Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 21(47): 475604, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-21030770

RESUMEN

The synthesis, morphology, structural and optical characteristics of SiC/C nanocomposites with an inverse opal lattice have been investigated. The samples were prepared by thermochemical treatment of opal matrices filled with carbon compounds which was followed by silicon dioxide dissolution. The samples were studied by electron microscopy, x-ray diffraction, photoluminescence, IR and Raman scattering spectroscopy. The electron microscopy data revealed a highly porous periodic structure which was a three-dimensional replica of the voids of the initial opal lattice. The hexagonal silicon carbide was found to be non-uniformly distributed throughout the volume, its greater part located in the surface layer up to 50 µm deep. The data of x-ray diffraction, IR and Raman scattering spectroscopy enabled us to assume that the composite had hexagonal diamond fragments. The photoluminescence and optical reflection spectra of the composites have been measured.

2.
J Colloid Interface Sci ; 405: 183-8, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23786834

RESUMEN

Carbon inverse opals (C-IOP) were noncovalently modified with tetraphenylmethylenediphospine dioxide (TPMDPDO). The distribution of TPMDPDO between C-IOP and aqueous HNO3 solutions has been studied. The effect of HNO3 concentration in the aqueous phase and that of the TPMDPDO concentration in the sorbent phase on the adsorption of microquantities of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, U, and Th nitrates from HNO3 solutions by C-IOP modified with TPMDPDO is considered. The stoichiometry of the sorbed complexes has been determined by the slope analysis method. The efficiency of lanthanide(III) adsorption from moderate-concentration HNO3 solutions decreases with increasing element atomic number.

3.
Phys Rev Lett ; 86(26 Pt 1): 5994-7, 2001 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-11415412

RESUMEN

The dispersion of the low-energy magnetic excitations of the Pr sublattice in PrBa(2)Cu(3)O(6.2) is determined by inelastic neutron scattering measurements on a single crystal. The dispersion, which shows the effect of interactions with the Cu spin waves, is well described by a model of the coupled Cu-Pr magnetic system. This model enables values for the principal exchange constants to be determined. The results suggest that both Pr-Pr and Cu-Pr interactions are important in producing the anomalously high ordering temperature of the Pr sublattice. Measurements of the Cu optic spin wave mode show that the interlayer Cu-Cu exchange is significantly lower than in YBa(2)Cu(3)O(6.2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA