Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 677, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39014327

RESUMEN

Climate change is predicted to increase the occurrence of extreme weather events such as heatwaves, which may thereby impact the outcome of plant-herbivore interactions. While elevated temperature is known to directly affect herbivore growth, it remains largely unclear if it indirectly influences herbivore performance by affecting the host plant they feed on. In this study, we investigated how transient exposure to high temperature influences plant herbivory-induced defenses at the transcript and metabolic level. To this end, we studied the interaction between potato (Solanum tuberosum) plants and the larvae of the potato tuber moth (Phthorimaea operculella) under different temperature regimes. We found that P. operculella larvae grew heavier on leaves co-stressed by high temperature and insect herbivory than on leaves pre-stressed by herbivory alone. We also observed that high temperature treatments altered phylotranscriptomic patterns upon herbivory, which changed from an evolutionary hourglass pattern, in which transcriptomic responses at early and late time points after elicitation are more variable than the ones in the middle, to a vase pattern. Specifically, transcripts of many herbivory-induced genes in the early and late defense stage were suppressed by HT treatment, whereas those in the intermediate stage peaked earlier. Additionally, we observed that high temperature impaired the induction of jasmonates and defense compounds upon herbivory. Moreover, using jasmonate-reduced (JA-reduced, irAOC) and -elevated (JA-Ile-elevated, irCYP94B3s) potato plants, we showed that high temperature suppresses JA signaling mediated plant-induced defense to herbivore attack. Thus, our study provides evidences on how temperature reprograms plant-induced defense to herbivores.


Asunto(s)
Respuesta al Choque Térmico , Herbivoria , Larva , Mariposas Nocturnas , Solanum tuberosum , Solanum tuberosum/fisiología , Solanum tuberosum/parasitología , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Animales , Mariposas Nocturnas/fisiología , Larva/fisiología , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/fisiología , Hojas de la Planta/parasitología , Calor , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Defensa de la Planta contra la Herbivoria , Transcriptoma , Cambio Climático
2.
Opt Express ; 32(10): 16746-16760, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858873

RESUMEN

Strong near-field enhancements (NFEs) of nanophotonic structures are believed to be closely related to high Purcell factors (FP). Here, we theoretically show that the correlation is partially correct; the extinction cross section (σ) response is also critical in determining FP. The divergence between NFE and FP is especially pronounced in plasmonic-dielectric hybrid systems, where the plasmonic antenna supports dipolar plasmon modes and the dielectric cavity hosts Mie-like resonances. The cavity's enhanced-field environment can boost the antenna's NFEs, but the FP is not increased concurrently due to the larger effective σ that is intrinsic to the FP calculations. Interestingly, the peak FP for the coupled system can be predicted by using the NFE and σ responses. Furthermore, the limits for FP of coupled systems are considered; they are determined by the sum of the FP of a redshifted (or modified, if applicable) antenna and an individual cavity. This contrasts starkly with the behavior of NFE which is closely associated with the multiplicative effects of the NFEs provided by the antenna and the dielectric cavity. The differing behaviors of NFE and FP in hybrid cavities have varied impacts on relevant nanophotonic applications such as fluorescence, Raman scattering and enhanced light-matter interactions.

3.
BMC Cancer ; 24(1): 11, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166700

RESUMEN

OBJECTIVE: The aim of this study was to investigate the clinical, imaging and pathological features of extraskeletal osteosarcoma (EOS) and to improve the understanding of this disease and other similar lesions. METHODS: The data for 11 patients with pathologically confirmed extraosseous osteosarcoma, including tumour site and size and imaging and clinical manifestations, were analysed retrospectively. RESULTS: Six patients were male (60%), and 5 were female (40%); patient age ranged from 23 to 76 years (average age 47.1 years). Among the 11 patients, 7 had clear calcifications or ossification with different morphologies, and 2 patients showed a massive mature bone tumour. MRI showed a mixed-signal mass with slightly longer T1 and T2 signals in the tumour parenchyma. Enhanced CT and MRI scans showed enhancement in the parenchyma. Ten patients had different degrees of necrosis and cystic degeneration in the mass, 2 of whom were complicated with haemorrhage, and MRI showed "fluid‒fluid level" signs. Of the 11 patients, five patients survived after surgery, and no obvious recurrence or metastasis was found on imaging examination. One patient died of lung metastasis after surgery, and 2 patients with open biopsy died of disease progression. One patient died of respiratory failure 2 months after operation. 2 patients had positive surgical margins, and 1 had lung metastasis 6 months after operation and died 19 months after operation. Another patient had recurrence 2 months after surgery. CONCLUSION: The diagnosis of EOS requires a combination of clinical, imaging and histological examinations. Cystic degeneration and necrosis; mineralization is common, especially thick and lumpy mineralization. Extended resection is still the first choice for localized lesions. For patients with positive surgical margins or metastases, adjuvant chemoradiotherapy is needed.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Osteosarcoma , Neoplasias de los Tejidos Blandos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto Joven , Adulto , Anciano , Diagnóstico Diferencial , Márgenes de Escisión , Estudios Retrospectivos , Neoplasias de los Tejidos Blandos/patología , Imagen por Resonancia Magnética , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Óseas/patología , Necrosis/diagnóstico
4.
J Magn Reson Imaging ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38390981

RESUMEN

BACKGROUND: Different placenta accreta spectrum (PAS) subtypes pose varying surgical risks to the parturient. Machine learning model has the potential to diagnose PAS disorder. PURPOSE: To develop a cascaded deep semantic-radiomic-clinical (DRC) model for diagnosing PAS and its subtypes based on T2-weighted MRI. STUDY TYPE: Retrospective. POPULATION: 361 pregnant women (mean age: 33.10 ± 4.37 years), suspected of PAS, divided into segment training cohort (N = 40), internal training cohort (N = 139), internal testing cohort (N = 60), and external testing cohort (N = 122). FIELD STRENGTH/SEQUENCE: Coronal T2-weighted sequence at 1.5 T and 3.0 T. ASSESSMENT: Clinical characteristics such as history of uterine surgery and the presence of placenta previa, complete placenta previa and dangerous placenta previa were extracted from clinical records. The DRC model (incorporating radiomics, deep semantic features, and clinical characteristics), a cumulative radiological score method performed by radiologists, and other models (including a radiomics and clinical, the clinical, radiomics and deep learning models) were developed for PAS disorder diagnosing (existence of PAS and its subtypes). STATISTICAL TESTS: AUC, ACC, Student's t-test, the Mann-Whitney U test, chi-squared test, dice coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator regression, receiver operating characteristic curve, calibration curve with the Hosmer-Lemeshow test, decision curve analysis, DeLong test, and McNemar test. P < 0.05 indicated a significant difference. RESULTS: In PAS diagnosis, the DRC-1 outperformed than other models (AUC = 0.850 and 0.841 in internal and external testing cohorts, respectively). In PAS subtype classification (abnormal adherent placenta and abnormal invasive placenta), DRC-2 model performed similarly with radiologists (P = 0.773 and 0.579 in the internal testing cohort and P = 0.429 and 0.874 in the external testing cohort, respectively). DATA CONCLUSION: The DRC model offers efficiency and high diagnostic sensitivity in diagnosis, aiding in surgical planning. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

5.
Fish Shellfish Immunol ; 146: 109379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242264

RESUMEN

Cathepsin C is a cysteine protease widely found in invertebrates and vertebrates, and has the important physiological role participating in proteolysis in vivo and activating various functional proteases in immune/inflammatory cells in the animals. In order to study the role of cathepsin C in the disease resistance of shrimp, we cloned cathepsin C gene (MjcathC) from Marsupenaeus japonicus, analyzed its expression patterns in various tissues, performed MjcathC-knockdown, and finally challenged experimental shrimps with Vibrio alginolyticus and WSSV. The results have shown the full length of MjcathC is 1782 bp, containing an open reading frame of 1350 bp encoding 449 amino acids. Homology analysis revealed that the predicted amino acid sequence of MjcathC shared respectively 88.42 %, 87.36 % and 87.58 % similarity with Penaeus monodon, Fenneropenaeus penicillatus and Litopenaeus vannamei. The expression levels of MjcathC in various tissues of healthy M. japonicus are the highest in the liver, followed by the gills and heart, and the lowest in the stomach. The expression levels of MjcathC were significantly up-regulated in all examined tissues of shrimp challenged with WSSV or V. alginolyticus. After knockdown-MjcathC using RNAi technology in M. japonicus, the expression levels of lectin and heat shock protein 70 in MjcathC-knockdown shrimp were significantly down-regulated, and the mortality of MjcathC-knockdown shrimp challenged by WSSV and V. alginolyticus significantly increased. Knockdown of the MjcathC reduced the resistance of M. japonicus to WSSV and V. alginolyticus. The above results have indicated that cathepsin C may play an important role in the antibacterial and antiviral innate immunity of M. japonicus.


Asunto(s)
Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Virus del Síndrome de la Mancha Blanca 1/fisiología , Catepsina C/genética , Secuencia de Bases , Regulación de la Expresión Génica , Proteínas de Artrópodos , Clonación Molecular , Filogenia , Inmunidad Innata/genética , Resistencia a la Enfermedad/genética
6.
J Sep Sci ; 47(1): e2300577, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38109069

RESUMEN

Centrifugal partition chromatography in the pH-zone-refining mode was successfully applied to the separation of alkaloids from the crude extract of Corydalis decumbens. The experiment was performed with a two-phase solvent system composed of petroleum ether-ethyl acetate-ethanol-water (5:5:3:7, v/v/v/v) where triethylamine (10 mM) was added to the stationary phase and hydrochloric acid (10 mM) to the mobile phase. From 1.6 g of the crude extract, 43 mg protopine, 189 mg (+)-egenine, and 158 mg tetrahydropalmatine were obtained with a purity of 98.2%, 94.6%, and 96.7%, respectively. Tetrahydropalmatine showed an interesting anticomplement effect with CH50 0.11 and AP50 0.25 mg/mL, respectively. In a mechanistic study, tetrahydropalmatine interacted with C1, C3, C4, and C5 components in the complement activation cascade.


Asunto(s)
Alcaloides , Proteínas Inactivadoras de Complemento , Corydalis , Corydalis/química , Distribución en Contracorriente/métodos , Alcaloides/farmacología , Alcaloides/química , Solventes/química , Concentración de Iones de Hidrógeno , Mezclas Complejas , Cromatografía Líquida de Alta Presión
7.
BMC Ophthalmol ; 24(1): 94, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429639

RESUMEN

BACKGROUND: Most studies had shown a linear relationship between serum albumin (sALB) and the prevalence of diabetic retinopathy (DR). Thus, the purpose of this study is to investigate whether their relationship is non-linear. METHODS: We included 426 patients with type 2 diabetes who were hospitalized in Guangdong Provincial People's Hospital from December 2017 to November 2018. The outcome was the prevalence of DR. A two-piecewise logistics regression model was performed to identify the non-linear relationship between sALB and the prevalence of DR. The inflection point was calculated to determine the saturation effect through the maximum likelihood ratio and a recursive algorithm. RESULTS: DR was diagnosed in 167 of 426 type 2 diabetic patients. The relationship between sALB and DR was nonlinear. When sALB was less than 38.10 g/L, a significant negative association was observed (OR = 0.82; 95% CI, 0.72-0.94; P = 0.0037), while no significant association was observed when sALB was greater than 38.10 g/L (OR = 1.12; 95% CI, 0.92-1.35; P = 0.2637). CONCLUSIONS: The relationship between sALB and the prevalence of DR is non-linear. sALB is negatively associated with the prevalence of DR when sALB is less than 38.10 g/L. Our findings need to be confirmed by further prospective research.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Humanos , Algoritmos , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/sangre , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/metabolismo , Albúmina Sérica
8.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338856

RESUMEN

Epipogium roseum, commonly known as one of the ghost orchids due to its rarity and almost transparent color, is a non-photosynthetic and fully mycoheterotrophic plant. Given its special nutritional strategies and evolutionary significance, the mitogenome was first characterized, and three plastomes sampled from Asia were assembled. The plastomes were found to be the smallest among Orchidaceae, with lengths ranging from 18,339 to 19,047 bp, and exhibited high sequence variety. For the mitogenome, a total of 414,552 bp in length, comprising 26 circular chromosomes, were identified. A total of 54 genes, including 38 protein-coding genes, 13 tRNA genes, and 3 rRNA genes, were annotated. Multiple repeat sequences spanning a length of 203,423 bp (45.47%) were discovered. Intriguingly, six plastid regions via intracellular gene transfer and four plastid regions via horizontal gene transfer to the mitogenome were observed. The phylogenomics, incorporating 90 plastomes and 56 mitogenomes, consistently revealed the sister relationship of Epipogium and Gastrodia, with a bootstrap percentage of 100%. These findings shed light on the organelle evolution of Orchidaceae and non-photosynthetic plants.


Asunto(s)
Genoma de Plastidios , Orchidaceae , Filogenia , Plastidios , Orchidaceae/genética , Asia , Evolución Molecular
9.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125719

RESUMEN

Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica's mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae.


Asunto(s)
Genoma Mitocondrial , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/clasificación , Genoma Mitocondrial/genética , Evolución Molecular , ARN de Transferencia/genética , Composición de Base , Edición de ARN/genética , Uso de Codones
10.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474276

RESUMEN

Cymbidium sinense, a type of orchid plant, is more drought-resistant and ornamental than other terrestrial orchids. Research has shown that many members of the NUCLEAR FACTOR Y (NF-Y) transcription factor family are responsive to plant growth, development, and abiotic stress. However, the mechanism of the NF-Y gene family's response to abiotic stress in orchids has not yet been reported. In this study, phylogenetic analysis allowed for 27 CsNF-Y genes to be identified (5 CsNF-YAs, 9 CsNF-YBs, and 13 CsNF-YC subunits), and the CsNF-Ys were homologous to those in Arabidopsis and Oryza. Protein structure analysis revealed that different subfamilies contained different motifs, but all of them contained Motif 2. Secondary and tertiary protein structure analysis indicated that the CsNF-YB and CsNF-YC subfamilies had a high content of alpha helix structures. Cis-element analysis showed that elements related to drought stress were mainly concentrated in the CsNF-YB and CsNF-YC subfamilies, with CsNF-YB3 and CsNF-YC12 having the highest content. The results of a transcriptome analysis showed that there was a trend of downregulation of almost all CsNF-Ys in leaves under drought stress, while in roots, most members of the CsNF-YB subfamily showed a trend of upregulation. Additionally, seven genes were selected for real-time reverse transcription quantitative PCR (qRT-PCR) experiments. The results were generally consistent with those of the transcriptome analysis. The regulatory roles of CsNF-YB 1, 2, and 4 were particularly evident in the roots. The findings of our study may make a great contribution to the understanding of the role of CsNF-Ys in stress-related metabolic processes.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Sequías , Filogenia , Genoma de Planta , Factor de Unión a CCAAT/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
11.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396732

RESUMEN

Phosphoenolpyruvate carboxylase (PEPC) gene family plays a crucial role in both plant growth and response to abiotic stress. Approximately half of the Orchidaceae species are estimated to perform CAM pathway, and the availability of sequenced orchid genomes makes them ideal subjects for investigating the PEPC gene family in CAM plants. In this study, a total of 33 PEPC genes were identified across 15 orchids. Specifically, one PEPC gene was found in Cymbidium goeringii and Platanthera guangdongensis; two in Apostasia shenzhenica, Dendrobium chrysotoxum, D. huoshanense, Gastrodia elata, G. menghaiensis, Phalaenopsis aphrodite, Ph. equestris, and Pl. zijinensis; three in C. ensifolium, C. sinense, D. catenatum, D. nobile, and Vanilla planifolia. These PEPC genes were categorized into four subgroups, namely PEPC-i, PEPC-ii, and PEPC-iii (PTPC), and PEPC-iv (BTPC), supported by the comprehensive analyses of their physicochemical properties, motif, and gene structures. Remarkably, PEPC-iv contained a heretofore unreported orchid PEPC gene, identified as VpPEPC4. Differences in the number of PEPC homolog genes among these species were attributed to segmental duplication, whole-genome duplication (WGD), or gene loss events. Cis-elements identified in promoter regions were predominantly associated with light responsiveness, and circadian-related elements were observed in each PEPC-i and PEPC-ii gene. The expression levels of recruited BTPC, VpPEPC4, exhibited a lower expression level than other VpPEPCs in the tested tissues. The expression analyses and RT-qPCR results revealed diverse expression patterns in orchid PEPC genes. Duplicated genes exhibited distinct expression patterns, suggesting functional divergence. This study offered a comprehensive analysis to unveil the evolution and function of PEPC genes in Orchidaceae.


Asunto(s)
Orchidaceae , Fosfoenolpiruvato Carboxilasa , Humanos , Fosfoenolpiruvato Carboxilasa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Plantas/metabolismo , Secuencia de Bases , Filogenia
12.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062906

RESUMEN

As an important genus in Orchidaceae, Cymbidium has rich ecological diversity and significant economic value. DNA binding with one zinc finger (Dof) proteins are pivotal plant-specific transcription factors that play crucial roles in the growth, development, and stress response of plants. Although the Dof genes have been identified and functionally analyzed in numerous plants, exploration in Orchidaceae remains limited. We conducted a thorough analysis of the Dof gene family in Cymbidium goeringii, C. ensifolium, and C. sinensis. In total, 91 Dof genes (27 CgDofs, 34 CeDofs, 30 CsDofs) were identified, and Dof genes were divided into five groups (I-V) based on phylogenetic analysis. All Dof proteins have motif 1 and motif 2 conserved domains and over half of the genes contained introns. Chromosomal localization and collinearity analysis of Dof genes revealed their evolutionary relationships and potential gene duplication events. Analysis of cis-elements in CgDofs, CeDofs, and CsDofs promoters showed that light-responsive cis-elements were the most common, followed by hormone-responsive elements, plant growth-related elements, and abiotic stress response elements. Dof proteins in three Cymbidium species primarily exhibit a random coil structure, while homology modeling exhibited significant similarity. In addition, RT-qPCR analysis showed that the expression levels of nine CgDofs changed greatly under heat stress. CgDof03, CgDof22, CgDof27, CgDof08, and CgDof23 showed varying degrees of upregulation. Most upregulated genes under heat stress belong to group I, indicating that the Dof genes in group I have great potential for high-temperature resistance. In conclusion, our study systematically demonstrated the molecular characteristics of Dof genes in different Cymbidium species, preliminarily revealed the patterns of heat stress, and provided a reference for further exploration of stress breeding in orchids.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Familia de Multigenes , Orchidaceae , Filogenia , Proteínas de Plantas , Orchidaceae/genética , Orchidaceae/clasificación , Respuesta al Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Dedos de Zinc/genética , Regiones Promotoras Genéticas
13.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928070

RESUMEN

The GRAS gene family, responsible for encoding transcription factors, serves pivotal functions in plant development, growth, and responses to stress. The exploration of the GRAS gene family within the Orchidaceae has been comparatively limited, despite its identification and functional description in various plant species. This study aimed to conduct a thorough examination of the GRAS gene family in Cymbidum goeringii, focusing on its physicochemical attributes, phylogenetic associations, gene structure, cis-acting elements, and expression profiles under heat stress. The results show that a total of 54 CgGRASs were pinpointed from the genome repository and categorized into ten subfamilies via phylogenetic associations. Assessment of gene sequence and structure disclosed the prevalent existence of the VHIID domain in most CgGRASs, with around 57.41% (31/54) CgGRASs lacking introns. The Ka/Ks ratios of all CgGRASs were below one, indicating purifying selection across all CgGRASs. Examination of cis-acting elements unveiled the presence of numerous elements linked to light response, plant hormone signaling, and stress responsiveness. Furthermore, CgGRAS5 contained the highest quantity of cis-acting elements linked to stress response. Experimental results from RT-qPCR demonstrated notable variations in the expression levels of eight CgGRASs after heat stress conditions, particularly within the LAS, HAM, and SCL4/7 subfamilies. In conclusion, this study revealed the expression pattern of CgGRASs under heat stress, providing reference for further exploration into the roles of CgGRAS transcription factors in stress adaptation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Familia de Multigenes , Orchidaceae , Filogenia , Proteínas de Plantas , Respuesta al Choque Térmico/genética , Orchidaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Perfilación de la Expresión Génica/métodos
14.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473781

RESUMEN

The Tripterospermum, comprising 34 species, is a genus of Gentianaceae. Members of Tripterospermum are mostly perennial, entwined herbs with high medicinal value and rich in iridoids, xanthones, flavonoids, and triterpenes. However, our inadequate understanding of the differences in the plastid genome sequences of Tripterospermum species has severely hindered the study of their evolution and phylogeny. Therefore, we first analyzed the 86 Gentianae plastid genomes to explore the phylogenetic relationships within the Gentianae subfamily where Tripterospermum is located. Then, we analyzed six plastid genomes of Tripterospermum, including two newly sequenced plastid genomes and four previously published plastid genomes, to explore the plastid genomes' evolution and phylogenetic relationships in the genus Tripterospermum. The Tripterospermum plastomes have a quadripartite structure and are between 150,929 and 151,350 bp in size. The plastomes of Tripterospermum encoding 134 genes were detected, including 86 protein-coding genes (CDS), 37 transfer RNA (tRNA) genes, eight ribosomal RNA (rRNA) genes, and three pseudogenes (infA, rps19, and ycf1). The result of the comparison shows that the Tripterospermum plastomes are very conserved, with the total plastome GC content ranging from 37.70% to 37.79%. In repeat sequence analysis, the number of single nucleotide repeats (A/T) varies among the six Tripterospermum species, and the identified main long repeat types are forward and palindromic repeats. The degree of conservation is higher at the SC/IR boundary. The regions with the highest divergence in the CDS and the intergenic region (IGS) are psaI and rrn4.5-rrn5, respectively. The average pi of the CDS and the IGS are only 0.071% and 0.232%, respectively, indicating that the Tripterospermum plastomes are highly conserved. Phylogenetic analysis indicated that Gentianinae is divided into two clades, with Tripterospermum as a sister to Sinogeniana. Phylogenetic trees based on CDS and CDS + IGS combined matrices have strong support in Tripterospermum. These findings contribute to the elucidation of the plastid genome evolution of Tripterospermum and provide a foundation for further exploration and resource utilization within this genus.


Asunto(s)
Genoma de Plastidios , Gentianaceae , Filogenia , Evolución Molecular
15.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38473912

RESUMEN

Bulbophyllum is one of the largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae, including species of ornamental and medical importance. The lack of knowledge regarding the characterization of Bulbophyllum chloroplast (cp) genomes has imposed current limitations on our study. Here, we report the complete cp genomes of seven Bulbophyllum species, including B. ambrosia, B. crassipes, B. farreri, B. hamatum, B. shanicum, B. triste, and B. violaceolabellum, and compared with related taxa to provide a better understanding of their genomic information on taxonomy and phylogeny. A total of 28 Bulbophyllum cp genomes exhibit typical quadripartite structures with lengths ranging from 145,092 bp to 165,812 bp and a GC content of 36.60% to 38.04%. Each genome contained 125-132 genes, encompassing 74-86 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The genome arrangements, gene contents, and length were similar, with differences observed in ndh gene composition. It is worth noting that there were exogenous fragment insertions in the IR regions of B. crassipes. A total of 18-49 long repeats and 38-80 simple sequence repeats (SSRs) were detected and the single nucleotide (A/T) was dominant in Bulbophyllum cp genomes, with an obvious A/T preference. An analysis of relative synonymous codon usage (RSCU) revealed that leucine (Leu) was the most frequently used codon, while cysteine (Cys) was the least used. Six highly variable regions (rpl32-trnLUAG > trnTUGU-trnLUAA > trnFGAA-ndhJ > rps15-ycf1 > rbcL-accD > psbI-trnSGCU) and five coding sequences (ycf1 > rps12 > matK > psbK > rps15) were identified as potential DNA markers based on nucleotide diversity. Additionally, 31,641 molecular diagnostic characters (MDCs) were identified in complete cp genomes. A phylogenetic analysis based on the complete cp genome sequences and 68 protein-coding genes strongly supported that 28 Bulbophyllum species can be divided into four branches, sects. Brachyantha, Cirrhopetalum, and Leopardinae, defined by morphology, were non-monophyly. Our results enriched the genetic resources of Bulbophyllum, providing valuable information to illustrate the complicated taxonomy, phylogeny, and evolution process of the genus.


Asunto(s)
Genoma del Cloroplasto , Orchidaceae , Filogenia , Orchidaceae/genética , Evolución Molecular , Nucleótidos
16.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791460

RESUMEN

The TIFY gene family (formerly known as the zinc finger proteins expressed in inflorescence meristem (ZIM) family) not only functions in plant defense responses but also are widely involved in regulating plant growth and development. However, the identification and functional analysis of TIFY proteins remain unexplored in Orchidaceae. Here, we identified 19 putative TIFY genes in the Phalaenopsis aphrodite genome. The phylogenetic tree classified them into four subfamilies: 14 members from JAZ, 3 members from ZML, and 1 each from PPD and TIFY. Sequence analysis revealed that all Phalaenopsis TIFY proteins contained a TIFY domain. Exon-intron analysis showed that the intron number and length of Phalaenopsis TIFY genes varied, whereas the same subfamily and subgroup genes had similar exon or intron numbers and distributions. The most abundant cis-elements in the promoter regions of the 19 TIFY genes were associated with light responsiveness, followed by MeJA and ABA, indicating their potential regulation by light and phytohormones. The 13 candidate TIFY genes screened from the transcriptome data exhibited two types of expression trends, suggesting their different roles in cell proliferation and cell expansion of floral organ growth during Phalaenopsis flower opening. Overall, this study serves as a background for investigating the underlying roles of TIFY genes in floral organ growth in Phalaenopsis.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Orchidaceae , Proteínas de Plantas , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genoma de Planta , Orchidaceae/genética , Orchidaceae/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
17.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255880

RESUMEN

Auxin Response Factors (ARFs) mediate auxin signaling and govern diverse biological processes. However, a comprehensive analysis of the ARF gene family and identification of their key regulatory functions have not been conducted in Melastoma dodecandrum, leading to a weak understanding of further use and development for this functional shrub. In this study, we successfully identified a total of 27 members of the ARF gene family in M. dodecandrum and classified them into Class I-III. Class II-III showed more significant gene duplication than Class I, especially for MedARF16s. According to the prediction of cis-regulatory elements, the AP2/ERF, BHLH, and bZIP transcription factor families may serve as regulatory factors controlling the transcriptional pre-initiation expression of MedARF. Analysis of miRNA editing sites reveals that miR160 may play a regulatory role in the post-transcriptional expression of MeARF. Expression profiles revealed that more than half of the MedARFs exhibited high expression levels in the stem compared to other organs. While there are some specific genes expressed only in flowers, it is noteworthy that MedARF16s, MedARF7A, and MedARF9B, which are highly expressed in stems, also demonstrate high expressions in other organs of M. dodecandrum. Further hormone treatment experiments revealed that these MedARFs were sensitive to auxin changes, with MedARF6C and MedARF7A showing significant and rapid changes in expression upon increasing exogenous auxin. In brief, our findings suggest a crucial role in regulating plant growth and development in M. dodecandrum by responding to changes in auxin. These results can provide a theoretical basis for future molecular breeding in Myrtaceae.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Melastomataceae , Barajamiento de ADN , Flores , Duplicación de Gen , Ácidos Indolacéticos/farmacología
18.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256078

RESUMEN

Heat shock factors (HSFs) are the key regulators of heat stress responses and play pivotal roles in tissue development and the temperature-induced regulation of secondary metabolites. In order to elucidate the roles of HSFs in Cymbidium ensifolium, we conducted a genome-wide identification of CeHSF genes and predicted their functions based on their structural features and splicing patterns. Our results revealed 22 HSF family members, with each gene containing more than one intron. According to phylogenetic analysis, 59.1% of HSFs were grouped into the A subfamily, while subfamily HSFC contained only two HSFs. And the HSF gene families were differentiated evolutionarily between plant species. Two tandem repeats were found on Chr02, and two segmental duplication pairs were observed on Chr12, Chr17, and Chr19; this provided evidence for whole-genome duplication (WGD) events in C. ensifolium. The core region of the promoter in most CeHSF genes contained cis-acting elements such as AP2/ERF and bHLH, which were associated with plant growth, development, and stress responses. Except for CeHSF11, 14, and 19, each of the remaining CeHSFs contained at least one miRNA binding site. This included binding sites for miR156, miR393, and miR319, which were responsive to temperature and other stresses. The HSF gene family exhibited significant tissue specificity in both vegetative and floral organs of C. ensifolium. CeHSF13 and CeHSF15 showed relatively significant expression in flowers compared to other genes. During flower development, CeHSF15 exhibited markedly elevated expression in the early stages of flower opening, implicating critical regulatory functions in organ development and floral scent-related regulations. During the poikilothermic treatment, CeHSF14 was upregulated over 200-fold after 6 h of heat treatment. CeHSF13 and CeHSF14 showed the highest expression at 6 h of low temperature, while the expression of CeHSF15 and CeHSF21 continuously decreased at a low temperature. The expression patterns of CeHSFs further confirmed their role in responding to temperature stress. Our study may help reveal the important roles of HSFs in plant development and metabolic regulation and show insight for the further molecular design breeding of C. ensifolium.


Asunto(s)
Frío , Respuesta al Choque Térmico , Temperatura , Filogenia , Respuesta al Choque Térmico/genética , Sitios de Unión
19.
Aquac Nutr ; 2024: 3893671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464590

RESUMEN

The present study investigated the effects of Astragalus membranaceus extract (AME) on growth performance, immune response, and energy metabolism of juvenile largemouth bass (Micropterus salmoides). Seven diets containing 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, and 0.6% AME (Con, AME0.1, AME0.2, AME0.3, AME0.4, AME0.5, and AME0.6 groups) were formulated and fed to M. salmoides for 8 weeks. Final body weight (FBW), feed intake (FI), weight gain (WG), and specific growth rate (SGR) were all significantly higher in AME0.4 group than in Con group (P < 0.05). Feed conversion rate (FCR) was significantly improved in AME0.5 group compared with Con group (P < 0.05). Whole-body crude protein contents were significantly increased in AME0.2 group (P < 0.05). Whole-body crude lipid contents were significantly lower in AME0.2 and AME0.3 groups, while muscle lipid was upregulated by dietary AME (P < 0.05). Hepatic malondialdehyde (MDA) contents were significantly lowered in AME0.3 and AME0.4 groups, and catalase (CAT) activities were significantly increased in AME0.1 and AME0.2 groups (P < 0.05). Plasma aspartate aminotransferase (AST) level was significantly lowered in AME0.5, and AME0.6 groups, and alanine aminotransferase (ALT) level was lowered in AME0.5 groups (P < 0.05). Plasma triglyceride was declined in AME0.6 group, and glucose was decreased by 0.3%-0.5% AME (P < 0.05). Significantly higher hepatocyte diameter, lamina propria width, and submucosal layer thickness were recorded in AME0.6 groups, while the longest villi height was obtained in AME0.2 and AME0.3 groups (P < 0.05). The mRNA expression levels of insulin-like growth factor 1 (igf1) revealed the growth-promoting effect of AME. The anti-inflammatory and antiapoptotic effects of AME were demonstrated by transcription levels of interleukin 8 (il-8), tumor necrosis factor-alpha (tnf-a), caspase, B-cell lymphoma-xl (Bcl-xl), bcl-2 associated x (Bax), and bcl-2-associated death protein (Bad). The transcription levels of lipid metabolism and gluconeogenesis related genes, including acetyl-CoA carboxylase alpha (acc1), fatty acid synthase (fasn), fatty acid binding protein 1 (fabp1), phosphoenolpyruvate carboxykinase 2 (pepck2), and glucose-6-phosphatase catalytic subunit 1a (g6pc), were reduced by AME treatment, while the levels of glycolysis-related genes, including glucokinase (gck) and pyruvate kinase (pk), were the highest in AME0.2 and AME0.3 groups (P < 0.05). According to polynomial regression analysis of SGR, WG, FCR, whole-body crude lipid, MDA, and ALT, the optimal AME supplementation level was estimated to be 0.320%-0.429% of the diet. These results provided insights into the roles of AME in regulating immunity and metabolism, which highly indicated its potential as immunostimulants and metabolic regulators in diverse aquatic animals.

20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 87-94, 2024 Jan 20.
Artículo en Zh | MEDLINE | ID: mdl-38322512

RESUMEN

Objective: To construct microscale rectangular hydrogel grooves and to investigate the morphology and alignment of human umbilical vein endothelial cells (HUVECs) under spatial constraints. Vascular endothelial cell morphology and alignment are important factors in vascular development and the maintenance of homeostasis. Methods: A 4-arm polyethylene glycol-acrylate (PEG-acrylate) hydrogel was used to fabricate rectangular microgrooves of the widths of 60 µm, 100 µm, and 140 µm. The sizes and the fibronectin (FN) adhesion of these hydrogel microgrooves were measured. HUVECs were seeded onto the FN-coated microgrooves, while the flat surface without micropatterns was used as the control. After 48 hours of incubation, the morphology and orientation of the cells were examined. The cytoskeleton was labelled with phalloidine and the orientation of the cytoskeleton in the hydrogel microgrooves was observed by laser confocal microscopy. Results: The hydrogel microgrooves constructed exhibited uniform and well-defined morphology, a complete structure, and clear edges, with the width deviation being less than 3.5%. The depth differences between the hydrogel microgrooves of different widths were small and the FN adhesion is uniform, providing a micro-patterned growth interface for cells. In the control group, the cells were arranged haphazardly in random orientations and the cell orientation angle was (46.9±1.8)°. In contrast, the cell orientation angle in the hydrogel microgrooves was significantly reduced (P<0.001). However, the cell orientation angles increased with the increase in hydrogel microgroove width. For the 60 µm, 100 µm, and 140 µm hydrogel microgrooves, the cell orientation angles were (16.4±2.8)°, (24.5±3.2)°, and (30.3±3.5)°, respectively. Compared to that of the control group (35.7%), the number of cells with orientation angles <30° increased significantly in the hydrogel microgrooves of different widths (P<0.001). However, as the width of the hydrogel microgrooves increased, the number of cells with orientation angles <30° gradually decreased (79.9%, 62.3%, 54.7%, respectively), while the number of cells with orientation angles between 60°-90° increased (P<0.001). The cell bodies in the microgrooves were smaller and more rounded in shape. The cells were aligned along the direction of the microgrooves and corresponding changes occurred in the arrangement of the cell cytoskeleton. In the control group, cytoskeletal filaments were aligned in random directions, presenting an orientation angle of (45.5±3.7)°. Cytoskeletal filaments were distributed evenly within various orientation angles. However, in the 60 µm, 100 µm, and 140 µm hydrogel microgrooves, the orientation angles of the cytoskeletal filaments were significantly decreased, measuring (14.4±3.1)°, (24.7±3.5)°, and (31.9±3.3)°, respectively. The number of cytoskeletal filaments with orientation angles <30° significantly increased in hydrogel microgrooves of different widths (P<0.001). However, as the width of the hydrogel microgrooves increased, the number of cytoskeletal filaments with orientation angles <30° gradually decreased, while the number of cytoskeletal filaments with orientation angles between 60°-90° gradually increased (P<0.001). Conclusion: Hydrogel microgrooves can regulate the morphology and orientation of HUVECs and mimic to a certain extent the in vivo microenvironment of vascular endothelial cells, providing an experimental model that bears better resemblance to human physiology for the study of the unique physiological functions of vascular endothelial cells. Nonetheless, the molecular mechanism of spatial constraints on the morphology and the assembly of vascular endothelial cell needs to be further investigated.


Asunto(s)
Acrilatos , Hidrogeles , Humanos , Células Endoteliales de la Vena Umbilical Humana , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Adhesión Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA