Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
FASEB J ; 38(5): e23513, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38421300

RESUMEN

Targeting cardiac remodeling is regarded as a key therapeutic strategy for heart failure. Kielin/chordin-like protein (KCP) is a secretory protein with 18 cysteine-rich domains and associated with kidney and liver fibrosis. However, the relationship between KCP and cardiac remodeling remains unclear. Here, we aimed to investigate the role of KCP in cardiac remodeling induced by pressure overload and explore its potential mechanisms. Left ventricular (LV) KCP expression was measured with real-time quantitative PCR, western blotting, and immunofluorescence staining in pressure overload-induced cardiac remodeling in mice. Cardiac function and remodeling were evaluated in wide-type (WT) mice and KCP knockout (KO) mice by echocardiography, which were further confirmed by histological analysis with hematoxylin and eosin and Masson staining. RNA sequence was performed with LV tissue from WT and KO mice to identify differentially expressed genes and related signaling pathways. Primary cardiac fibroblasts (CFs) were used to validate the regulatory role and potential mechanisms of KCP during fibrosis. KCP was down-regulated in the progression of cardiac remodeling induced by pressure overload, and was mainly expressed in fibroblasts. KCP deficiency significantly aggravated pressure overload-induced cardiac dysfunction and remodeling. RNA sequence revealed that the role of KCP deficiency in cardiac remodeling was associated with cell division, cell cycle, and P53 signaling pathway, while cyclin B1 (CCNB1) was the most significantly up-regulated gene. Further investigation in vivo and in vitro suggested that KCP deficiency promoted the proliferation of CFs via P53/P21/CCNB1 pathway. Taken together, these results suggested that KCP deficiency aggravates cardiac dysfunction and remodeling induced by pressure overload via P53/P21/CCNB1 signaling in mice.


Asunto(s)
Glicoproteínas , Insuficiencia Cardíaca , Péptidos y Proteínas de Señalización Intercelular , Deficiencia de Proteína , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Ciclina B1 , Remodelación Ventricular , Transducción de Señal
2.
J Biol Chem ; 299(2): 102876, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623729

RESUMEN

Aberrant expression of serine/arginine-rich splicing factor 2 (SRSF2) can lead to tumorigenesis, but its molecular mechanism in colorectal cancer is currently unknown. Herein, we found SRSF2 to be highly expressed in human colorectal cancer (CRC) samples compared with normal tissues. Both in vitro and in vivo, SRSF2 significantly accelerated the proliferation of colon cancer cells. Using RNA-seq, we screened and identified 33 alternative splicing events regulated by SRSF2. Knockdown of SLMAP-L or CETN3-S splice isoform could suppress the growth of colon cancer cells, predicting their role in malignant proliferation of colon cancer cells. Mechanistically, the in vivo crosslinking immunoprecipitation assay demonstrated the direct binding of the RNA recognition motif of SRSF2 protein to SLMAP and CETN3 pre-mRNAs. SRSF2 activated the inclusion of SLMAP alternative exon 24 by binding to constitutive exon 25, while SRSF2 facilitated the exclusion of CETN3 alternative exon 5 by binding to neighboring exon 6. Knockdown of SRSF2, its splicing targets SLMAP-L, or CETN3-S caused colon cancer cells to arrest in G1 phase of the cell cycle. Rescue of SLMAP-L or CETN3-S splice isoform in SRSF2 knockdown colon cancer cells could effectively reverse the inhibition of cell proliferation by SRSF2 knockdown through mediating cell cycle progression. Importantly, the percentage of SLMAP exon 24 inclusion increased and CETN3 exon 5 inclusion decreased in CRC samples compared to paired normal samples. Collectively, our findings identify that SRSF2 dysregulates colorectal carcinoma proliferation at the molecular level of splicing regulation and reveal potential splicing targets in CRC patients.


Asunto(s)
Empalme Alternativo , Neoplasias del Colon , Empalme del ARN , Humanos , Empalme Alternativo/genética , Proliferación Celular/genética , Neoplasias del Colon/fisiopatología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Carcinoma/fisiopatología
3.
FASEB J ; 37(6): e22982, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219522

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) plays an important role in different cardiovascular diseases. However, the role of TRPA1 in dilated cardiomyopathy (DCM) remains unclear. Here, we aimed to investigate the role of TRPA1 in DCM induced by doxorubicin (DOX) and explore its possible mechanisms. GEO data were used to explore the expression of TRPA1 in DCM patients. DOX (2.5 mg/kg/week, 6 weeks, i.p.) was used to induce DCM. Bone marrow-derived macrophages (BMDMs) and neonatal rat cardiomyocytes (NRCMs) were isolated to explore the role of TRPA1 in macrophage polarization, cardiomyocyte apoptosis, and pyroptosis. In addition, DCM rats were treated with the TRPA1 activator, cinnamaldehyde to explore the possibility of clinical translation. TRPA1 expression was increased in left ventricular (LV) tissue in DCM patients and rats. TRPA1 deficiency aggravated the cardiac dysfunction, cardiac injury, and LV remodeling in DCM rats. In addition, TRPA1 deficiency promoted the M1 macrophage polarization, oxidative stress, cardiac apoptosis, and pyroptosis induced by DOX. RNA-seq results showed that TRPA1 knockout promoted the expression of S100A8, an inflammatory molecule that belongs to the family of Ca2+ -binding S100 proteins, in DCM rats. Furthermore, S100A8 inhibition attenuated M1 macrophage polarization in BMDMs isolated from TRPA1 deficiency rats. Recombinant S100A8 promoted the apoptosis, pyroptosis, and oxidative stress in primary cardiomyocytes stimulated with DOX. Finally, TRPA1 activation via cinnamaldehyde alleviated the cardiac dysfunction and reduced S100A8 expression in DCM rats. Taken together, these results suggested that TRPA1 deficiency aggravates DCM by promoting S100A8 expression to induce M1 macrophage polarization and cardiac apoptosis.


Asunto(s)
Cardiomiopatía Dilatada , Animales , Ratas , Acroleína , Calgranulina A , Proteínas del Citoesqueleto , Doxorrubicina , Macrófagos , Miocitos Cardíacos , Canal Catiónico TRPA1 , Humanos
4.
BMC Endocr Disord ; 24(1): 32, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38443883

RESUMEN

BACKGROUND: Hyperlipidaemic acute pancreatitis (HLAP) has become the most common cause of acute pancreatitis (AP) not due to gallstones or alcohol (Mosztbacher et al, Pancreatology 20:608-616, 2020; Yin et al, Pancreas 46:504-509, 2017). Therapeutic plasma exchange (TPE) has been reported to be effective in reducing serum TG levels which is important in management of HLAP (World J Clin Cases 9:5794-803, 2021). However, studies on TPE are mostly focusing on cases reports, TPE remains poorly evaluated till date and need to be compared with conservative therapy with a well-designed study. METHODS: A retrospectively cohort study on HLAP patients between January 2003 and July 2023 was conducted. Factors correlated with efficacy of TPE were included in a propensity model to balance the confounding factors and minimize selection bias. Patients with and without TPE were matched 1:2 based on the propensity score to generate the compared groups. Lipid profiles were detected on admission and consecutive 7 days. The triglyceride (TG) level decline rates, percentage of patients to reach the target TG levels, early recurrence rate, local complications and mortality were compared between groups. RESULTS: A total of 504 HLAP patients were identified. Since TPE was scarcely performed on patients with TG < 11.3 mmol/L, 152 patients with TG level 5.65 to 11.3 mmol/L were excluded while 352 with TG ≧11.3 mmol/L were enrolled. After excluding 25 cases with incomplete data or pregnancy, 327 patients, of whom 109 treated without TPE while 218 treated with TPE, were included in data analysis. One-to-two propensity-score matching generated 78 pairs, 194 patients with well-balanced baseline characteristics. Of 194 patients enrolled after matching done, 78 were treated without while 116 with TPE. In the matched cohort (n = 194), patients treated with TPE had a higher TG decline rate in 48 h than those without TPE (70.00% vs 54.00%, P = 0.001); the early recurrence rates were 8.96% vs 1.83%, p = 0.055. If only SAP patients were analyzed, the early recurrence rates were 14.81% vs 0.00% (p = 0.026) respectively. For patients with CT severity index (CTSI) rechecked within 14 days, early CTSI improment rate were 40.90% vs 31.91%. Local complications checked 6 months after discharge were 44.12% vs 38.30%. Mortality was 1.28% vs 1.72%. No differences were found in early stage CTSI improment rate (P = .589), local complications (P = .451) or motality between two groups. CONCLUSIONS: TPE reduces TG levels more quickly in 48 h compared with those with conservative treatment, but no difference in the consecutive days. TPE tends to reduce the early recurrence rate comparing with conventional therapy, but TPE has no advantages in improving CTSI in early stage, and no improvement for outcomes including local complications and mortalty.


Asunto(s)
Hiperlipidemias , Pancreatitis , Femenino , Embarazo , Humanos , Intercambio Plasmático , Estudios Retrospectivos , Estudios de Cohortes , Enfermedad Aguda , Puntaje de Propensión , Pancreatitis/complicaciones , Pancreatitis/terapia , Hiperlipidemias/complicaciones , Hiperlipidemias/terapia , Triglicéridos
5.
Pharmacol Res ; 195: 106832, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37364787

RESUMEN

Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , Humanos , Ácidos Docosahexaenoicos/uso terapéutico , Inflamación/tratamiento farmacológico , Antiinflamatorios , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Metabólicas/tratamiento farmacológico , Biomarcadores , Receptores Acoplados a Proteínas G
6.
BMC Endocr Disord ; 23(1): 9, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36624417

RESUMEN

BACKGROUND: Studies on chemerin/chemokine-like receptor-1 have mainly focused on adipose and liver with the intestinal tissues largely overlooked. In this study conducted on obese mice, we have explored: 1) CMKLR1 expression in the ileums; 2) CMKLR1 inhibitor α-NETA on body weight and intestinal mucosa integrity hence the impact on hepatic steatosis and pathway involved. METHODS: Nineteen male C57BL/6 mice were randomly divided into five groups: normal diet group (ND), high-fat diet group (HFD), HFD + α-NETA group (NETA), HFD + PD98059 group (PD) and HFD + α-NETA + PD98059 group (NETA + PD). Mice were fed either with a chow diet or HFD for 12 weeks. At 12th week, mice of ND were put on the diet as before; mice of NETA received daily treatments of α-NETA (30 mg/kg) via gavage; mice of PD received daily treatment of PD98059 via tail vein injection; mice of NETA + PD received daily treatment of α-NETA + PD98059, all for another 4 weeks. At the time intervention ended, mice were sacrificed. The body weight, the liver pathologies were assessed. Ileal CMKLR1 mRNA was evaluated by rtPCR; ZO-1, ERK1/2 protein expression of ileal tissues by western blotting; liver TNF-α and serum endotoxin by Elisa. RESULTS: More weight gains in mice of HFD than ND (37.90 ± 3.00 g) vs (24.47 ± 0.50 g), P = 0.002; α-NETA reduced the body weight (33.22 ± 1.90 g) vs (37.90 ± 3.00 g), P = 0.033; and further reduced by NETA + PD98059: (31.20 ± 1.74 g) vs (37.30 ± 4.05 g), P = 0.032. CMKLR1 mRNA expression was up-regulated in ileum in group HFD compared with ND and down-regulated by α-NETA. Steatosis was only alleviated in group PD + NETA with less weight gain. No impact of α-NETA on ileal ZO-1 or pERK with western blotting, and no endotoxin level changes were detected. TNF-α was higher in group HFD than in group ND, while no significant difference between other groups. CONCLUSIONS: CMKLR1 mRNA was up-regulated in the ileum of obese mice and down-regulated by α-NETA along with a body weight control collaborating with ERK inhibitor PD98059. Steatosis was alleviated in a weight dependent way. α-NETA has no influence on intestinal mucosal integrity and no impact on steatohepatitis progression.


Asunto(s)
Hígado Graso , Factor de Necrosis Tumoral alfa , Masculino , Animales , Ratones , Ratones Obesos , Ratones Endogámicos C57BL , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/prevención & control , Hígado , Aumento de Peso , Dieta Alta en Grasa/efectos adversos , Mucosa Intestinal , Íleon , Peso Corporal , Receptores de Quimiocina
7.
Pharmacol Res ; 182: 106337, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35781060

RESUMEN

Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.

8.
J Nanobiotechnology ; 20(1): 314, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794575

RESUMEN

Acute respiratory distress syndrome (ARDS), caused by noncardiogenic pulmonary edema (PE), contributes significantly to Coronavirus 2019 (COVID-19)-associated morbidity and mortality. We explored the effect of transmembrane osmotic pressure (OP) gradients in PE using a fluorescence resonance energy transfer-based Intermediate filament (IF) tension optical probe. Angiotensin-II- and bradykinin-induced increases in intracellular protein nanoparticle (PN)-OP were associated with inflammasome production and cytoskeletal depolymerization. Intracellular protein nanoparticle production also resulted in cytomembrane hyperpolarization and L-VGCC-induced calcium signals, which differed from diacylglycerol-induced calcium increment via TRPC6 activation. Both pathways involve voltage-dependent cation influx and OP upregulation via SUR1-TRPM4 channels. Meanwhile, intra/extracellular PN-induced OP gradients across membranes upregulated pulmonary endothelial and alveolar barrier permeability. Attenuation of intracellular PN, calcium signals, and cation influx by drug combinations effectively relieved intracellular OP and pulmonary endothelial nonselective permeability, and improved epithelial fluid absorption and PE. Thus, PN-OP is pivotal in pulmonary edema in ARDS and COVID-19, and transmembrane OP recovery could be used to treat pulmonary edema and develop new drug targets in pulmonary injury.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas , Edema Pulmonar , Síndrome de Dificultad Respiratoria , Calcio , Humanos , Presión Osmótica , Proteínas , Edema Pulmonar/complicaciones , Edema Pulmonar/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
9.
J Cell Mol Med ; 25(22): 10638-10649, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34697906

RESUMEN

Cancer treatment has gradually developed from toxic chemotherapy to targeted therapy with fewer side effects. Approximately 30% of breast cancer patients overexpress human epidermal growth factor receptor 2 (HER-2). Previous studies have successfully produced single-chain antibodies (scFv) targeting HER-2+ breast cancer; however, scFv have poor stability, easy aggregation and a shorter half-life, which have no significant effect on targeting therapy. Moreover, scFv has been considered as a drug delivery platform that can kill target cells by effector molecules. However, the functional killing domains of immunotoxins are mainly derived from plant or bacterial toxins, which have a large molecular weight, low tissue permeability and severe side effects. To address these concerns, we designed several apoptotic immune molecules to replace exogenous toxins using endogenous apoptosis-related protein DNA fragmentation factor 40 (DFF40) and tandem-repeat Cytochrome c base on caspase-3 responsive peptide (DEVD). Our results suggest that DFF40 or Cytc fusion scFv specifically targets HER-2 overexpressing breast cancer cells (SK-BR-3 and BT-474) rather than HER-2 negative cells (MDA-MB-231 and MCF-7). Following cellular internalization, apoptosis-related proteins inhibited tumour activity by initiating endogenous apoptosis pathways, which significantly reduced immunogenicity and toxic side effects. Therefore, we suggest that immunoapoptotic molecules may become potential drugs for targeted immunotherapy of breast cancer.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Animales , Especificidad de Anticuerpos , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromos c/genética , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Orden Génico , Humanos , Ratones , Plásmidos/genética , Receptor ErbB-2/inmunología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Plant Physiol ; 182(4): 2182-2198, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32041907

RESUMEN

MicroR159 (miR159) regulation of GAMYB expression is highly conserved in terrestrial plants; however, its functional role remains poorly understood. In Arabidopsis (Arabidopsis thaliana), although GAMYB-like genes are constitutively transcribed during vegetative growth, their effects are suppressed by strong and constitutive silencing by miR159. GAMYB expression occurs only if miR159 function is inhibited, which results in detrimental pleiotropic defects, questioning the purpose of the miR159-GAMYB pathway. Here, miR159 function was inhibited in tobacco (Nicotiana tabacum) and rice (Oryza sativa) using miRNA MIM159 technology. Similar to observations in Arabidopsis, inhibition of miR159 in tobacco and rice resulted in pleiotropic defects including stunted growth, implying functional conservation of the miR159-GAMYB pathway among angiosperms. In MIM159 tobacco, transcriptome profiling revealed that genes associated with defense and programmed cell death were strongly activated, including a suite of 22 PATHOGENESIS-RELATED PROTEIN (PR) genes that were 100- to 1,000-fold upregulated. Constitutive expression of a miR159-resistant GAMYB transgene in tobacco resulted in phenotypes similar to that of MIM159 tobacco and activated PR gene expression, verifying the dependence of the above-mentioned changes on GAMYB expression. Consistent with the broad defense response, MIM159 tobacco appeared immune to Phytophthora infection. These findings suggest that the tobacco miR159-GAMYB pathway functions in the biotic defense response, which becomes activated upon miR159 inhibition. However, PR gene expression was not upregulated in Arabidopsis or rice when miR159 was inhibited, suggesting that miR159-GAMYB pathway functional differences exist between species, or factors in addition to miR159 inhibition are required in Arabidopsis and rice to activate this broad defense response.


Asunto(s)
MicroARNs/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Nicotiana/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
J Cell Biochem ; 121(1): 430-442, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31232487

RESUMEN

BACKGROUND: Nuclear factor erythroid 2-related factor 2 (Nrf2) can alleviate diffuse axonal injury (DAI)-induced apoptosis by regulating expression of heme oxygenase-1 (HO-1), while sulforaphane (SFN) was shown to reduce oxidative stress by increasing the expression of Nrf2. Therefore, we aimed to investigate therapeutic effect of SFN in the treatment of DAI and the ability of SFN to reduce oxidative stress. METHODS: The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to observe the effects of H2 O 2 and SFN on cell viability. Fluorometric assay, Western blot analysis, and flow cytometry were conducted to validate the protective role of SFN in an animal model of DAI. In addition, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in DAI rats treated by SFN, while Western blot, immunohistochemistry assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were carried out to verify the effect of SFN in different animal groups. RESULTS: Cell viability was reduced by H2 O 2 in a dose-dependent manner, while the treatment by SFN significantly promoted cell growth. Meanwhile the administration of SFN effectively reduced the levels of caspase-3/poly(ADP-ribose) polymerase (PARP) activity increased by the H 2 O 2 treatment, indicating that the protective effect of SFN could be mediated by its ability to suppress caspase-3 activation and PARP cleavage. In addition, the SFN treatment reduced the intracellular reactive oxygen species (ROS) generation induced by H 2 O 2 . Moreover, the MDA levels of SOD/GPx activity in various rat groups showed the protective effects of SFN in DAI rats. It is suspected that the protective effect of SFN was exerted via the activation of the Nrf2/HO-1 signaling pathway. In this study, DAI and DAI + phosphate-buffered saline (PBS) groups also showed the presence of more TUNEL-positive cells compared with the sham-operated group, while the SFN treatment reduced the extent of neuronal apoptosis. CONCLUSIONS: By activating the Nrf2/HO-1 signaling pathway and reducing the activity of caspase-3, SFN reduces the apoptosis of neurons in brain trauma-induced DAI.


Asunto(s)
Axones/metabolismo , Axones/patología , Lesión Axonal Difusa/tratamiento farmacológico , Hemo Oxigenasa (Desciclizante)/metabolismo , Isotiocianatos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Apoptosis , Supervivencia Celular , Lesión Axonal Difusa/metabolismo , Regulación de la Expresión Génica , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/química , Masculino , Malondialdehído/metabolismo , Neuronas/metabolismo , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sulfóxidos , Superóxido Dismutasa/metabolismo , Resultado del Tratamiento
12.
Cancer Sci ; 111(10): 3802-3812, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32691974

RESUMEN

Baicalein, a flavonoid phytochemical, has been shown to be effective as an anti-metastatic agent for various cancers, especially for non-small-cell lung cancer (NSCLC). However, the underlying mechanism of how baicalein targets cellular processes during NSCLC cell invasion and metastasis remains elusive. In this study, we found that non-cytotoxic concentrations of baicalein still retained anti-dissemination activity both in vitro and in vivo. Using a genetic encoding tension probe based on Förster resonance energy transfer (FRET) theory, baicalein was shown to significantly decrease ezrin tension by downregulating cellular ezrin S-nitrosylation (SNO) levels in NSCLC cells in the inflammatory microenvironment. Decreased ezrin tension inhibited the formation of an aggressive phenotype of NSCLC cell and leader cell in collective migration, and subsequently suppressed NSCLC dissemination. Baicalein restrained SNO-mediated ezrin tension by decreasing iNOS expression levels. Overall this study demonstrates the novel mechanism used by baicalein to suppress NSCLC invasion and metastasis from a mechanopharmacology perspective and illustrates a new direction for drug development.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas del Citoesqueleto/metabolismo , Flavanonas/farmacología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Flavanonas/química , Humanos , Masculino , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Cell Physiol ; 234(9): 16400-16411, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30790266

RESUMEN

Long noncoding RNAs, including HOTAIR, are involved in the pathogenesis of a wide range of diseases. This study aimed to explore the mechanism underlying the involvement of HOTAIR in neonatal bronchial hyperresponsiveness (BHR). A total of 105 newborns were recruited in this study to collect their peripheral blood mononuclear cell and serum samples, which were then divided into different genotype groups based on the genotypes of rs4759314, rs874945, and rs7958904. The real-time polymerase chain reaction, western blot analysis, computational analyses, and luciferase assays were performed to establish the regulatory relationships between the HOTAIR, microRNA-126 (miR-126), and interleukin-13 (IL-13). The level of HOTAIR, miR-126, and IL-13 among rs4759314 AA, AG, and GG groups, as well as among rs874945 GG, AG, and AA groups was similar. However, the level of HOTAIR was increased in the rs7958904 GG group, accompanied by a decreased level of miR-126 and IL-13. In addition, the level of airway responsiveness was comparable among rs4759314 AA, AG, and GG groups, as well as among rs874945 GG, AG, and AA groups. However, the airway responsiveness in the groups rs7958904 CG and CC was much stronger than that of the GG group. We also demonstrated that, by directly binding to miR-126, HOTAIR reduced the expression of miR-126, which in turn decreased the expression of IL-13. In summary, we demonstrated the role of HOTAIR-induced downregulation of miR-126 and IL-13 in the development of BHR in neonates.

14.
J Cell Biochem ; 120(11): 18724-18735, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31219199

RESUMEN

Lung cancer is the main cause of cancer-related death, and the proportion of non-small cell lung cancer (NSCLC) on lung cancer is 85%, while more than 80% lung cancer patients are diagnosed with chronic obstructive pulmonary disease (COPD). In this study, we aimed to explore the potential mechanism of COPD induced NSCLC. Luciferase assay and reverse transcription-polymerase chain reaction (RT-PCR) were conducted to study the regulatory relationship between P53 and microRNA-675 (miR-675). Real-time PCR, Western-blot analysis, and MTT assay were performed to explore the impact of H19 and miR-675 in the signaling pathway involved in COPD induced NSCLC. In NSCLC patients with COPD, H19 and miR-675 levels were strikingly upregulated while P53 level was significantly downregulated. P53 was identified as a target gene of miR-675, and H19 remarkably upregulated miR-675, while H19 siRNA notably inhibited miR-675. In addition, miR-675 and H19 dramatically suppressed the expression of P53 and Bax while inducing the expression of Bcl-2. Finally, H19 and miR-675 induced proliferation of A549 and MRC-5 cells. These finding indicated that COPD (hypoxia)-induced H19 promoted expression of miR-675 associated with NSCLC though target apoptosis-related protein P53, BAX, and Bcl-2.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética , Células A549 , Anciano , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Interferencia de ARN , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
15.
Cancer Cell Int ; 19: 48, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30867651

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck region with poorly understood progression and prognosis. The present study aims at exploring whether the expression of ß-catenin, TCF-4, and survivin affects clinicopathological features and prognostic significance in NPC. METHODS: We enrolled 164 patients with NPC and 70 patients with chronic nasopharyngitis (CNP) in this study. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) were conducted to evaluate the expression of ß-catenin, TCF-4, and survivin. Spearman's rank correlation analysis and Pearson correlation analysis were used to measure the correlation of ß-catenin, TCF-4, and survivin. Risk factors for prognosis and survival conditions of NPC patients were analyzed by Cox proportional hazards model and Kaplan-Meier curves. RESULTS: The results obtained revealed that mRNA and protein expression of ß-catenin, TCF-4, and survivin was higher in NPC tissues than in CNP tissues. Positive correlations amongst ß-catenin, TCF-4, and survivin were identified by Spearman's rank correlation analysis and Pearson correlation analysis. There was a significant correlation in expression of ß-catenin, TCF-4, and survivin with EBV DNA, EBV-VCA-IgA, EBV-EA-IgA, T stage, N stage, and clinicopathological stages. Lower overall survival (OS), distant metastasis-free survival (DMFS), local recurrence-free survival (LRFS), and disease-free survival (DFS) rates were detected in NPC patients with positive expression of ß-catenin, TCF-4, and survivin, in contrast to those with negative expression. Cox proportional hazards model demonstrated that ß-catenin, TCF-4, and survivin protein positive expression were independent risk factors for OS and DFS of NPC prognosis; there was an evident correlation between clinicopathological stages, TCF-4, and EBV-EA-IgA and OS, DMFS, LRFS, and DFS of NPC. CONCLUSIONS: The aforementioned results indicate that ß-catenin, TCF-4, and survivin proteins are highly expressed in NPC, which can be used as factors to predict the malignancy of NPC. In addition, positive expression of ß-catenin, TCF-4, and survivin are potential risk factors that lead to an unfavorable prognosis of OS and DFS in NPC patients.

16.
Plant Physiol ; 174(3): 1764-1778, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28515145

RESUMEN

In plants, microRNA (miRNA)-target complementarity has long been considered the predominant factor determining the silencing outcome of the miRNA-target interaction, although the efficacy of such interactions have rarely been appraised in plants. Here, we perform in planta silencing efficacy assays on seven Arabidopsis MYB genes, all of which contain conserved miR159-binding sites of analogous complementarity. These genes were found to be differentially silenced by miR159; MYB81, MYB97, MYB101, MYB104, and DUO1 were all poorly silenced, whereas MYB33 and MYB65 were strongly silenced. Curiously, this is consistent with previous genetic analysis defining MYB33 and MYB65 as the major functional targets of miR159. Neither the free energy of miR159-target complementarity, nor miRNA binding site accessibility, as determined by flanking region AU content, could fully explain the discrepancy of miR159 silencing efficacy. Instead, we found that MYB33 and MYB65 were both predicted to contain a distinctive RNA secondary structure abutting the miR159 binding site. The structure is composed of two stem-loops (SLs) that are predicted to form in MYB33/65 homologs of species as evolutionary distant as gymnosperms. Functional analysis found that the RNA structure in MYB33 correlated with strong silencing efficacy; introducing mutations to disrupt either SL attenuated miR159 efficacy, while introducing complementary mutations to restore the SLs, but not the sequence, restored strong miR159-mediated silencing. Therefore, it appears that this RNA secondary structure demarcates MYB33/65 as sensitive targets of miR159, which underpins the narrow functional specificity of Arabidopsis miR159.


Asunto(s)
MicroARNs/metabolismo , Conformación de Ácido Nucleico , ARN de Planta/química , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Sitios de Unión , Secuencia Conservada/genética , Silenciador del Gen , Genes de Plantas , Familia de Multigenes , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Termodinámica
17.
Metabolism ; : 155979, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038735

RESUMEN

AIMS: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct the progression of diabetic cardiomyopathy. We assessed the potential role and therapeutic value of LGR6 (G protein-coupled receptor containing leucine-rich repeats 6) in diabetic cardiomyopathy. METHODS AND RESULTS: Type 2 diabetes models were established using high-fat diet/streptozotocin-induced diabetes in mice. LGR6 knockout mice were generated. Recombinant adeno-associated virus serotype 9 carrying LGR6 under the cardiac troponin T promoter was injected into diabetic mice. Cardiomyocytes incubated with high glucose (HG) were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing and a chromatin immunoprecipitation assay. We found that LGR6 expression was upregulated in diabetic hearts and HL1 cardiomyocytes treated with HG. The LGR6 knockout aggravated, but cardiomyocyte-specific LGR6 overexpression ameliorated, cardiac dysfunction and remodeling in diabetic mice. Mechanistically, in vivo and in vitro experiments revealed that LGR6 deletion aggravated, whereas LGR6 overexpression alleviated, ferroptosis and disrupted mitochondrial biogenesis by regulating STAT3/Pgc1a signaling. STAT3 inhibition and Pgc1a activation abrogated LGR6 knockout-induced mitochondrial dysfunction and ferroptosis in diabetic mice. In addition, LGR6 activation by recombinant RSPO3 treatment ameliorated cardiac dysfunction, ferroptosis and mitochondrial dysfunction in diabetic mice. CONCLUSIONS: We identified a previously undescribed signaling pathway of the LGR6-STAT3-Pgc1a axis that plays a critical role in ferroptosis and mitochondrial disorders during diabetic cardiomyopathy and provides an option for treatment of diabetic hearts.

18.
Eur J Pharmacol ; 974: 176602, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677538

RESUMEN

BACKGROUND: The interleukin (IL) -12 p40 subunit is the common subunit of IL-12 and IL-23. It affects the immune inflammatory response, which may be closely related to cardiac remodeling. In this study, the regulatory effect of IL-12p40 knockout (KO) on cardiac remodeling was investigated, and the underlying mechanism was explored. METHODS AND RESULTS: Mice were subjected to transverse aortic constriction (TAC) to establish a model of cardiac remodeling. First, IL-12p40 was deleted to observe its effects on cardiac remodeling and cardiac inflammation, and the results showed that IL-12p40 deletion reduced both T helper 17 (Th17) and γδT17 cell differentiation, decreased proinflammatory macrophage differentiation, alleviated cardiac remodeling, and relieved cardiac dysfunction in TAC mice. Next, we explored whether IL-17 regulated TAC-induced cardiac remodeling, and the results showed that IL-17 neutralization alleviated proinflammatory macrophage differentiation and cardiac remodeling in IL-12p40 knockout mice and WT mice. Neutralization with cluster of differentiation 4 receptor (CD4) and γδ T-cell receptor (γδTCR) antibodies inhibited pro-inflammatory macrophage polarization and improved cardiac remodeling, and CD4 neutralizing antibody (NAb) had more significant effects. Finally, adoptive transfer of Th17 cells aggravated proinflammatory macrophage differentiation and cardiac remodeling in TAC-treated CD4 KO mice, while neutralization with the IL-12p40 antibody alleviated these pathological changes. CONCLUSION: Mainly Th17 cells but not γδT17 cells secrete IL-17, which mediates IL-12p40, promotes the polarization of proinflammatory macrophages, and exacerbates cardiac remodeling in TAC mice. IL-12p40 may be a potential target for the prevention and treatment of cardiac remodeling.


Asunto(s)
Diferenciación Celular , Subunidad p40 de la Interleucina-12 , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th17 , Remodelación Ventricular , Animales , Masculino , Ratones , Polaridad Celular/efectos de los fármacos , Eliminación de Gen , Subunidad p40 de la Interleucina-12/metabolismo , Subunidad p40 de la Interleucina-12/genética , Interleucina-17/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Células Th17/inmunología
19.
Cell Death Discov ; 10(1): 150, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514643

RESUMEN

Close correlation between vitamin D (VitD) deficiency and Parkinson's Disease (PD) risk, VitD as an adjuvant treatment promising to improve PD progression. However, VitD excessive intake could induce hypercalcemia and renal damage. Therefore, upregulation of vitD receptor (VDR) is considered a compensatory strategy to overcome VitD insufficiency and alleviate PD symptoms. In this study, we discovered that VDR played antioxidative roles in dopaminergic neurons by decreasing reactive oxygen species (ROS) and maintaining mitochondrial membrane potential. Further, we newly identified VDR downstream events in C. elegans, including glutathione S-transferase (gst) and forkhead box transcription factor class O (daf-16) mediated oxidative stress resistance. VDR upregulation also mitigated microglial activation through inhibition of NLRP3/caspase-1-mediated inflammation and membrane permeabilization. These findings highlight the multifaceted protective effects of VDR in both neurons and microglia against the development of PD. Importantly, we discovered a novel deubiquitinase DUB3, whose N-terminal catalytic domain interacted with the C-terminal ligand-binding domain of VDR to reduce VDR ubiquitination. Identification of DUB3 as an essential player in the deubiquitinating mechanism of VDR provides valuable insights into VDR regulation and its potential as a therapeutic target for PD.

20.
J Hypertens ; 42(3): 420-431, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37937508

RESUMEN

The proliferation, migration and phenotypic transformation of vascular smooth muscle cells contribute to vascular remodeling and hypertension. Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been shown to have anti-inflammatory effects and can protect against different cardiovascular diseases. However, the role and mechanism of RvD1 in hypertension are not clear. The current study investigated the role of RvD1 in Ang II-induced hypertensive mice and Ang II-stimulated rat vascular smooth muscle cells. The results showed that RvD1 treatment significantly attenuated hypertension and vascular remodeling, as indicated by decreases in blood pressure, aortic media thickness and collagen deposition. In addition, RvD1 inhibited the proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) in vivo and in vitro . Notably, the protective effects of RvD1 were mediated by the Ras homolog gene family member A (RhoA)/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, our findings demonstrated the potential benefits of RvD1 as a promising therapeutic agent in the treatment of vascular remodeling and hypertension.


Asunto(s)
Ácidos Docosahexaenoicos , Hipertensión , Proteínas Quinasas Activadas por Mitógenos , Ratones , Ratas , Animales , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/farmacología , Músculo Liso Vascular/metabolismo , Remodelación Vascular/fisiología , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Proliferación Celular , Angiotensina II/farmacología , Miocitos del Músculo Liso , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA