Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 7(28): 24895-24902, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874234

RESUMEN

Trace hydrogen detection plays an important role in the safety detection of lithium-ion batteries (LIBs) due to the generation and leakage of trace hydrogen in the early stage of LIBs damage. In this work, an amperometric hydrogen sensor based on solid polymer electrolyte was reported. The sandwich device structure was realized, which could directly diffuse the gas from both sides to the three-phase interface (gas/electrode/electrolyte) to participate in the reaction through the optimal design of the gas diffusion path. Then, platinum nanoparticles (Pt-NPs) were loaded on the metal foam by electroplating, and the porous electrode was filled with solid polymer electrolyte. A sensor with high specific surface area, high catalytic activity, and high sensitivity was obtained. Finally, the hydrogen oxidation reaction (HOR) mechanism of the platinum-loaded (Pt-loaded) titanium foam (Ti foam) electrode under both anaerobic and aerobic conditions was verified, and the properties of the sensor was evaluated. The hydrogen sensor with a "sandwich" structure has the advantages of high sensitivity, good stability, low detection limit and low cost, which provides a technical solution for the safety and real-time monitoring of LIBs.

2.
ACS Omega ; 7(1): 160-167, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036687

RESUMEN

Formaldehyde, as a carcinogenic substance, is often intentionally used to adulterate vegetables to increase their shelf life, and the adhesive tape used to attach labels can also leave formaldehyde on the surface of vegetables. However, as the "gold" standard, gas chromatography (GC) and high-performance liquid chromatography (HPLC) are expensive for individual tests and confined to the laboratory owing to their size and a suitable detector (low-cost, portable, fast detection speed) to check formaldehyde contamination in vegetables not being available. Here, we tested formaldehyde contamination in vegetables using a low-cost and hand-held detector combined with a screen-printed electrode (SPE) amperometric sensor and an open-sourced potentiostat. The analyzer can detect a concentration of 100 µmol/L formaldehyde and achieve a good linear range between 100 and 1000 µmol/L. Furthermore, the detector successfully identified formaldehyde contamination in 53 samples of six different kinds of vegetables even after residual formaldehyde on the surface was evaporated. Most importantly, under the practicability-oriented idea, a cost-effective strategy was implemented for this detector design rather than using other pricey methods (e.g., photolithography, electron-beam evaporation, chemical deposition), which enormously reduces the cost (under ∼USD 0.5 per test) and meets all of the requirements of ASSURED device. We believe this cheap, portable detector could help law-enforcing authorities, healthcare workers, and customers to screen formaldehyde contamination easily. Also, the cost-saving strategy is appropriate for low-income areas, where there is a lack of laboratories, funds, and trained experts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA