Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Analyst ; 146(3): 979-988, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33554228

RESUMEN

As one of the significant serum cytokines, platelet-derived growth factor-BB (PDGF-BB) is a crucial protein biomarker overexpressed in human life-threatening tumors, the sensitive identification and quantification of which are urgently desired but challenging. Herein we report a novel core-shell nanoarchitecture consisting of Cu-based metal-organic frameworks (Cu-MOFs) and covalent organic frameworks (denoted as TpBD-COFs), which was used to prepare an aptasensor for the detection of platelet-derived growth factor-BB (PDGF-BB). The central Cu-MOFs function as signal labels with no need for extra redox media, whereas the porous TpBD serves as the shell to immobilize the PDGF-BB-targeted aptamer strands in abundance via strong interactions involving π-π stacking, electrostatic, and hydrogen bonding interactions. The proposed aptasensor based on Cu-MOF@TpBD can achieve a detection limit as low as 0.034 pg mL-1 within the dynamic detection range from 0.0001 to 60 ng mL-1. The hybridization of MOFs and COFs, together with the immobilization with the specific analyte targeted aptamer, provides a promising and propagable approach to prepare an aptasensor for the simple, sensitive, and selective detection of a specific biomarker in clinical diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Estructuras Metalorgánicas , Becaplermina , Humanos , Límite de Detección , Proteínas Proto-Oncogénicas c-sis
2.
Phys Chem Chem Phys ; 22(3): 1655-1664, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31894788

RESUMEN

Layered double hydroxide-supported Au-Cu alloy nanoparticles (NPs) were found to be highly efficient catalysts for the oxidative esterification of benzyl alcohol with methanol in the presence of molecular oxygen under visible-light irradiation to prepare methyl benzoate. Here, we report that alloying small amounts of copper into gold nanoparticles can increase the ability to activate oxygen molecules to O2˙- radicals and display greater charge heterogeneity to promote the cleavage of the C-H bond of benzyl alcohol molecules by reinforcing the coordination of the intermediate with unsaturated metal active sites due to the LSPR effect of alloy NPs, which is the rate-limiting step of the reaction. Besides the Au-Cu alloy NPs, the support also played a pivotal role in the catalytic process. The support with the presence of acid-base pairs, in which the basic sites served as the reactant molecule adsorption sites to provoke the intermediate formation and the acidic sites promoted the recovery of the support surface, showed better performances by affecting the overall reaction rate completely. Moreover, applying this photocatalyst in the cross-esterification of aromatic alcohols and aliphatic alcohols displayed excellent yields.

3.
Phys Chem Chem Phys ; 21(2): 868-875, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30556817

RESUMEN

The electron transfer process (ETP) of a photocatalyst plays a crucial role in clarifying its photoelectrochemical catalytic mechanism. BiOX (X = F, Cl, Br, I) (001) surfaces display excellent photocatalytic performance due to the high separation efficiency of photogenerated electron-hole (e--h+) pairs in their own efficient internal electric field (IEF). The oxygen vacancies (OVs) on the surfaces could cause a change in localized electronic states, then improve the photocatalytic activity of BiOX. Here, the ETP at BiOX (001) surfaces with and without surface OVs were calculated and investigated using a DMol3 module based on density functional theory (DFT). The results showed that the electron transfer at the BiOX (001) surfaces and interfaces should be like this: firstly, the [-O-Bi-] layer at the interface received the photon energy, which made the electrons on the O atoms preferentially photo-induced to Bi atoms and left photo-induced holes on the interface O atoms. Then, the effective electrons on the interface Bi atoms were diffused to one- or multi- electron reactions, and at the same time, electrons from the bulk were transferred through the path of O → Bi → X → X → Bi → O on BiOX (001) surfaces under the IEF effect to interface O atoms, and consequently, maintain the stable proceeding of the photocatalytic reaction. More importantly, we found that the X atoms indeed played a key role in connecting the non-bonding interlayers of the BiOX nanocrystals and affecting the ETP on BiOX (001) surfaces as electron transmitters. The exploration of the OV introduction on BiOX (001) surfaces suggested that the OV-induced localized electronic states should increase the electron mobility and the charge carrier density to improve the photocatalytic activity of BiOX, especially for BiOCl and BiOBr. Our findings could provide new insight for deeply understanding the transfer and catalytic behaviour of photo-induced electrons at BiOX (001) surfaces and interfaces.

4.
Angew Chem Int Ed Engl ; 56(3): 816-820, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-27966808

RESUMEN

Efficient separation of photogenerated electrons and holes, and associated surface reactions, is a crucial aspect of efficient semiconductor photocatalytic systems employed for photocatalytic hydrogen production. A new CoOx /TiO2 /Pt photocatalyst produced by template-assisted atomic layer deposition is reported for photocatalytic hydrogen production on Pt and CoOx dual cocatalysts. Pt nanoclusters acting as electron collectors and active sites for the reduction reaction are deposited on the inner surface of porous TiO2 nanotubes, while CoOx nanoclusters acting as hole collectors and active sites for oxidation reaction are deposited on the outer surface of porous TiO2 nanotubes. A CoOx /TiO2 /Pt photocatalyst, comprising ultra-low concentrations of noble Pt (0.046 wt %) and CoOx (0.019 wt %) deposited simultaneously with one atomic layer deposition cycle, achieves remarkably high photocatalytic efficiency (275.9 µmol h-1 ), which is nearly five times as high as that of pristine TiO2 nanotubes (56.5 µmol h-1 ). The highly dispersed Pt and CoOx nanoclusters, porous structure of TiO2 nanotubes with large specific surface area, and the synergetic effect of the spatially separated Pt and CoOx dual cocatalysts contribute to the excellent photocatalytic activity.

5.
Angew Chem Int Ed Engl ; 53(11): 2935-40, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24604813

RESUMEN

Supported nanoparticles (NPs) of nonplasmonic transition metals (Pd, Pt, Rh, and Ir) are widely used as thermally activated catalysts for the synthesis of important organic compounds, but little is known about their photocatalytic capabilities. We discovered that irradiation with light can significantly enhance the intrinsic catalytic performance of these metal NPs at ambient temperatures for several types of reactions. These metal NPs strongly absorb the light mainly through interband electronic transitions. The excited electrons interact with the reactant molecules on the particles to accelerate these reactions. The rate of the catalyzed reaction depends on the concentration and energy of the excited electrons, which can be increased by increasing the light intensity or by reducing the irradiation wavelength. The metal NPs can also effectively couple thermal and light energy sources to more efficiently drive chemical transformations.

6.
Chemistry ; 19(18): 5731-41, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23463719

RESUMEN

Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400-700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.

7.
Chemistry ; 19(16): 5113-9, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23417892

RESUMEN

Cerium ions (Ce(3+)) can be selectively doped into the TiO2(B) core of TiO2(B)/anatase core-shell nanofibers by means of a simple one-pot hydrothermal treatment of a starting material of hydrogen trititanate (H2Ti3O7) nanofibers. These Ce(3+) ions (≈0.202 nm) are located on the (110) lattice planes of the TiO2(B) core in tunnels (width≈0.297 nm). The introduction of Ce(3+) ions reduces the defects of the TiO2(B) core by inhibiting the faster growth of (110) lattice planes. More importantly, the redox potential of the Ce(3+)/Ce(4+) couple (E°(Ce(3+)/Ce(4+))=1.715 V versus the normal hydrogen electrode) is more negative than the valence band of TiO2(B). Therefore, once the Ce(3+)-doped nanofibers are irradiated by UV light, the doped Ce(3+) ions--in close vicinity to the interface between the TiO2(B) core and anatase nanoshell--can efficiently trap the photogenerated holes. This facilitates the migration of holes from the anatase shell and leaves more photogenerated electrons in the anatase nanoshell, which results in a highly efficient separation of photogenerated charges in the anatase nanoshell. Hence, this enhanced charge-separation mechanism accelerates dye degradation and alcohol oxidation processes. The one-pot treatment doping strategy is also used to selectively dope other metal ions with variable oxidation states such as Co(2+/3+) and Cu(+/2+) ions. The doping substantially improves the photocatalytic activity of the mixed-phase nanofibers. In contrast, the doping of ions with an invariable oxidation state, such as Zn(2+), Ca(2+), or Mg(2+), does not enhance the photoactivity of the mixed-phase nanofibers as the ions could not trap the photogenerated holes.

8.
Innovation (Camb) ; 2(1): 100089, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-34557743

RESUMEN

The controlled generation of reactive oxygen species (ROS) to selectively epoxidize styrene is a grand challenge. Herein, cyano-group-modified carbon nitrides (CNCY x and CN-T y ) are prepared, and the catalysts show better performance in regulating ROS and producing styrene oxide than the cyano-free sample. The in situ diffuse reflectance infrared and density functional theory calculation results reveal that the cyano group acts as the adsorption and activation site of oxygen. X-ray photoelectron spectroscopy and NMR spectrum results confirm that the cyano group bonds with the intact heptazine ring. This unique structure could inhibit H2O2 and ⋅OH formation, resulting in high selectivity of styrene oxide. Furthermore, high catalytic activity is still achieved when the system scales up to 2.7 L with 100 g styrene under solar light irradiation. The strategy of cyano group modification gives a new insight into regulating spatial configuration for tuning the utilization of oxygen-active species and shows potential applications in industry.

9.
Chemistry ; 16(4): 1202-11, 2010 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-19918811

RESUMEN

Three catalytic oxidation reactions have been studied: The ultraviolet (UV) light induced photocatalytic decomposition of the synthetic dye sulforhodamine B (SRB) in the presence of TiO(2) nanostructures in water, together with two reactions employing Au/TiO(2) nanostructure catalysts, namely, CO oxidation in air and the decomposition of formaldehyde under visible light irradiation. Four kinds of TiO(2) nanotubes and nanorods with different phases and compositions were prepared for this study, and gold nanoparticle (Au-NP) catalysts were supported on some of these TiO(2) nanostructures (to form Au/TiO(2) catalysts). FTIR emission spectroscopy (IES) measurements provided evidence that the order of the surface OH regeneration ability of the four types of TiO(2) nanostructures studied gave the same trend as the catalytic activities of the TiO(2) nanostructures or their respective Au/TiO(2) catalysts for the three oxidation reactions. Both IES and X-ray photoelectron spectroscopy (XPS) proved that anatase TiO(2) had the strongest OH regeneration ability among the four types of TiO(2) phases or compositions. Based on these results, a model for the surface OH group generation, absorption, and activation of molecular oxygen has been proposed: The oxygen vacancies at the bridging O(2-) sites on TiO(2) surfaces dissociatively absorb water molecules to form OH groups that facilitate adsorption and activation of O(2) molecules in nearby oxygen vacancies by lowering the absorption energy of molecular O(2). A new mechanism for the photocatalytic formaldehyde decomposition with the Au/TiO(2) catalysts is also proposed, based on the photocatalytic activity of the Au-NPs under visible light. The Au-NPs absorb the light owing to the surface plasmon resonance effect and mediate the electron transfers that the reaction needs.

10.
Phys Chem Chem Phys ; 12(6): 1271-7, 2010 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-20119605

RESUMEN

Sodium hexa-titanate (Na(2)Ti(6)O(13)) nanofibers, which have microporous tunnels, were prepared by heating sodium tri-titanate nanofibers with a layered structure at 573 K. The void section of the tunnels consist of eight linked TiO(6) octahedra, having a quasi-rectangular shape and the sodium ions located in these tunnel micropores are exchangeable. The exchange of these sodium ions with divalent cations, such as Sr(2+) and Ba(2+) ions, induces moderate structural deformation of the tunnels due to the stronger electrostatic interactions between di-valent ions Sr(2+) and Ba(2+) and the solid substrate. However, as the size of Ba(2+) ions (0.270 nm) is larger than the minimum width (0.240 nm) of the tunnel, the deformation can lock the Ba(2+) ions in the nanofibers, whereas Sr(2+) ions (0.224 nm) are smaller than the minimum width so the fibers can release the Sr(2+) ions exchanged into the channels instead. Therefore, the hexa-titanate (Na(2)Ti(6)O(13)) nanofibers display selectivity in trapping large divalent cations, since the deformed tunnels cannot trap smaller cations within the fibers. The fibers can be used to selectively remove radioactive Ra(2+) ions, which have a similar size and ion-exchange ability to Ba(2+) ions, from wastewater for safe disposal.


Asunto(s)
Nanofibras/química , Óxidos/química , Radio (Elemento)/química , Radio (Elemento)/aislamiento & purificación , Titanio/química , Contaminantes Radiactivos del Agua/química , Contaminantes Radiactivos del Agua/aislamiento & purificación , Agua/química , Adsorción , Calor , Microscopía Electrónica de Transmisión , Modelos Moleculares , Conformación Molecular , Transición de Fase , Porosidad
11.
J Am Chem Soc ; 131(49): 17885-93, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19911792

RESUMEN

A new efficient photocatalyst structure, a shell of anatase nanocrystals on the fibril core of a single TiO(2)(B) crystal, was obtained via two consecutive partial phase transition processes. In the first stage of the process, titanate nanofibers reacted with dilute acid solution under moderate hydrothermal conditions, yielding the anatase nanocrystals on the fiber. In the subsequent heating process, the fibril core of titanate was converted into a TiO(2)(B) single crystal while the anatase crystals in the shell remained unchanged. The anatase nanocrystals do not attach to the TiO(2)(B) core randomly but coherently with a close crystallographic registry to the core to form a stable phase interface. For instance, (001) planes in anatase and (100) planes of TiO(2)(B) join together to form a stable interface. Such a unique structure has several features that enhance the photocatalytic activity of these fibers. First, the differences in the band edges of the two phases promote migration of the photogenerated holes from anatase shell to the TiO(2)(B) core. Second, the well-matched phase interfaces allow photogenerated electrons and holes to readily migrate across the interfaces because the holes migrate much faster than excited electrons, more holes than electrons migrate to TiO(2)(B) and this reduces the recombination of the photogenerated charges in anatase shell. Third, the surface of the anatase shell has both a strong ability to regenerate surface hydroxyl groups and adsorb O(2), the oxidant of the reaction, to yield reactive hydroxyl radicals (OH(.)) through reaction between photogenerated holes and surface hydroxyl groups. The adsorbed O(2) molecules can capture the excited electrons on the surface, forming reactive O(2)(-) species. The more reactive species generated on the external surface, the higher the photocatalytic activity will be, and generation of the reactive species also contributes to reducing recombination of the photogenerated charges. Indeed, the mixed-phase nanofibers exhibited superior photocatalytic activity for degradation of sulforhodamine B under UV light to the nanofibers of either pure phase alone or mechanical mixtures of the pure phase nanofibers with a similar phase composition. Finally, the nanofibril morphology has an additional advantage that they can be separated readily after reaction for reuse by sedimentation. This is very important because the high cost for separating the catalyst nanocrystals has seriously impeded the applications of TiO(2) photocatalysts on an industrial scale.

12.
Chem Commun (Camb) ; 55(83): 12503-12506, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31576389

RESUMEN

Polymeric carbon nitride is a promising candidate for metal-free photocatalysis, but it is hampered by low activity due to poor carrier separation efficiency and lack of active sites. We have constructed a bifunctionally-modified structure, containing cyano groups internally and carboxyl groups on the surface, that was about 205 times more active than unmodified carbon nitride. The internal cyano groups enhanced the photoelectric performance of carbon nitride, while the surface carboxyl groups acted as active sites to promote hydrogen production. It is anticipated that this work will inform the rational design of polymeric carbon nitride and inspire similar attempts to modify polymers.

13.
RSC Adv ; 9(25): 14391-14399, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35519351

RESUMEN

Photocatalytic reduction of CO2 using solar energy to decrease CO2 emission is a promising clean renewable fuel production technology. Recently, Bi-based semiconductors with excellent photocatalytic activity and carbon-based carriers with large specific surface areas and strong CO2 adsorption capacity have attracted extensive attention. In this study, activated carbon spheres (ACSs) were obtained via carbonization and steam activation of phenolic resin-based carbon spheres at 850 °C synthesized by suspension polymerization. Then, the BiOBr/ACSs sample was successfully prepared via a simple impregnation method. The as-prepared samples were characterized by XRD, SEM, EDX, DRS, PL, EIS, XPS, BET, CO2 adsorption isotherm and CO2-TPD. The BiOBr and BiOBr/ACSs samples exhibited high CO selectivity for photocatalytic CO2 reduction, and BiOBr/ACSs achieved a rather higher photocatalytic activity (23.74 µmol g-1 h-1) than BiOBr (2.39 µmol g-1 h-1) under simulated sunlight irradiation. Moreover, the analysis of the obtained results indicates that in this photocatalyst system, due to their higher micropore surface area and larger micropore volume, ACSs provide enough physical adsorption sites for CO2 adsorption, and the intrinsic structure of ACSs can offer effective electron transfer ability for a fast and efficient separation of photo-induced electron-hole pairs. Finally, a possible enhanced photocatalytic mechanism of BiOBr/ACSs was investigated and proposed. Our findings should provide new and important research ideas for the construction of highly efficient photocatalyst systems for the reduction of CO2 to solar fuels and chemicals.

14.
Sci Rep ; 9(1): 1280, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718720

RESUMEN

A facile one-pot two-stage photochemical synthesis of aromatic azoxy compounds and imines has been developed by coupling the selective reduction of nitroaromatic compounds with the selective oxidation of amines in an aqueous solution. In the first stage (light illumination, Ar atmosphere), the light excited nitroaromatic molecule abstract H from amine to form ArNO2H and amine radical, which then form nitrosoaromatic, hydroxylamine and imine compounds. Water acts as a green solvent for the dispersion of the reactants and facilitates the formation of nitrosoaromatic and hydroxylamine intermediate compounds. In the second stage (no light, air atmosphere), the condensation of nitrosoaromatic and hydroxylamine compounds yields aromatic azoxy product with the aid of molecular oxygen in air. This photochemical synthesis achieved both high conversion and high product selectivity (>99%) at room temperature.

16.
ACS Appl Mater Interfaces ; 8(29): 18815-21, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27383450

RESUMEN

To achieve uniform carbon coating on TiO2 nanomaterials, high temperature (>500 °C) annealing treatment is a necessity. However, the annealing treatment inevitably leads to the strong phase transformation from TiO2(B) with high lithium ion storage (LIS) capacity to anatase with low LIS one as well as the damage of nanostructures. Herein, we demonstrate a new approach to create TiO2(B)/carbon core/shell nanotubes (C@TBNTs) using a long-chain silane polymethylhydrosiloxane (PMHS) to bind the TBNTs by forming Si-O-Ti bonds. The key feature of this work is that the introduction of PMHS onto TBNTs can afford TBNTs with very high thermal stability at higher than 700 °C and inhibit the phase transformation from TiO2(B) to anatase. Such a high thermal property of PMHS-TBNTs makes them easily coated with highly graphitic carbon shell via CVD process at 700 °C. The as-prepared C@TBNTs deliver outstanding rate capability and electrochemical stability, i.e., reversible capacity above 250 mAh g(-1) at 10 C and a high specific capacity of 479.2 mAh g(-1) after 1000 cycles at 1 C. As far as we know, the LIS performance of our sample is the highest among the previously reported TiO2(B) anode materials.

17.
ACS Appl Mater Interfaces ; 8(25): 16503-10, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27281583

RESUMEN

Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

18.
J Nanosci Nanotechnol ; 14(9): 6885-93, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25924345

RESUMEN

This work aims to understand the influence of TiO2 surface structure in Au/TiO2 catalysts on CO oxidation. Au nanoparticles (3 wt%) in the range of 4 to 8 nm were loaded onto four kinds of TiO2 surfaces, which had different surface structures and were synthesized by calcining hydrogen titanate nanotubes at various temperatures and in different atmospheres. The Au catalyst supported on anatase nanorods exhibited the highest activity in CO oxidation at 30 degrees C among all the five Au/TiO2 catalysts including the reference catalyst of Au/TiO2-P25. X-ray photoelectron spectroscopy (XPS) and infrared emission spectra (IES) results indicate that the anatase nanorods have the most active surface on which water molecules can be strongly adsorbed and OH groups can be formed readily. Theoretical calculation indicates that the surface OH can facilitate the O2 adsorption on the anatase surface. Such active surface features are conducive to the O2 activation and CO oxidation.

20.
Nanoscale ; 5(6): 2232-42, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23412572

RESUMEN

This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process.


Asunto(s)
Nanofibras/química , Nanotubos/química , Silicatos/química , Titanio/química , Contaminantes Radiactivos del Agua/química , Purificación del Agua/métodos , Purificación del Agua/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA