto(s)
Aminas , Protones , Aminas/química , Butilaminas , Etanol , Cinética , Metanol , Dióxido de Nitrógeno
3.
J Chem Phys ; 151(23): 234303, 2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31864261

RESUMEN

The initial nonadiabatic decay dynamics of E,E-2,4-hexadienal (HAL) in the light absorbing S2(ππ*) state were studied using resonance Raman spectroscopy and complete-active space self-consistent field (CASSCF) calculations. The UV and vibrational spectra were assigned on the basis of the UV absorption, Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-band resonance Raman spectra in cyclohexane and acetonitrile were obtained at 282.4, 273.9, 266.0, 252.7, and 245.9 nm excitation wavelengths, respectively, to probe the corresponding structural dynamics of HAL. The A-band absorption cross section and the corresponding absolute resonance Raman cross sections were simulated using a simple model based on the time-dependent wave-packet theory in a Brownian oscillator model. The geometric structures of the singlet electronic excited states and their curve-crossing points were optimized at the CASSCF level of theory. The obtained short-time structural dynamics in easy-to-visualize internal coordinates were then compared with the CASSCF-predicted structural-parameter changes of S2(ππ*)S1(nπ*)-n (n = 1-4). Our results indicate that the initial population of HAL in the S2 state ramifies in or nearby the Franck-Condon (FC) region, leading to five S2(ππ*) → S1(nπ*) internal conversion pathways due to the flexibility of the molecular chain and the different electronic resonant structures formed nearby FC of the S2 state. Then, the formed S1 transient species, which have different geometric structures and different energy partitions, undergo different photophysical processes, such as S1 → S0 internal conversion, S1 → T1 intersystem crossing, and the S1 → S'1 photoisomerization reaction. The substitution effect on the S2(ππ*) → S1(nπ*) internal conversion dynamics and the trans-cis photoisomerization reaction is proposed in terms of the p-π conjugation interaction or the p-σ superconjugation interaction.

4.
Phys Chem Chem Phys ; 20(17): 11876-11881, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29662995

RESUMEN

Solvent assisted excited state intramolecular proton or hydrogen transfer has received much attention in bi-functional molecules with hydrogen donating and hydrogen accepting groups. As a typical photoacid, 1-naphthol exhibits photo-stable behavior in methanol; whether this would be disrupted by a bonded hydrogen accepting group contained in the molecule is still not assured. We present nanosecond transient absorption measurements relating to kinetics and the characteristic absorption of key intermediates upon the excitation of 4-nitro-1-naphthol in alcoholic solutions, and also transient resonance Raman spectroscopy studies combined with theoretical calculations to identify the structures of these intermediates, and we reveal the reaction mechanism to be stepwise deprotonation, hydrogen abstraction and protonation. These results demonstrate that alcohol assisted intramolecular proton or hydrogen transfer cannot occur in this system, but that the solvent cluster plays an important role during such stepwise reactions.

5.
J Phys Chem A ; 122(10): 2732-2738, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29488758

RESUMEN

Irradiation of nitro-PAHs in solution at ambient conditions leads to formation of its lowest excited triplet, dissociation intermediates nitrogen oxide (NO•) and aryloxy radical (Ar-O•). Experimental and theoretical studies demonstrated that Franck-Condon excited singlet state SFC(ππ*) to a receiver, higher-energy triplet state Tn(nπ*) controlled the ultrafast population of the triplet state and, hence, the slight fluorescence yield of nitronaphthalenes. However, the detailed information about the curve-crossings of potential energy surfaces and the major channels for forming T1 species and Ar-O• radical were unclear. Here, by using the CASSCF//CASPT2 method, an efficient decay channel is revealed: S2-FC-1NN → S2-MIN-1NN or S2T3-MIN-1NN → T3-MIN-1NN or T3T2-MIN-1NN→ T2-MIN-1NN or T2T1-MIN-1NN → T1-MIN-1NN. This explains the high yield of T1-1NN species and minor yield of Ar-O• and NO• radicals. The calculation results suggest the bifurcation processes take place predominantly after the internal conversion to the T1-1NN state via T2T1-MIN-1NN, one leads to T1-MIN-1NN, while the other to T1-MIN-ISO to produce Ar-O• and NO• radicals.

6.
J Phys Chem A ; 122(43): 8530-8538, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295485

RESUMEN

The microsolvation and photophysics of 3-amino-1,2,4-triazole (3AT) after excitation to the light-absorbing S2(nπ*) state were studied by using resonance Raman spectroscopy and single component artificial force-induced reaction (SC-AFIR) in a global reaction route mapping (GRRM) strategy. The vibrational spectra were assigned on the basis of experimental data and density functional theory (DFT) calculations. The resonance Raman spectra of 3AT were measured to probe the excited state structural dynamics in the Franck-Condon region. The conformations of 3AT(CH3CN)1, 3AT(CH3OH)2, and 3AT(H2O)2 clusters were determined by combining vibrational spectrum experiments and B3LYP/6-311++G(d,p) computations. DFT calculations were carried out to obtain the minimal excitation energies of the lower-lying singlet excited states, and the curve-crossing points. It was revealed that the short-time structural dynamics of 3AT were dominated by the N-N stretching coordinates. An excited state decay mechanism is proposed: 3AT is initially excited to the S2(nπ*) state, then the conical intersection (CI) of the S2(nπ*)/S1(ππ*) potential energy surfaces is crossed, and 3AT then decays to the lower solvent-dependent excited state S1(ππ*). It subsequently returns to the S0 state, accompanied by a large Stokes fluorescence shift, which was interpreted as the stabilized S1(ππ*) excited state bonding to several water molecules via intermolecular hydrogen bonding.

7.
J Phys Chem A ; 122(7): 1831-1837, 2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29432008

RESUMEN

Nanosecond transient absorption and theoretical calculations have been used to investigate the intermolecular hydrogen abstractions from alcohols and 1-naphthol by the lowest excited triplet (T1) of 1-chloro-4-nitronaphthalene upon excitation of the compound in organic solvents. The hydrogen abstraction of T1 from hydroxy group of 1-naphthol takes place through an electron transfer followed by a proton transfer through hydrogen bonding interaction with rate constants of ∼109 M-1 s-1. Hydrogen-bonding is crucial in this process, indicated by the observation of a half reduction for T1 yield when increasing the concentration of 1-naphthol. The hydrogen abstraction in this way can be decelerated by increasing solvent polarity and hydrogen-bonding donor ability. The T1 of 1-chloro-4-nitronaphthalene can undergo one-step H atom abstraction from alkyl hydrogen in alcoholic solvents, with rate constants of ∼104 M-1 s-1, and produce radical intermediates with the absorption maximum at 368 nm. DFT calculation results indicate both oxygens of the nitro group are active sites for hydrogen abstraction, and the difference of activation barriers for formation of two radical isomers is only 1.0 kcal/mol.

8.
J Phys Chem A ; 122(26): 5710-5720, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29889517

RESUMEN

The vibrational spectra of 4,6-dimethyl-2-mercaptopyrimidine (DMMP) in acetonitrile, methanol, and water were assigned by resonance Raman spectroscopy through a combination of Fourier-transform infrared spectroscopy (FT-IR), FT-Raman UV-vis spectroscopy, and density functional theoretical (DFT) calculations. The FT-Raman spectra show that the neat solid DMMP is formed as a dimer due to intermolecular hydrogen bonding. In methanol and water, however, the majority of the Raman spectra were assigned to the vibrational modes of DMMP(solvent) n ( n = 1-4) clusters containing NH···O hydrogen bonds. The intermolecular NH···O hydrogen bond interactions, which are key constituents of the stable DMMP thione structure, revealed significant structural differences in acetonitrile, methanol, and water. In addition, UV-induced hydrogen transfer isomeric reactions between the thione and thiol forms of DMMP were detected in water and acetonitrile. DFT calculations indicate that the observed thione → thiol tautomerization should occur easily in lower excited states in acetonitrile and water.

9.
J Chem Phys ; 146(11): 114305, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28330344

RESUMEN

The excited-state structural dynamics and the decay mechanism of 2(1H)-pyridinone (NHP) after excitation to the S4(21ππ*) light-absorbing state were studied using resonance Raman spectroscopy and complete-active space self-consistent field (CASSCF) calculations. The B-band absorption cross-section and the corresponding absolute resonance Raman cross-sections were simulated using a simple model based on time-dependent wave-packet theory. The geometric structures of the singlet electronic excited states and their curve-crossing points were optimized at the CASSCF level of theory. The obtained short-time structural dynamics in easy-to-visualize internal coordinates were then compared with the CASSCF-predicted structural-parameter changes of S4(21ππ*)/S3(21nπ*)-MIN, S4(21ππ*)/S1(11nπ*)-MIN, and S4(21ππ*)-MIN. Our results indicate that the initial population of NHP in the S4 state bifurcates in or near the Franck-Condon region, leading to two predominant (S4S3-MIN and S4S1-MIN) internal conversion pathways. The lowest-lying S2(11ππ*) excited state is finally formed via subsequent internal conversions S3(21nπ*)/S2(11ππ*)-MIN and S1(11nπ*)/S2(11ππ*)-MIN. The enol-keto tautomeric mechanism does not seem to play a role. The decay mechanism in the singlet realm is proposed.

10.
J Org Chem ; 80(7): 3462-70, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25734665

RESUMEN

Intramolecular hydrogen abstraction reactions among ketoprofen (KP) and purine nucleoside dyads have been proposed to form ketyl-sugar biradical intermediates in acetonitrile. Femtosecond transient absorption studies on KP and purine nucleoside dyads reveal that the triplet state of the KP moiety of the dyads with cisoid structure decay faster (due to an intramolecular hydrogen abstraction reaction to produce a ketyl-sugar biradical intermediate) than the triplet state of the KP moiety of the dyads with transoid structure detected in acetonitrile solvent. For the cisoid 5-KP-dG dyad, the triplet state of the KP moiety decays too fast to be observed by ns-TR(3); only the ketyl-sugar biradical intermediates are detected by ns-TR(3) in acetonitrile. For the cisoid 5-KP-dA dyad, the triplet states of the KP moiety could be observed at early nanosecond delay times, and then it quickly undergoes intramolecular hydrogen abstraction to produce a ketyl-sugar biradical intermediate. For the cisoid 5-KPGly-dA and transoid 3-KP-dA dyads, the triplet state of the KP moiety had a longer lifetime due to the long distance chain between the KP moiety and the purine nucleoside (5-KPGly-dA) and the transoid structure (3-KP-dA). The experimental and computational results suggest that the ketyl-sugar biradical intermediate is generated with a higher efficiency for the cisoid dyad. However, the transoid dyad exhibits similar photochemistry behavior as the KP molecule, and no ketyl-sugar biradical intermediate was observed in the ns-TR(3) experiments for the transoid 3-KP-dA dyad.


Asunto(s)
Acetonitrilos/química , Carbohidratos/química , Hidrógeno/química , Cetoprofeno/química , Cetosas/química , Nucleósidos de Purina/química , Computadores Moleculares , Fotoquímica , Análisis Espectral , Factores de Tiempo
11.
J Phys Chem A ; 119(5): 832-42, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25559740

RESUMEN

The photophysics and photochemistry of thioacetamide (CH3CSNH2) after excitation to the S2 electronic state were investigated by using resonance Raman spectroscopy in conjunction with the complete active space self-consistent field (CASSCF) method and density functional theory (DFT) calculations. The A-band resonance Raman spectra in acetonitrile, methanol, and water were obtained at 299.1, 282.4, 266.0, 252.7, and 245.9 nm excitation wavelengths to probe the structural dynamics of thioacetamide in the S2 state. CASSCF calculations were done to determine the transition energies and structures of the lower-lying excited states, the conical intersection points CI(S2/S1) and CI(S1/S0), and intersystem crossing points. The structural dynamics of thioacetamide in the S2 state was revealed to be along eight Franck-Condon active vibrational modes ν15, ν11, ν14, ν10, ν8, ν12, ν18, and ν19, mostly in the CC/CS/CN stretches and the CNH8,9/CCH5,6,7/CCN/CCS in-plane bends as indicated by the corresponding normal mode descriptions. The S2 → S1 decay process via the S2/S1 conical intersection point as the major channel were excluded. The thione-thiol photoisomerization reaction mechanism of thioacetamide via the S2,FC → S'1,min excited state proton transfer (ESPT) reaction channel was proposed.


Asunto(s)
Protones , Teoría Cuántica , Tioacetamida/química , Espectrofotometría Ultravioleta , Espectrometría Raman
12.
J Chem Phys ; 143(17): 175103, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26547183

RESUMEN

Ultrahigh quantum yields of intersystem crossing to the lowest triplet state T1 are observed for 2-thiouracils (2TU), which is in contrast to the natural uracils that predominantly exhibit ultrafast internal conversion to the ground state upon excitation to the singlet excited state. The intersystem crossing mechanism of 2TU has recently been investigated using second-order perturbation methods with a high-level complete-active space self-consistent field. Three competitive nonadiabatic pathways to the lowest triplet state T1 from the initially populated singlet excited state S2 were proposed. We investigate the initial decay dynamics of 2TU from the light absorbing excited states using resonance Raman spectroscopy, time-dependent wave-packet theory in the simple model, and complete-active space self-consistent field (CASSCF) and time dependent-Becke's three-parameter exchange and correlation functional with the Lee-Yang-Parr correlation functional (TD-B3LYP) calculations. The obtained short-time structural dynamics in easy-to-visualize internal coordinates were compared with the CASSCF(16,11) predicted key nonadiabatic decay routes. Our results indicate that the predominant decay pathway initiated at the Franck-Condon region is toward the S2/S1 conical intersection point and S2T3 intersystem crossing point, but not toward the S2T2 intersystem crossing point.


Asunto(s)
Tiouracilo/química , Espectroscopía de Absorción de Rayos X , Acetonitrilos/química , Modelos Moleculares
13.
J Phys Chem A ; 118(17): 3168-74, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24712643

RESUMEN

Density functional theory, UV absorption, and Raman spectroscopy are used to investigate the structure and properties of TDO in aqueous solution. The equilibrium structures, UV absorption spectra, interaction energies, and Raman spectroscopy data of TDO, AIMSA, and 12 TDO or AIMSA clusters are calculated. Raman spectroscopy experiments are carried out by 488 and 208 nm laser excitation. The Raman spectra of TDO in solid and aqueous phases have been compared, and the most possible structure for TDO in aqueous phase was deduced from analysis of the DFT calculations for the examined models, the experimental UV absorption spectrum, and Raman spectra of TDO. The interaction energy results show that TDO's solubility in water is originated from the TDO-water cyclic oligomer. The calculated UV absorption and Raman spectra of the I2·2H2O-cyc cluster model agree with the experimental results of TDO in aqueous solution very well.

14.
J Chem Phys ; 140(19): 194305, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24852536

RESUMEN

The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S2(A'), S6(A'), and S7(A') excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S2(A'), S6(A'), and S7(A') excited states were very different. The conical intersection point CI(S2/S1) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S2(A') state: the radiative S(2,min) → S0 transition and the nonradiative S2 → S1 internal conversion via CI(S2/S1). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S1/T1) in the excited state decay dynamics of PITC is evaluated.

15.
J Chem Phys ; 141(13): 134312, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25296811

RESUMEN

The photophysics of two α,ß-carboxylic methyl esters after excitation to the light absorbing S2(ππ(*)) state were studied by using the resonance Raman spectroscopy and complete active space self-consistent field (CASSCF) method calculations. The vibrational spectra were assigned on the basis of the experimental measurements and the B3LYP/6-31G(d) computations, as well as the normal mode analysis. The A-band resonance Raman spectra of methyl 2,4-pentadienoate (M24PDA) and methyl trans cronoate (MTCA) were measured to probe the structural dynamics in Franck-Condon region. CASSCF calculations were done to obtain the minimal excitation energies and geometric structures of the lower-lying singlet and triplet excited states, and the curve-crossing points. It was revealed that the short-time structural dynamics of M24PDA was dominated by the Cα=Cß-C4=C5 stretch coordinate, while that of MTCA was mostly along the Cα=Cß and the C=O stretch motion. Comparison of the structural dynamics of M24PDA and MTCA with that of 3-methyl-3-pentene-2-one (3M3P2O) indicated that the structural dynamics of MTCA is similar to that of 3M3P2O but different than that of M24PDA in that the variation of the Raman intensity ratios for ν7/ν8, (ν7+ν8)/2ν8, (ν7+2ν8)/3ν8, (ν7+3ν8)/4ν8 of MTCA is similar to that of 3M3P2O but different from that of M24PDA. It is found that the substitution of methyl group in the α(')-position of α,ß-enones by methoxyl group does not substantially affect the short-time structural dynamics, while the substitution of vinyl group in the ß-position changes significantly the short-time structural dynamics and the subsequent decay processes. A detailed decay mechanism is proposed. Two sub-processes which consider the reconjugation and the subsequent charge-transfer reaction of O=C-Cα=Cß chromophore were postulated to describe the variation of short-time structural dynamics with the different substitution.

16.
Water Sci Technol ; 69(4): 833-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24569284

RESUMEN

The adsorption and desorption properties of D001 resin for Cd(II) has been investigated. Batch studies were carried out with various pH, contact time, temperature and initial concentrations, and then column studies were conducted. The results showed that the optimal adsorption condition was at pH value of 3.0 in HAc-NaAc medium. The resin exhibited a high Cd(II) uptake of 185.8 mg/g at 298 K. The apparent activation energy Ea is 5.05 kJ/mol and the sorption thermodynamic parameters are ΔH = 21.1 kJ/mol, ΔS = 0.122 kJ/(mol K) and ΔG298K = -15.3 kJ/mol, which indicated that the adsorption process was spontaneous and endothermic. Compared with the Freundlich isotherm, the sorption of Cd(II) obeys the Langmuir isotherm better. The Thomas model was delineated here to predict the breakthrough curves based on the experimental column study data. Furthermore, the resin could be regenerated through the desorption of the Cd(II) anions using 1 mol/L HCl solution and could be reused to adsorb again. The infrared spectroscopic technique was undertaken. Compared with other absorbents, D001 resin was relatively low cost and was effective in removing Cd(II) ions.


Asunto(s)
Cadmio/química , Resinas de Intercambio Iónico/química , Contaminantes Químicos del Agua/química , Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Termodinámica
17.
Water Sci Technol ; 69(12): 2446-51, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24960006

RESUMEN

An experimental study on the removal of Cu(II) from aqueous solutions by D151 resin was carried out in a batch system. The response surface methodology (RSM)-guided optimization indicated that the optimal adsorption conditions are: temperature of 35 °C, pH of 5.38, and initial Cu(II) concentration of 0.36 mg/mL, and the predicted adsorption capacity from the model reached 328.3 mg/g. At optimum adsorption conditions, the adsorption capacity of Cu(II) was 321.6 mg/g, which obtained from real experiments what were in close agreement with the predicted value. The adsorption isotherms data fitted the Langmuir model well, and the correlation coefficient has been evaluated. The calculation data of thermodynamic parameters (ΔG, ΔS, and ΔH) confirmed that the adsorption process was endothermic and spontaneous in nature. The desorption study revealed that Cu(II) can be effectively eluted by 1 mol/l HCl solution, and the recovery was 100%. Moreover, the characterization was undertaken by infrared (IR) spectroscopy.


Asunto(s)
Cobre/química , Resinas Sintéticas/química , Contaminantes Químicos del Agua/química , Agua/química , Adsorción , Espectrofotometría Infrarroja , Termodinámica , Purificación del Agua
18.
Mar Pollut Bull ; 205: 116566, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875971

RESUMEN

The dinoflagellate cysts present in the ballast water sediment of foreign ships in Shanghai Port have not been previously studied. Therefore, sediment samples were collected from the ballast water of 16 foreign ships in Shanghai Port, and the types of dinoflagellate cysts were identified and their abundance was calculated, with a specific focus on the analysis of toxic and harmful dinoflagellates. Moreover, simulations of temperature and salinity conditions throughout the year in the Shanghai port waters were conducted to carry out dinoflagellate cyst germination experiments, with analyze and compare the germinated dinoflagellate cysts under different conditions. Dinoflagellate cysts were found in 100 % of the ship sediment samples, including a total of 9 species of toxic and harmful dinoflagellate cysts. In the germination experiment, 15 °C was found to be the optimal temperature for the germination of dinoflagellate cysts in ballast water sediment, and high salinity is more favorable for cyst germination.


Asunto(s)
Dinoflagelados , Sedimentos Geológicos , Salinidad , Navíos , Dinoflagelados/fisiología , China , Sedimentos Geológicos/química , Biodiversidad , Temperatura
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(12): 3244-8, 2013 Dec.
Artículo en Zh | MEDLINE | ID: mdl-24611379

RESUMEN

In the present paper, quantum chemistry calculations method based on the density functional theory (DFT) and surface-enhanced Raman scattering (SERS) spectroscopy technique were used to investigate the adsorption behavior and enhancement effect of thiabendazole on the nanometer silver colloid surface systematically from theoretical and experimental perspective. By sodium citrate's reduction reaction, nanometer silver colloid with has high surface-enhanced Raman scattering activity was prepared. And then the authors studied the surface-enhanced Raman scattering spectroscopy of the thiabendazole in aqueous solution. The authors carried on the detailed quantum chemistry calculations for the interaction between thiabendazole and nanometer silver colloid, using the TBZ-Ag4 model to get the adsorption properties of thiabendazole molecule on nanometer silver colloid. Combining FT-Raman spectrum with the theoretical calculation results by the B3LYP/6-311G(d) theoretical level, and the visualization of GaussianView5. 0 software, the FT-Raman vibration spectrum and the surface-enhanced Raman scattering spectroscopy of thiabendazole molecule were assigned systematically. All the theoretical and experimental results show that all atoms of thiabendazole are in one plane and the point group of thiabendazole is Cs; Thiabendazole has high surface-enhanced Raman scattering activity on nanometer silver colloid surface; the thiabendazole is absorbed on silver colloid particles by S atom, and the long axis of thiabendazole molecule is perpendicular to the nanometer silver colloid surface; the trace concentration of thiabendazole can be detected rapidly and effectively with the surface-enhanced Raman scattering spectroscopy technique. This work provides a theoretical and experimental basis for the study of thiabendazole's characteristics and its rapid detection.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121997, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36308824

RESUMEN

Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), often found in polluted air, are carcinogenic and mutagenic. The nitro group increases the spin-orbit coupling and results in the lowest excited triplet (T1) on the picosecond time scale with a high yield. The electron-donating substituents have a significant influence on the photophysics and photochemistry of nitro-PAHs. We used transient absorption spectroscopy and kinetic analysis to investigate the reactivities of the T1 state 1-methoxy-4-nitronaphthalene (3MeO-NN) and 1-methyl-4-nitronaphthalene (3Me-NN). The results show that the methoxy and methyl substitutions have a minor effect on their hydrogen abstraction and electron accepting abilities. The main distinction is their reaction rates towards protons. The second order rate constant of 3MeO-NN towards protons is three orders of magnitude greater than that of 3Me-NN, indicating that 3MeO-NN has a stronger hydrogen bond accepting ability. The kinetic analysis reveals that the dimer of 2,2,2-trifluoroethanol participates in the reaction with 3MeO-NN. These results suggest that the formation of the hydrogen-bonded complex is responsible for the unusually short lifetime of 3MeO-NN in methanol solution and the lack of hydrogen abstraction radicals during the decay of 3MeO-NN in methanol.


Asunto(s)
Electrones , Hidrocarburos Policíclicos Aromáticos , Cinética , Protones , Metanol , Hidrocarburos Policíclicos Aromáticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA