RESUMEN
Macrophages are heterogeneous and play critical roles in development and disease, but their diversity, function, and specification remain inadequately understood during human development. We generated a single-cell RNA sequencing map of the dynamics of human macrophage specification from PCW 4-26 across 19 tissues. We identified a microglia-like population and a proangiogenic population in 15 macrophage subtypes. Microglia-like cells, molecularly and morphologically similar to microglia in the CNS, are present in the fetal epidermis, testicle, and heart. They are the major immune population in the early epidermis, exhibit a polarized distribution along the dorsal-lateral-ventral axis, and interact with neural crest cells, modulating their differentiation along the melanocyte lineage. Through spatial and differentiation trajectory analysis, we also showed that proangiogenic macrophages are perivascular across fetal organs and likely yolk-sac-derived as microglia. Our study provides a comprehensive map of the heterogeneity and developmental dynamics of human macrophages and unravels their diverse functions during development.
Asunto(s)
Macrófagos , Humanos , Diferenciación Celular , Linaje de la Célula , Macrófagos/citología , Microglía , Especificidad de ÓrganosRESUMEN
Genes have the ability to produce transcript variants that perform specific cellular functions. However, accurately detecting all transcript variants remains a long-standing challenge, especially when working with poorly annotated genomes or without a known genome. To address this issue, we have developed a new computational method, TransIntegrator, which enables transcriptome-wide detection of novel transcript variants. For this, we determined 10 Illumina sequencing transcriptomes and a PacBio full-length transcriptome for consecutive embryo development stages of amphioxus, a species of great evolutionary importance. Based on the transcriptomes, we employed TransIntegrator to create a comprehensive transcript variant library, namely iTranscriptome. The resulting iTrancriptome contained 91 915 distinct transcript variants, with an average of 2.4 variants per gene. This substantially improved current amphioxus genome annotation by expanding the number of genes from 21 954 to 38 777. Further analysis manifested that the gene expansion was largely ascribed to integration of multiple Illumina datasets instead of involving the PacBio data. Moreover, we demonstrated an example application of TransIntegrator, via generating iTrancriptome, in aiding accurate transcriptome assembly, which significantly outperformed other hybrid methods such as IDP-denovo and Trinity. For user convenience, we have deposited the source codes of TransIntegrator on GitHub as well as a conda package in Anaconda. In summary, this study proposes an affordable but efficient method for reliable transcriptomic research in most species.
Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica/métodos , Genoma , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.
Asunto(s)
ADN Glicosilasas , Cardiomiopatías Diabéticas , Resistencia a la Insulina , Animales , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/deficiencia , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Ratones , Masculino , PPAR gamma/metabolismo , Glucosa/metabolismo , Miocardio/metabolismo , Miocardio/patología , Modelos Animales de Enfermedad , Glucólisis , Humanos , Ratones Endogámicos C57BLRESUMEN
The intercellular communication of mechanotransduction has a significant impact on various cellular processes. Tunneling nanotubes (TNTs) have been documented to possess the capability of transmitting mechanical stimulation between cells, thereby triggering an influx of Ca2+ ions. However, the related kinetic information on the TNT-mediated intercellular mechanotransduction communication is still poorly explored. Herein, we developed a classic and sensitive Pt-functionalized carbon fiber microelectrochemical sensor (Pt/CF) to study the intercellular communication of endothelial mechanotransduction through TNTs. The experimental findings demonstrate that the transmission of mechanical stimulation from stimulated human umbilical vein endothelial cells (HUVECs) to recipient HUVECs connected by TNTs occurred quickly (<100 ms) and effectively promoted nitric oxide (NO) production in the recipient HUVECs. The kinetic profile of NO release exhibited remarkable similarity in stimulated and recipient HUVECs. But the production of NO in the recipient cell is significantly attenuated (16.3%) compared to that in the stimulated cell, indicating a transfer efficiency of approximately 16.3% for TNTs. This study unveils insights into the TNT-mediated intercellular communication of mechanotransduction.
Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Mecanotransducción Celular , Nanotubos , Humanos , Nanotubos/química , Óxido Nítrico/metabolismo , Comunicación Celular , Técnicas Electroquímicas , Técnicas Biosensibles , Estructuras de la Membrana CelularRESUMEN
STUDY QUESTION: What is the mechanism behind cryoinjury in human sperm, particularly concerning the interplay between reactive oxygen species (ROS) and autophagy, and how does it subsequently affect sperm fate? SUMMARY ANSWER: The freeze-thaw operation induces oxidative stress by generating abundant ROS, which impairs sperm motility and activates autophagy, ultimately guiding the sperm toward programmed cell death such as apoptosis and necrosis, as well as triggering premature capacitation. WHAT IS KNOWN ALREADY: Both ROS-induced oxidative stress and autophagy are thought to exert an influence on the quality of frozen-thawed sperm. STUDY DESIGN, SIZE, DURATION: Overall, 84 semen specimens were collected from young healthy fertile males, with careful quality evaluation. The specimens were split into three groups to investigate the ROS-induced cryoinjury: normal control without any treatment, sperm treated with 0.5 mM hydrogen peroxide (H2O2) for 1 h, and sperm thawed following cryopreservation. Samples from 48 individuals underwent computer-assisted human sperm analysis (CASA) to evaluate sperm quality in response to the treatments. Semen samples from three donors were analyzed for changes in the sperm proteome after H2O2 treatment, and another set of samples from three donors were analyzed for changes following the freeze-thaw process. The other 30 samples were used for fluorescence-staining and western blotting. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sperm motility parameters, including progressive motility (PR %) and total motility (PR + NP %), were evaluated using the CASA system on a minimum of 200 spermatozoa. The proteomic profiles were determined with label-free mass spectrometry (MS/MS) and protein identification was performed via ion search against the NCBI human database. Subsequently, comprehensive bioinformatics was applied to detect significant proteomic changes and functional enrichment. Fluorescence-staining and western blot analyses were also conducted to confirm the proteomic changes on selected key proteins. The ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate labeling and the abundance of bioactive mitochondria was determined by evaluating the inner mitochondrial membrane potential (MMP) level. Molecular behaviors of sequestosome-1 (p62 or SQSTM1) and microtubule-associated proteins 1A/1B light chain 3 (LC3) were monitored to evaluate the state of apoptosis in human sperm. Fluorescent probes oxazole yellow (YO-PRO-1) and propidium iodide (PI) were utilized to monitor programmed cell death, namely apoptosis and necrosis. Additionally, gradient concentrations of antioxidant coenzyme Q10 (CoQ10) were introduced to suppress ROS impacts on sperm. MAIN RESULTS AND THE ROLE OF CHANCE: The CASA analysis revealed a significant decrease in sperm motility for both the H2O2-treatment and freeze-thaw groups. Fluorescence staining showed that high ROS levels were produced in the treated sperm and the MMPs were largely reduced. The introduction of CoQ10 at concentrations of 20 and 30 µM resulted in a significant rescue of progressive motility (P < 0.05). The result suggested that excessive ROS could be the major cause of sperm motility impairment, likely by damaging mitochondrial energy generation. Autophagy was significantly activated in sperm when they were under oxidative stress, as evidenced by the upregulation of p62 and the increased conversion of LC3 as well as the upregulation of several autophagy-related proteins, such as charged multivesicular body protein 2a, mitochondrial import receptor subunit TOM22 homolog, and WD repeat domain phosphoinositide-interacting protein 2. Additionally, fluorescent staining indicated the occurrence of apoptosis and necrosis in both H2O2-treated sperm and post-thaw sperm. The cell death process can be suppressed when CoQ10 is introduced, which consolidates the view that ROS could be the major contributor to sperm cryoinjury. The freeze-thaw process could also initiate sperm premature capacitation, demonstrated by the prominent increase in tyrosine phosphorylated proteins, verified with anti-phosphotyrosine antibody and immunofluorescence assays. The upregulation of capacitation-related proteins, such as hyaluronidase 3 and Folate receptor alpha, supported this finding. LARGE SCALE DATA: The data underlying this article are available in the article and its online supplementary material. LIMITATIONS, REASONS FOR CAUTION: The semen samples were obtained exclusively from young, healthy, and fertile males with progressive motility exceeding 60%, which might overemphasize the positive effects while possibly neglecting the negative impacts of cryoinjury. Additionally, the H2O2 treatment conditions in this study may not precisely mimic the oxidative stress experienced by sperm after thawing from cryopreservation, potentially resulting in the omission of certain molecular alterations. WIDER IMPLICATIONS OF THE FINDINGS: This study provides substantial proteomic data for a comprehensive and deeper understanding of the impact of cryopreservation on sperm quality. It will facilitate the design of optimal protocols for utilizing cryopreserved sperm to improve applications, such as ART, and help resolve various adverse situations caused by chemotherapy, radiotherapy, and surgery. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from the Major Innovation Project of Research Institute of National Health Commission (#2022GJZD01-3) and the National Key R&D Program of China (#2018YFC1003600). All authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.
Asunto(s)
Preservación de Semen , Semen , Masculino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Semen/metabolismo , Motilidad Espermática , Peróxido de Hidrógeno , Proteómica , Espectrometría de Masas en Tándem , Espermatozoides/metabolismo , Estrés Oxidativo , Criopreservación/métodos , Preservación de Semen/efectos adversos , Preservación de Semen/métodos , Necrosis/metabolismoRESUMEN
Acute-on-chronic liver failure (ACLF) is a severe disease with a high mortality. Macrophage-related inflammation plays a crucial role in ACLF development. Mesenchymal stem cells (MSCs) treatment was demonstrated to be beneficial in ACLF in our previous study; however, the underlying mechanisms remain unknown. Therefore, mouse bone marrow-derived MSCs were used to treat an ACLF mouse model or cocultured with RAW264.7/J774A.1 macrophages that were stimulated with LPS. Histological and serological parameters and survival were analyzed to evaluate efficacy. We detected changes of Mer tyrosine kinase (Mertk), JAK1/STAT6, inflammatory cytokines, and markers of macrophage polarization in vitro and in vivo. In ACLF mice, MSCs improved liver function and 48-h survival of ACLF mice and alleviated inflammatory injury by promoting M2 macrophage polarization and elevated Mertk expression levels in macrophages. This is significant, as Mertk regulates M2 macrophage polarization via the JAK1/STAT6 signaling pathway.
Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Células Madre Mesenquimatosas , Ratones , Animales , Insuficiencia Hepática Crónica Agudizada/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismoRESUMEN
A three-component strategy was developed to enable hydrodefluoroamination of ß-trifluoromethyl enones by selectively activating two C(sp3)-F bonds in the trifluoromethyl group. The method involved a sequence of carbonyl reduction, hydrodefluorination, and defluoroamination under transition-metal-free conditions. Synthetically useful (E)-stereospecific α-fluoroenamides were obtained in good yields with diverse functional group tolerance, which could be easily transformed into valuable organofluorides and heterocycles. The carbonyl auxiliary exerts both electronic and steric impacts on the CF3-alkenes, allowing for controllable and selective defluorination.
RESUMEN
With the assistance of nickel as catalyst, 2,2'-bipyridine (bpy) as ligand, and manganese as reducing metal, the reductive amidation of isocyanates with readily accessible aryl fluorosulfates could be successfully accomplished. The reactions proceeded effectively via C-O bond activation in DMF at room temperature, enabling the facile synthesis of a range of structurally diverse amides in moderate to high yields with broad functionality compatibility. In addition, the synthetic usefulness of the method was further demonstrated by applying the reaction in scale-up synthesis and the late-stage functionalization of complex molecules with biological activities.
RESUMEN
A zinc-mediated cross-electrophile coupling of benzyl sulfonium salts with thiosulfonates via C-S bond cleavage was achieved. The reductive thiolation proceeded well under transition metal-free conditions to afford the desired benzyl sulfides in good yields, exhibiting both broad substrate scope and good functionality tolerance. In addition, the reaction could be applied to the use of selenosulfonate as an effective selenylation agent and be subjected to scale-up synthesis.
RESUMEN
Aryl 2-pyridyl esters could efficiently undergo cross-electrophile couplings with aryl bromides with the aid of magnesium as a reducing metal in the absence of a transition-metal catalyst, leading to the unsymmetrical diaryl ketones in modest to good yields with wide functionality compatibility. In addition, the reaction could be easily scaled up and applied in the late-stage modification of biologically active molecules. Preliminary mechanistic study showed that the coupling reaction presumably proceeds through the in situ formation of arylmagnesium reagents as key intermediates.
RESUMEN
A protein modification strategy was developed based on a thiol-yne click reaction using an electron-deficient yne reagent. This approach demonstrated exceptional selectivity towards thiols and exhibited rapid kinetics, resulting in conjugates with superior acid stability. The conjugation of IgG with an indole-derived fluorophore was achieved for the imaging of PD-L1 in cancer cells.
Asunto(s)
Química Clic , Electrones , Compuestos de Sulfhidrilo , Compuestos de Sulfhidrilo/química , Humanos , Colorantes Fluorescentes/química , Inmunoglobulina G/química , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Indoles/química , Indoles/síntesis química , Alquinos/química , Línea Celular Tumoral , Estructura MolecularRESUMEN
Diabetic retinopathy (DR) is an eye disease that causes blindness and vision loss in diabetic. Risk factors for DR include high blood glucose levels and some environmental factors. The pathogenesis is based on inflammation caused by interferon and other nuclear proteins. This review article provides an overview of DR and discusses the role of nuclear proteins in the pathogenesis of the disease. Some core proteins such as MAPK, transcription co-factors, transcription co-activators, and others are part of this review. In addition, some current advanced treatment resulting from the role of nuclear proteins will be analyzes, including epigenetic modifications, the use of methylation, acetylation, and histone modifications. Stem cell technology and the use of nanobiotechnology are proposed as promising approaches for a more effective treatment of DR.
Asunto(s)
Retinopatía Diabética , Proteínas Nucleares , Retinopatía Diabética/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Animales , Epigénesis GenéticaRESUMEN
The stability of soil organic matter (SOM) is crucial for metal transport and carbon cycling. S,S-ethylenediaminedisuccinic acid (EDDS) is widely used to enhance phytoremediation efficiency for heavy metals in contaminated soils, yet its specific impacts on SOM have been underexplored. This study investigates the effects of EDDS on SOM stability using a rhizobox experiment with ryegrass. Changes in soil dissolved organic matter (DOM) quantity and molecular composition were analyzed via Fourier transform ion cyclotron resonance mass spectrometry. Results showed that the use of EDDS increased the uptake of Cu, Cd and Pb by ryegrass, but simultaneously induced the destabilization and transformation of SOM. After 7 days of EDDS application, dissolved organic carbon (DOC) and nitrogen (DON) concentrations in rhizosphere soils increased significantly by 3.44 and 10.2 times, respectively. In addition, EDDS reduced lipids (56.3%) and proteins/amino sugars-like compounds (52.1%), while increasing tannins (9.11%) and condensed aromatics-like compounds (24.4%) in the rhizosphere DOM. These effects likely stem from EDDS's dual action: extracting Fe/Al from SOM-mineral aggregates, releasing SOM into the DOM pool, and promoting microbial degradation of bioavailable carbon through chain scission and dehydration. Our study firstly revealed that the application of EDDS in phytoremediation increased the mineralization of SOM and release of CO2 from soil to the atmosphere, which is important to assess the carbon budget of phytoremediation and develop climate-smart strategy in future.
RESUMEN
BACKGROUND: The objective of this research is to investigate the dynamic developmental trends between Age-Friendly Environments (AFE) and healthy aging in the Chinese population. METHODS: This study focused on a sample of 11,770 participants from the CHARLS and utilized the ATHLOS Healthy Aging Index to assess the level of healthy aging among the Chinese population. Linear mixed model (LMM) was used to explore the relationship between AFE and healthy aging. Furthermore, a cross-lagged panel model (CLPM) and a random-intercept cross-lagged panel model (RI-CLPM) were used to examine the dynamic developmental trends of healthy aging, taking into account both Between-Person effects and Within-Person effects. RESULTS: The results from LMM showed a positive correlation between AFE and healthy aging (ß = 0.087, p < 0.001). There was a positive interaction between the geographic distribution and AFE (central region * AFE: ß = 0.031, p = 0.038; eastern region * AFE: ß = 0.048, p = 0.003). In CLPM and RI-CLPM, the positive effect of healthy aging on AFE is a type of Between-Person effects (ß ranges from 0.147 to 0.159, p < 0.001), while the positive effect of AFE on healthy aging is Within-Person effects (ß ranges from 0.021 to 0.024, p = 0.004). CONCLUSION: Firstly, individuals with high levels of healthy aging are more inclined to actively participate in the development of appropriate AFE compared to those with low levels of healthy aging. Furthermore, by encouraging and guiding individuals to engage in activities that contribute to building appropriate AFE, can elevate their AFE levels beyond the previous average level, thereby improving their future healthy aging levels. Lastly, addressing vulnerable groups by reducing disparities and meeting their health needs effectively is crucial for fostering healthy aging in these populations.
Asunto(s)
Envejecimiento Saludable , Medio Social , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , China/epidemiología , Pueblos del Este de Asia , Envejecimiento Saludable/fisiología , Estudios LongitudinalesRESUMEN
The Animal QTLdb (https://www.animalgenome.org/QTLdb) and CorrDB (https://www.animalgenome.org/CorrDB) are unique resources for livestock animal genetics and genomics research which have been used extensively by the international livestock genome research community. This is largely due to the active development of the databases over the years to keep up with the rapid advancement of genome sciences. The ongoing development has ensured that these databases provide researchers not only with continually updated data but also with new web tools to disseminate the data. Through our continued efforts, the databases have evolved from the original Pig QTLdb for cross-experiment QTL data comparisons to an Animal QTLdb hosting 220 401 QTL, SNP association and eQTL data linking phenotype to genotype for 2210 traits. In addition, there are 23 552 correlations for 866 traits and 4273 heritability data on 1069 traits in CorrDB. All these data were curated from 3157 publications that cover seven livestock species. Along with the continued data curation, new species, additional genome builds, and new functions and features have been built into the databases as well. Standardized procedures to support data mapping on multiple species/genome builds and the ability to browse data based on linked ontology terms are highlights of the recent developments.
Asunto(s)
Bases de Datos Genéticas , Genoma , Ganado/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Programas Informáticos , Animales , Bovinos , Pollos/genética , Mapeo Cromosómico , Ontología de Genes , Genotipo , Cabras/genética , Caballos/genética , Internet , Anotación de Secuencia Molecular , Oncorhynchus mykiss/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Ovinos/genética , Porcinos/genéticaRESUMEN
BACKGROUND: Adverse drug reactions (ADRs), which are the phenotypic manifestations of clinical drug toxicity in humans, are a major concern in precision clinical medicine. A comprehensive evaluation of ADRs is helpful for unbiased supervision of marketed drugs and for discovering new drugs with high success rates. OBJECTIVE: In current practice, drug safety evaluation is often oversimplified to the occurrence or nonoccurrence of ADRs. Given the limitations of current qualitative methods, there is an urgent need for a quantitative evaluation model to improve pharmacovigilance and the accurate assessment of drug safety. METHODS: In this study, we developed a mathematical model, namely the Adverse Drug Reaction Classification System (ADReCS) severity-grading model, for the quantitative characterization of ADR severity, a crucial feature for evaluating the impact of ADRs on human health. The model was constructed by mining millions of real-world historical adverse drug event reports. A new parameter called Severity_score was introduced to measure the severity of ADRs, and upper and lower score boundaries were determined for 5 severity grades. RESULTS: The ADReCS severity-grading model exhibited excellent consistency (99.22%) with the expert-grading system, the Common Terminology Criteria for Adverse Events. Hence, we graded the severity of 6277 standard ADRs for 129,407 drug-ADR pairs. Moreover, we calculated the occurrence rates of 6272 distinct ADRs for 127,763 drug-ADR pairs in large patient populations by mining real-world medication prescriptions. With the quantitative features, we demonstrated example applications in systematically elucidating ADR mechanisms and thereby discovered a list of drugs with improper dosages. CONCLUSIONS: In summary, this study represents the first comprehensive determination of both ADR severity grades and ADR frequencies. This endeavor establishes a strong foundation for future artificial intelligence applications in discovering new drugs with high efficacy and low toxicity. It also heralds a paradigm shift in clinical toxicity research, moving from qualitative description to quantitative evaluation.
Asunto(s)
Macrodatos , Minería de Datos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Minería de Datos/métodos , Farmacovigilancia , Modelos Teóricos , Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricosRESUMEN
The use of wetland plants in the context of phytoremediation is effective in the removal of antibiotics from contaminated water. However, the effectiveness and efficiency of many of these plants in the removal of antibiotics remain undetermined. In this study, the effectiveness of two plants-Phragmites australis and Iris pseudacorus-in the removal of tetracycline (TC) in hydroponic systems was investigated. The uptake of TC at the roots of I. pseudacorus and P. australis occurred at concentrations of 588.78 and 106.70 µg/g, respectively, after 7-day exposure. The higher uptake of TC in the root of I. pseudacorus may be attributed to its higher secretion of root exudates, which facilitate conditions conducive to the reproduction of microorganisms. These rhizosphere-linked microorganisms then drove the TC uptake, which was higher than that in the roots of P. australis. By elucidating the mechanisms underlying these uptake-linked outcomes, we found that the uptake of TC for both plants was significantly suppressed by metabolic and aquaporin inhibition, suggesting uptake and transport of TC were active (energy-dependent) and passive (aquaporin-dominated) processes, respectively. The subcellular distribution patterns of I. pseudacorus and P. australis in the roots were different, as expressed by differences in organelles, cell wall concentration levels, and transport-related dynamics. Additionally, the microbe-driven enhancement of the remediation capacities of the plants was studied comprehensively via a combined microbial-phytoremediation hydroponic system. We confirmed that the microbial agents increased the secretion of root exudates, promoting the variation of TC chemical speciation and thus enhancing the active transport of TC. These results contribute toward the improved application of wetland plants in the context of antibiotic phytoremediation.
Asunto(s)
Biodegradación Ambiental , Raíces de Plantas , Tetraciclina , Humedales , Tetraciclina/metabolismo , Raíces de Plantas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Rizosfera , HidroponíaRESUMEN
An efficient palladium-catalyzed carbonylation of aryl fluorosulfates with aryl formates for the facile synthesis of esters was developed. The cross-coupling reactions proceeded effectively in the presence of a palladium catalyst, phosphine ligand, and triethylamine in DMF to produce the corresponding esters in moderate to good yields. Of note, functionalities or substituents, such as nitro, cyano, methoxycarbonyl, trifluoromethyl, methylsulfonyl, trifluoromethoxy, fluoro, chloro, bromo, methyl, methoxy, N,N-dimethyl, and [1,3]dioxolyl, were well-tolerated in the reactions, which could be kept for late-stage modification. The reactions employing readily available and relatively robust aryl fluorosulfates as coupling electrophiles could potentially serve as an attractive alternative to traditional cross-couplings with the use of aryl halides and pseudohalides as substrates.
RESUMEN
Hydroxylation of aryl sulfonium salts could be realized by utilizing acetohydroxamic acid and oxime as hydroxylative agents in the presence of cesium carbonate as a base, leading to a variety of structurally diverse hydroxylated arenes in 47-95% yields. In addition, the reaction exhibited broad functionality tolerance, and a range of important functional groups (e.g., cyano, nitro, sulfonyl, formyl, keto, and ester) could be well amenable to the mild reaction conditions.
RESUMEN
Individual omega-6 polyunsaturated fatty acids (PUFAs), principally linoleic acid (LA) and arachidonic acid (AA), may have differential impacts on cardiovascular risk. We aimed to summarize the up-to-date epidemiology evidence on the relationship between blood levels of omega-6 PUFAs and the risk of coronary heart disease (CHD). Population-based studies determining PUFA levels in blood were identified until May 2021 in PubMed, Embase, Web of Science, and Cochrane Library. Random-effects meta-analyses of cohorts comparing the highest versus lowest category were conducted to combine study-specific risk ratios (RRs) with 95% confidence intervals (CIs). Blood levels of omega-6 PUFAs were compared between the CHD case and non-case, presented as a weight mean difference (WMD). Twenty-one cohorts and eleven case-control studies were included. The WMD was -0.71 (95% CI: -1.20, -0.21) for LA and 0.08 (95% CI: -0.28, 0.43) for AA. LA levels were inversely associated with total CHD risk (RR: 0.85, 95% CI: 0.71, 1.00), but not AA. Each one-SD increase in LA levels resulted in 10% reductions in the risk of fatal CHD (RR: 0.90, 95% CI: 0.86, 0.95), but not in non-fatal CHD. Such findings highlight that the current recommendation for optimal intakes of omega-6 PUFAs (most LA) may offer a coronary benefit in primary prevention.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2056867 .