Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 73(4): 1419-1435, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32750152

RESUMEN

BACKGROUND AND AIMS: Circular RNAs (circRNAs) and extracellular vesicles (EVs) are involved in various malignancies. We aimed to clarify the functions and mechanisms of dysregulated circRNAs in the cells and EVs of cholangiocarcinoma (CCA). APPROACH AND RESULTS: CircRNA microarray was used to identify circRNA expression profiles in CCA tissues and bile-derived EVs (BEVs). CCA-associated circRNA 1 (circ-CCAC1) expression was measured by quantitative real-time PCR. The clinical importance of circ-CCAC1 was analyzed by receiver operating characteristic curves, Fisher's exact test, Kaplan-Meier plots, and Cox regression model. The functions of circ-CCAC1 and exosomal circ-CCAC1 were explored in CCA cells and human umbilical vein endothelial cells (HUVECs), respectively. Different animal models were used to verify the in vitro results. RNA sequencing, bioinformatics, RNA immunoprecipitation, RNA pulldown, chromatin immunoprecipitation followed by sequencing, and luciferase reporter assays were used to determine the regulatory networks of circ-CCAC1 in CCA cells and HUVECs. Circ-CCAC1 levels were increased in cancerous bile-resident EVs and tissues. The diagnostic and prognostic values of circ-CCAC1 were identified in patients with CCA. For CCA cells, circ-CCAC1 increased cell progression by sponging miR-514a-5p to up-regulate Yin Yang 1 (YY1). Meanwhile, YY1 directly bound to the promoter of calcium modulating ligand to activate its transcription. Moreover, circ-CCAC1 from CCA-derived EVs was transferred to endothelial monolayer cells, disrupting endothelial barrier integrity and inducing angiogenesis. Mechanistically, circ-CCAC1 increased cell leakiness by sequestering enhancer of zeste homolog 2 in the cytoplasm, thus elevating SH3 domain-containing GRB2-like protein 2 expression to reduce the levels of intercellular junction proteins. In vivo studies further showed that increased circ-CCAC1 levels in circulating EVs and cells accelerated both CCA tumorigenesis and metastasis. CONCLUSIONS: Circ-CCAC1 plays a vital role in CCA tumorigenesis and metastasis and may be an important biomarker/therapeutic target for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares/sangre , Carcinogénesis/metabolismo , Colangiocarcinoma/sangre , Endotelio Vascular/metabolismo , Neovascularización Patológica/metabolismo , ARN Circular/sangre , ARN Circular/genética , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Coledocolitiasis/sangre , Coledocolitiasis/genética , Coledocolitiasis/patología , Vesículas Extracelulares/metabolismo , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Desnudos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Cell Mol Med ; 25(7): 3226-3238, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33675150

RESUMEN

Dysregulation of circular RNAs (circRNAs) executes important regulatory roles in carcinogenesis. Nonetheless, few studies focused on the mechanisms of circRNAs in cholangiocarcinoma (CCA). qRT-PCR was applied to verify the dysregulated circRNAs in CCA. Fisher's exact test, Kaplan-Meier analysis and Cox regression model were utilized to investigate the clinical implications of circ-LAMP1 in the patients with CCA. The viability, apoptosis, migration and invasion of CCA cells were detected after silencing/overexpression of circ-LAMP1. Xenograft and lung metastasis assays were performed to verify the in vitro results. The regulatory networks of circ-LAMP1 were unveiled by bioinformatic analysis, RNA immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays. Up-regulation of circ-LAMP1 was found in CCA tissue samples and cell lines. Enhanced level of circ-LAMP1 was linked to clinical severity, high post-operative recurrence and poor prognosis for the patients with CCA. Gain/loss-of-function assays confirmed the oncogenic role of circ-LAMP1 in mediating cell growth, apoptosis, migration and invasion. Nevertheless, the level of circ-LAMP1 had no effect on normal biliary epithelium proliferation and apoptosis. Animal study further verified the in vitro data. Mechanistically, circ-LAMP1 directly sponged miR-556-5p and miR-567, thereby releasing their suppression on YY1 at post-transcriptional level. Rescue assay indicated that the oncogenic role of circ-LAMP1 is partially dependent on its modulation of YY1 in CCA. In summary, this study suggested that circ-LAMP1 might be used as a promising biomarker/therapeutic target for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , MicroARNs/metabolismo , ARN Circular/genética , Factor de Transcripción YY1/metabolismo , Animales , Apoptosis , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , ARN Circular/metabolismo
3.
J Cell Physiol ; 234(10): 17113-17126, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30888066

RESUMEN

Cholangiocarcinoma (CCA) is one of the most fatal cancers in humans, with a gradually increasing incidence worldwide. The efficient diagnostic and therapeutic measures for CCA to reduce mortality are urgently needed. Long noncoding RNAs (lncRNAs) may provide the potential diagnostic and therapeutic option for suppressing the CCA development. LncRNAs are a type of non-protein-coding RNAs, which are larger than 200 nucleotides in length. Increasing evidence reveals that lncRNAs exhibit critical roles in the carcinogenesis and development of CCA. Deregulation of lncRNAs impacts the proliferation, migration, invasion, and antiapoptosis of CCA cells by multiple sophisticated mechanisms. Consequently, lncRNAs likely represent promising biomarkers or intervention targets of CCA. In this review, we summarize current studies regarding the biological functions and regulatory mechanisms of diverse lncRNAs in CCA.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , ARN Largo no Codificante/genética , Animales , Carcinogénesis/genética , Humanos
4.
J Cell Physiol ; 234(12): 22947-22959, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31119760

RESUMEN

Cholangiocarcinoma (CCA) is a mortal cancer with gradually increasing incidences all over the world, whereas effective diagnosis and treatment for this disease are still lacking. As a classical long noncoding RNA (lncRNA), maternally expressed gene 3 (MEG3) has been reported to exhibit pivotal regulatory roles in the occurrence and development of various digestive system tumors. Nevertheless, the clinical relevance and biological function of MEG3 in CCA remain largely unclear. In this study, MEG3 expression was significantly downregulated in both CCA tissues and cells in comparison with that in nontumor controls, respectively, and this downexpression was prominently associated with advanced TNM stage, lymph node invasion, and poor survival. Moreover, decreased MEG3 was an independent forecaster of poor prognosis for CCA patients. Functionally, MEG3 overexpression inhibited CCA growth in vitro and in vivo. Enhanced MEG3 also suppressed migration and invasion of CCLP-1 and QBC939 cells by reversing epithelial-mesenchymal transition (EMT) process. On the contrary, the proliferation, metastasis, and EMT were facilitated via knocking down MEG3. In addition, the expression of B lymphoma Mo-MLV insertion region 1 (Bmi1) and RING finger protein 2 was impacted by gain or loss of MEG3, furthermore, the malignant processes induced by MEG3 knockdown were rescued by means of silencing Bmi1. These data suggested that MEG3 caused tumor suppressive effects partly through mediating polycomb repressive complex 1. Our findings elucidate that MEG3 exerts critical functions in CCA development and likely acts as a promising tumor indicator or intervention target for CCA.


Asunto(s)
Colangiocarcinoma/genética , Proteína Quinasa 7 Activada por Mitógenos/genética , Complejo Represivo Polycomb 1/genética , ARN Largo no Codificante/genética , Anciano , Animales , Proliferación Celular/genética , Colangiocarcinoma/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cell Physiol Biochem ; 49(5): 1933-1942, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30235453

RESUMEN

BACKGROUND/AIMS: Cholangiocarcinoma (CCA) is one of the most common malignant tumors of the biliary tract originating from biliary epithelial cells. Although many therapeutic strategies have been developed to treat CCA, the survival rate for CCA patients is still quite low. Thus it is urgent to elucidate the pathogenesis of CCA and to explore novel therapeutic targets. miR-191 has been shown to be associated with many human solid cancers, but the function of miR-191 in CCA is still poorly understood. METHODS: We first investigated the expression level of miR-191 in human CCA tissues and cell lines with quantitative real-time PCR (qRT-PCR). The effects of miR-191 on CCA cells were determined by Cell Counting Kit-8 assay, colony formation assay and acridine orange/ethidium bromide staining. Finally, we utilized qRT-PCR, western blot and luciferase reporter assays to verify the miR-191 target gene. RESULTS: We showed that miR-191 was up-regulated in CCA cell lines and patients. Knockdown of miR-191 by transfection of its inhibitor sequence blocked RBE cells viability and induced apoptosis of RBE cells. Both qRT-PCR and western blot analysis showed that the secreted frizzled-related protein-1 (sFRP1) level was negatively correlated with that of miR-191. Luciferase assay validated that sFRP1 was a direct target of miR-191. Moreover, knockdown of miR-191 led to suppression of Wnt/ß-catenin signaling activation. Co-transfection of sFRP1 small interfering RNA (siRNA) and miR-191 inhibitor re-activated the Wnt/ß-catenin signaling pathway as detected by an increased level of ß-catenin and phosphorylation of GSK-3ß, and restored the expression of survivin and c-myc in RBE cells. Co-transfection of sFRP1 siRNA with miR-191 inhibitor restored the colony formation ability and viability of RBE cells. CONCLUSION: Taken together, our results demonstrate a novel insight into miR-191 biological function in CCA. Our findings suggest that miR-191 is a potential therapeutic target of CCA treatment.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3' , Antagomirs/metabolismo , Apoptosis , Secuencia de Bases , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia , Vía de Señalización Wnt , beta Catenina/metabolismo
6.
Biochem Biophys Res Commun ; 496(2): 455-461, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29337065

RESUMEN

Cholangiocarcinoma (CCA) is one of the most aggressive malignancies with increasing worldwide incidence and is characterized by unfavorable prognosis due to its early invasive characteristics and poor response to chemotherapy or radiotherapy. Accumulating evidence has indicated that aberrantly expressed circular RNAs (circRNAs) are involved in cancer development and progression. However, their clinical values and biological roles in CCA remain unclear. Hsa_circ_0001649, a novel cancer-related circRNA, has been previously reported to be downregulated in hepatocellular carcinoma and gastric cancer. In the present study, qRT-PCR was carried out to measure the expression of hsa_circ_0001649 in CCA tissue samples and cell lines, and the correlation between hsa_circ_0001649 expression and clinicopathologic features was analyzed. The biological functions of hsa_circ_0001649 in CCA cells were evaluated both in vitro and in vivo. As a result, hsa_circ_0001649 was aberrantly downregulated in CCA tissues and cells, and this downregulation was associated with tumor size and differentiation grade in CCA. In addition, hsa_circ_0001649 overexpression caused tumor suppressive effects via inhibiting cell proliferation, migration and invasion; inducing cell apoptosis in KMBC and Huh-28 cells. On the contrary, silencing of hsa_circ_0001649 caused the opposite phenotypes. Furthermore, tumor xenograft study confirmed the in vitro results. Collectively, our findings suggest that hsa_circ_0001649 might be a rational CCA-related therapeutic target.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/metabolismo , Colangiocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , ARN/genética , Adulto , Anciano , Animales , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/cirugía , Conductos Biliares Intrahepáticos/patología , Conductos Biliares Intrahepáticos/cirugía , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colangiocarcinoma/cirugía , Regulación hacia Abajo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica , Estadificación de Neoplasias , Trasplante de Neoplasias , ARN/metabolismo , ARN Circular
7.
Int J Mol Sci ; 15(4): 6314-27, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24736782

RESUMEN

To determine the relationships between miR-96-5p/-182-5p and GPC1 in pancreatic cancer (PC), we conducted the population and in vitro studies. We followed 38 pancreatic cancer patients, measured and compared the expression of miR-96-5p/-182-5p, GPC1, characteristics and patients' survival time of different miR-96-5p/-182-5p expression levels in PC tissues. In an in vitro study, we investigated the proliferation, cycle and apotosis in cells transfected with mimics/inhibitors of the two miRNAs, and determine their effects on GPC1 by dual-luciferase assay. In the follow-up study, we found that the expressions of miR-96-5p/-182-5p were lower/higher in PC tissues; patients with lower/higher levels of miR-96-5p/-182-5p suffered poorer characteristics and decreased survival time. In the in vitro study, the expressions of miR-96-5p/-182-5p were different in cells. Proliferation of cells transfected with miR-96-5p mimics/inhibitors was lower/higher in Panc-1/BxPC-3; when transfected with miR-182-5p mimics/inhibitors, proliferation of cells were higher/lower in AsPC-1/Panc-1. In a cell cycle study, panc-1 cells transfected with miR-96-5p mimics was arrested at G0/G1; BxPC-3 cells transfected with miR-96-5p inhibitors showed a significantly decrease at G0/G1; AsPC-1 cells transfected with miR-182-5p mimics was arrested at S; Panc-1 cells transfected with miR-182-5p inhibitors showed a decrease at S. MiR-96-5p mimics increased the apoptosis rate in Panc-1 cells, and its inhibitors decreased the apoptosis rate in BxPC-3. Dual luciferase assay revealed that GPC1 was regulated by miR-96-5p, not -182-5p. We found that miR-96-5p/-182-5p as good markers for PC; miR-96-5p, rather than -182-5p, inhibits GPC1 to suppress proliferation of PC cells.


Asunto(s)
Regulación de la Expresión Génica/genética , Glipicanos/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 5' , Apoptosis , Secuencia de Bases , Carcinoma/metabolismo , Carcinoma/mortalidad , Carcinoma/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Tasa de Supervivencia
8.
Front Nutr ; 11: 1426780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021599

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic liver disease that progresses from hepatic steatosis to non-alcoholic steatohepatitis, cirrhosis, and liver cancer, posing a huge burden on human health. Existing research has confirmed that forkhead box O1 (FOXO1), as a member of the FOXO transcription factor family, is upregulated in MAFLD. Its activity is closely related to nuclear-cytoplasmic shuttling and various post-translational modifications including phosphorylation, acetylation, and methylation. FOXO1 mediates the progression of MAFLD by regulating glucose metabolism, lipid metabolism, insulin resistance, oxidative stress, hepatic fibrosis, hepatocyte autophagy, apoptosis, and immune inflammation. This article elaborates on the regulatory role of FOXO1 in MAFLD, providing a summary and new insights for the current status of drug research and targeted therapies for MAFLD.

9.
Materials (Basel) ; 17(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124506

RESUMEN

This work investigated the effects of moisture absorption treatment on composite-to-metal double-lap shear joints (DLSJs) bonded with epoxy adhesive film through experiments and simulations. The composite-to-metal DLSJ can be divided into five parts (the interface between the composite and adhesive, the interface between the adhesive and metal, the composite adherend, the metal adherend, and the adhesive layer). First, the wet-dependent properties of the adhesive and interfaces were obtained through adhesive tensile tests and GC tests, which showed that the properties of the adhesive and interfaces were significantly affected by the moist environment. Then, tensile tests of the composite-to-metal double-lap shear joints were carried out in dry and wet environments. Finally, based on the experimental investigations, a finite element (FE) model that considered cohesive damage was established for simulating damage evolution and predicting the failure loads and failure modes of the DLSJs. The results of both the experimental and numerical tests show that the DLSJ failure load decreases significantly after immersion in 95 °C water, and the major failure mode transfers from adhesive failure to interface failure. The research results provide a theoretical basis or basic data for the structural design of adhesively bonded composite-to-metal.

10.
MedComm (2020) ; 5(11): e743, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39445001

RESUMEN

Cholangiocarcinoma (CCA) was identified as a malignant tumor with rising incidence and mortality rates, and the roles of long noncoding RNA (lncRNA) in CCA remained not entirely clear. In this study, LINC00511 had high expression in CCA, which was closely related to poor prognosis. Knockdown of LINC00511 significantly inhibited cell malignant biological behaviors. It also affected the stemness of CCA, evidenced by decreased SOX2 protein expression. Moreover, the study revealed the interaction of LINC00511, YTHDF2, and SOX2 in CCA. Specifically, LINC00511 facilitated the formation of a complex with YTHDF2 on SOX2 mRNA, which uniquely enhances the mRNA's stability through m6A methylation sites. This stabilization appears crucial for maintaining malignant behaviors in CCA cells. Additionally, LINC00511 modulated SOX2 expression via the PI3K/AKT signaling pathway. Meanwhile, SOX2 can also promote LINC00511 expression as an upstream transcription factor, thereby confirming a positive feedback loop formed by LINC00511, YTHDF2, and SOX2, which plays a significant role in the occurrence and development of CCA. Finally, the study successfully constructed two patient-derived xenograft models, revealing the vital role of LINC00511 in CCA development. In summary, this research provides a comprehensive understanding of the role of LINC00511 in the pathogenesis of CCA.

11.
Cancer Gene Ther ; 31(10): 1585-1597, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39210030

RESUMEN

Cholangiocarcinoma (CCA), known for its aggressive nature, poses a formidable challenge in the current medical landscape, particularly in targeted therapies. Against this backdrop, long non-coding RNAs (lncRNAs) have captured the attention of researchers. These unique RNAs are believed to play pivotal roles in various cancers, offering promising avenues for the development of more effective treatment strategies. Previous studies have substantiated the aberrant expression of the APCDD1L-DT in numerous human tumors, demonstrating its positive regulatory roles in disease progression. Nevertheless, the biological functions of APCDD1L-DT in CCA are still not fully understood. This study marks the inaugural documentation of APCDD1L-DT exhibiting aberrant expression in CCA specimen, establishing a close correlation with the TNM staging of tumor patients. Furthermore, suppressing APCDD1L-DT expression hinders both the viability and motility of tumor cells. Mechanistically, the abnormal activation of the transcription factor ZNF460 positively regulated APCDD1L-DT expression in CCA. This activation, in turn, propels the abnormal activation of the Wnt pathway, fostering tumor development by impeding the ubiquitin-mediated degradation of DVL2. Broadly speaking, this study provides auspicious perspectives for comprehending CCA and furnishes support for addressing this daunting malignancy.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Proteínas Dishevelled , Humanos , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Proteínas Dishevelled/metabolismo , Proteínas Dishevelled/genética , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Ratones , Regulación hacia Arriba , Animales , Ubiquitina/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Masculino , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Femenino , Proliferación Celular , Vía de Señalización Wnt
12.
Mol Metab ; 89: 102022, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39218215

RESUMEN

OBJECTIVE: Metabolic-associated fatty liver disease (MAFLD) represents one of the most prevalent chronic liver conditions worldwide, but its precise pathogenesis remains unclear. This research endeavors to elucidate the involvement and molecular mechanisms of polyribonucleotide nucleotidyltransferase 1 (PNPT1) in the progression of MAFLD. METHODS: The study employed western blot and qRT-PCR to evaluate PNPT1 levels in liver specimens from individuals diagnosed with MAFLD and in mouse models subjected to a high-fat diet. Cellular studies investigated the effects of PNPT1 on lipid metabolism, apoptosis, and mitochondrial stability in hepatocytes. Immunofluorescence was utilized to track the subcellular movement of PNPT1 under high lipid conditions. RNA immunoprecipitation and functional assays were conducted to identify interactions between PNPT1 and Mcl-1 mRNA. The role of PPARα as an upstream transcriptional regulator of PNPT1 was investigated. Recombinant adenoviral vectors were utilized to modulate PNPT1 expression in vivo. RESULTS: PNPT1 was found to be markedly reduced in liver tissues from MAFLD patients and HFD mice. In vitro, PNPT1 directly regulated hepatic lipid metabolism, apoptosis, and mitochondrial stability. Under conditions of elevated lipids, PNPT1 relocated from mitochondria to cytoplasm, modifying its physiological functions. RNA immunoprecipitation revealed that the KH and S1 domains of PNPT1 bind to and degrade Mcl-1 mRNA, which in turn affects mitochondrial permeability. The transcriptional regulator PPARα was identified as a significant influencer of PNPT1, impacting both its expression and subsequent cellular functions. Alterations in PNPT1 expression were directly correlated with the progression of MAFLD in mice. CONCLUSIONS: The study confirms the pivotal function of PNPT1 in the development of MAFLD through its interactions with Mcl-1 and its regulatory effects on lipid metabolism and mitochondrial stability. These insights highlight the intricate association between PNPT1 and MAFLD, shedding light on its molecular pathways and presenting a potential new therapeutic avenue for MAFLD management.


Asunto(s)
Exorribonucleasas , Metabolismo de los Lípidos , Proteínas Mitocondriales , Enfermedad del Hígado Graso no Alcohólico , Animales , Femenino , Humanos , Masculino , Ratones , Apoptosis , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Homeostasis , Hígado/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo , PPAR alfa/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
13.
Materials (Basel) ; 17(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38998370

RESUMEN

In this study, a one-pot aryl diazonium reaction was used as a simple and mild method to graft graphene onto the smooth and inert surface of T1100-grade carbon fiber (CF) through covalent bonding without any damage on CF, to refine the interface performance of CF/bismaleimide (BMI) composites. XPS, SEM, AFM, and dynamic contact angle testing (DCAT) were used to characterize chemical activity, morphologies, and wettability on untreated and grafted CF surfaces. Meanwhile, the impact of the graft method on the tensile strength of CF was also examined using the monofilament tensile test. IFSS between CF grafted with graphene and BMI resin achieved 104.2 MPa after modification, increasing from 85.5 MPa by 21.8%, while the tensile strength did not decrease compared to the pristine CF. The mechanism of this interface enhancement might be better chemical bonding and mechanical interlock between CF grafted with graphene and BMI resin, which is generated from the high surface chemical activity and rough structure of graphene. This study may propose a simple and mild method to functionalize the CF surface and enhance the interface performance of composites without compromising the tensile properties of T1100-grade CF.

14.
J Zhejiang Univ Sci B ; 25(2): 123-134, 2024 Feb 15.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38303496

RESUMEN

The technology of three-dimensional (3D) printing emerged in the late 1970s and has since undergone considerable development to find numerous applications in mechanical engineering, industrial design, and biomedicine. In biomedical science, several studies have initially found that 3D printing technology can play an important role in the treatment of diseases in hepatopancreatobiliary surgery. For example, 3D printing technology has been applied to create detailed anatomical models of disease organs for preoperative personalized surgical strategies, surgical simulation, intraoperative navigation, medical training, and patient education. Moreover, cancer models have been created using 3D printing technology for the research and selection of chemotherapy drugs. With the aim to clarify the development and application of 3D printing technology in hepatopancreatobiliary surgery, we introduce seven common types of 3D printing technology and review the status of research and application of 3D printing technology in the field of hepatopancreatobiliary surgery.


Asunto(s)
Modelos Anatómicos , Impresión Tridimensional , Humanos , Simulación por Computador
15.
Materials (Basel) ; 17(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38541477

RESUMEN

The toughening modification of epoxy resin has received widespread attention. The addition of the second-phase resin has a good toughening effect on epoxy resin. In order to investigate the effect of the second-phase resin on the interphase of composites, in this work the interfacial properties of carbon fiber (CF)/epoxy resin with the second-phase resin structure were investigated. Methodologies including surface structure observation, chemical characteristics, surface energy of the CF, and micro-phase structure characterization of resin were tested, followed by the micro-interfacial performance of CF/epoxy composites before and after hygrothermal treatment. The results revealed that the sizing process has the positive effect of increasing the interfacial bonding properties of CF/epoxy. From the interfacial shear strength (IFSS) test, the introduction of the second phase in the resin reduced the interfacial bonding performance between the CF and epoxy. After the hygrothermal treatment, water molecules diffused along the interfacial paths between the two resins, which in turn created defects and consequently brought about a reduction in the IFSS.

16.
Front Biosci (Landmark Ed) ; 29(1): 45, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38287825

RESUMEN

Pancreatic cancer is a malignancy that affects the digestive tract and has a low 5-year survival rate of lower than 15%. Owing to its genetic mutation and metabolic complexity, pancreatic cancer is difficult to treat with surgical resection, radiotherapy, and chemotherapy. The predominant modality of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), primarily attributed to mutations in KRAS gene. Ferroptosis, an iron-mediated reactive oxygen species (ROS)-elevated nonapoptotic cell death caused by lipid peroxidation, is distinct from any other known type of cell death. Ferroptosis is closely related to the occurrence and progression of different types of cancers, including PDAC. Previous research has demonstrated that ferroptosis not only triggers cell death in PDAC and hampers tumor growth but also enhances the effectiveness of antitumor medications. In our review, we mainly focus on the core mechanism of ferroptosis, reveal its interrelationship with PDAC, and illustrate the progress of ferroptosis in different treatment methods of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Ferroptosis , Neoplasias Pancreáticas , Humanos , Ferroptosis/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Mutación , Muerte Celular
17.
Cell Signal ; 118: 111141, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492624

RESUMEN

Cholangiocarcinoma (CCA) is a malignancy with an extremely poor prognosis, and much remains unknown about its pathogenesis and treatment modalities. Circular RNA (circRNA) has been proven to play regulatory roles in various tumorigenesis, yet its potential function and mechanism in cholangiocarcinoma require further investigation. This study is the first to identify the aberrant expression and functional role of a novel circRNA, circ_0007534, derived from the DDX42 gene, in cholangiocarcinoma. Compared to the normal control group, the expression of circ_0007534 was significantly elevated in the tissues and cells with CCA and that high expression correlated with lymph node invasion and poor prognosis. Functional experiments indicated that downregulating circ_0007534 markedly inhibited the proliferation, migration, invasion, stemness, and anti-anoikis ability of CCA cells, as well as the tumor growth and liver and lung metastasis in nude mice. Mechanistic studies revealed that DDX42, as the parent gene of circ_0007534, can mutually regulate each other's expression. Predominantly located in the cytoplasm, circ_0007534 can form a complex with the RNA-binding protein DDX3X, which enhances the stability of DDX42 mRNA, thereby upregulating the expression of DDX42. This creates a positive feedback loop among the three, collectively promoting the progression of cholangiocarcinoma. In conclusion, this study sheds light on the pivotal role and molecular mechanism of circ_0007534 in the development of CCA, offering potential new targets for early diagnosis and treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Anoicis , Ratones Desnudos , Retroalimentación , Línea Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
18.
Front Pharmacol ; 15: 1308309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681199

RESUMEN

Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.

19.
J Cancer ; 15(8): 2214-2228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495490

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a notably poor prognosis. A large number of patients with PDAC develop metastases before they are diagnosed with metastatic pancreatic cancer (mPDAC). For mPDAC, FOLFIRINOX or gemcitabine plus nab-paclitaxel are the current first-line treatments. It is important to note, however, that many patients will fail chemotherapy because of drug resistance. ​Heterogeneous tumors and complex tumor microenvironments are key factors. As a result, clinical researchers are exploring a variety of alternative treatment modalities. Current understanding of the molecular signature and immune landscape of PDAC has motivated the emergence of different targeted and immune-based therapeutic approaches, some of which have shown promising results. The purpose of this review is to discuss the new targets and new drugs for mPDAC in terms of specific pathogenic factors such as metabolic vulnerability, DNA damage repair system, tumor microenvironment and immune system, in order to identify potential vulnerabilities in mPDAC patients and hopefully improve the prognosis of mPDAC patients.

20.
Front Immunol ; 14: 1222719, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529035

RESUMEN

Pancreatic cancer (PC) is extremely malignant and shows limited response to available immunotherapies due to the hypoxic and immunosuppressive nature of its tumor microenvironment (TME). The aggregation of immune cells (B cells, T cells, dendritic cells, etc.), which is induced in various chronic inflammatory settings such as infection, inflammation, and tumors, is known as the tertiary lymphoid structure (TLS). Several studies have shown that TLSs can be found in both intra- and peritumor tissues of PC. The role of TLSs in peritumor tissues in tumors remains unclear, though intratumoral TLSs are known to play an active role in a variety of tumors, including PC. The formation of intratumoral TLSs in PC is associated with a good prognosis. In addition, TLSs can be used as an indicator to assess the effectiveness of treatment. Targeted induction of TLS formation may become a new avenue of immunotherapy for PC. This review summarizes the formation, characteristics, relevant clinical outcomes, and clinical applications of TLSs in the pancreatic TME. We aim to provide new ideas for future immunotherapy of PC.


Asunto(s)
Neoplasias Pancreáticas , Estructuras Linfoides Terciarias , Humanos , Neoplasias Pancreáticas/terapia , Linfocitos B/patología , Inflamación , Inmunoterapia , Microambiente Tumoral , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA