Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 21(18): 9137-9140, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31012458

RESUMEN

The facet-dependent strain effects on the hydrogen evolution reaction catalyzed by CoP were studied using density functional theory methods. We show that both atomic and electronic effects need to be taken into consideration to understand the strain effects. For the (111) surface, tensile strain promotes hydrogen evolution at all the levels of hydrogen coverage. For the (101) surface, a moderate tensile strain of ∼3% endows this facet with optimum performance.

2.
Phys Chem Chem Phys ; 18(2): 974-81, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26661743

RESUMEN

Hybridized two-dimensional materials incorporating domains from the hexagonal boron nitride (h-BN) and graphene is an interesting branch of materials science due to their highly tunable electronic properties. In the present study, we investigate the hydrogenated two-dimensional (2D) h-BN/C superlattices (SLs) with zigzag edges using first-principles calculations. We found that the domain width, the phase ratio, and the vertical dipole orientation all have significant influence on the stability of SLs. The electronic reconstruction is associated with the lateral polar discontinuities at the zigzag edges and the vertically polarized (B2N2H4)(m) domains, which modifies the electronic structures and the spatial potential of the SLs significantly. Furthermore, we demonstrate that the hydrogenated 2D h-BN/C SLs can be applied in engineering the electronic structure of graphene: laterally-varying doping can be achieved by taking advantage of the spatial variation of the surface potential of the SLs. By applying an external vertical electric field on these novel bidirectional heterostructures, graphene doping levels and band offsets can be tuned to a wide range, such that the graphene doping profile can be switched from the bipolar (p-n junction) to unipolar (n(+)-n junction) mode. It is expected that such bidirectional heterostructures provide an effective approach for developing novel nanoscale electronic devices and improving our understanding of the fundamentals of low-dimensional materials.

3.
Phys Chem Chem Phys ; 18(10): 7502-10, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26902598

RESUMEN

Reversible resistive switching between high-resistance and low-resistance states in metal-oxide-metal heterostructures makes them very interesting for applications in random access memories. While recent experimental work has shown that inserting a metallic "oxygen scavenger layer" between the positive electrode and oxide improves device performance, the fundamental understanding of how the scavenger layer modifies the heterostructure properties is lacking. We use density functional theory to calculate thermodynamic properties and conductance of TiN/HfO2/TiN heterostructures with and without a Ta scavenger layer. First, we show that Ta insertion lowers the formation energy of low-resistance states. Second, while the Ta scavenger layer reduces the Schottky barrier height in the high-resistance state by modifying the interface charge at the oxide-electrode interface, the heterostructure maintains a high resistance ratio between high- and low-resistance states. Finally, we show that the low-bias conductance of device on-states becomes much less sensitive to the spatial distribution of oxygen removed from the HfO2 in the presence of the Ta layer. By providing a fundamental understanding of the observed improvements with scavenger layers, we open a path to engineer interfaces with oxygen scavenger layers to control and enhance device performance. In turn, this may enable the realization of a non-volatile low-power memory technology with concomitant reduction in energy consumption by consumer electronics and offering significant benefits to society.

4.
Phys Chem Chem Phys ; 18(27): 18323-35, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27334262

RESUMEN

The Magnéli phase Ti4O7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low-lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate quantum Monte Carlo methods. We compare our results to those obtained from density functional theory-based methods that include approximate corrections for exchange and correlation. Our results confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. A detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.

5.
Nano Lett ; 14(6): 3191-6, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24801879

RESUMEN

We investigate vibron-assisted electron transport in single-molecule transistors containing an individual Fe4 Single-Molecule Magnet. We observe a strong suppression of the tunneling current at low bias in combination with vibron-assisted excitations. The observed features are explained by a strong electron-vibron coupling in the framework of the Franck-Condon model supported by density-functional theory.

6.
Nanotechnology ; 25(34): 345703, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25101928

RESUMEN

Electron transport properties through multilayers of hexagonal boron nitride (h-BN) sandwiched between gold electrodes is investigated by density functional theory together with the non-equilibrium Green's function method. The calculated results find that despite graphene being a gapless semimetal and h-BN two-dimensional layer being an insulator, the transmission function perpendicular to the atomic layer plane in both systems is nearly identical. The out-of-plane tunnel current is found to be strongly dependent on the interaction at the interface of the device. As a consequence, single layer h-BN coupled with atomically flat weakly interacting metals such as gold may not work as a good dielectric material, but the absence of sharp resonances would probably lead to more stable out-of-plane electronic transport properties compared to graphene.

7.
Phys Chem Chem Phys ; 16(32): 17220-30, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25014192

RESUMEN

Single-crystal torque magnetometry performed on weakly-coupled polynuclear systems provides access to a complete description of single-site anisotropy tensors. Variable-temperature, variable-field torque magnetometry was used to investigate triiron(III) complex [Fe3La(tea)2(dpm)6] (Fe3La), a lanthanum(III)-centred variant of tetrairon(III) single molecule magnets (Fe4) (H3tea = triethanolamine, Hdpm = dipivaloylmethane). Due to the presence of the diamagnetic lanthanoid, magnetic interactions among iron(III) ions (si = 5/2) are very weak (<0.1 cm(−1)) and the magnetic response of Fe3La is predominantly determined by single-site anisotropies. The local anisotropy tensors were found to have Di > 0 and to be quasi-axial with |Ei/Di| ~ 0.05. Their hard axes form an angle of approximately 70° with the threefold molecular axis, which therefore corresponds to an easy magnetic direction for the molecule. The resulting picture was supported by a High Frequency EPR investigation and by DFT calculations. Our study confirms that the array of peripheral iron(III) centres provides substantially noncollinear anisotropy contributions to the ground state of Fe4 complexes, which are of current interest in molecular magnetism and spintronics.

8.
Nanoscale ; 12(15): 8519-8524, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32242595

RESUMEN

The molecular basis for the high cis-alkene selectivity over intermetallic PtSn for alkyne semi-hydrogenation is demonstrated. Unlike the universal assumption that the bimetallic surface is saturated with atomic hydrogen, molecular hydrogen has a higher barrier for dissociative adsorption on intermetallic PtSn due to the deficiency of Pt three-fold sites. The resulting molecular behavior of adsorbed hydrogen on intermetallic PtSn nanoparticles leads to pairwise-hydrogenation of three alkynes to the corresponding cis-alkenes, satisfying both high stereoselectivity and high chemoselectivity.

9.
J Phys Condens Matter ; 25(19): 195801, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23604312

RESUMEN

The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts.


Asunto(s)
Membranas Artificiales , Modelos Químicos , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Nitrógeno/química , Nitrógeno/efectos de la radiación , Semiconductores , Simulación por Computador , Módulo de Elasticidad/efectos de la radiación , Conductividad Eléctrica , Campos Electromagnéticos , Transporte de Electrón/efectos de la radiación , Ensayo de Materiales , Modelos Moleculares , Nanoestructuras/ultraestructura , Tamaño de la Partícula
10.
Nanoscale ; 4(17): 5490-8, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22854975

RESUMEN

We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the non-equilibrium Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state electronic structure and response to an applied electric field perpendicular to the trilayer planes. The graphene/BN/graphene system shows a negligible gap in the electronic band structure that increases for the AAA and ABA stackings under an external electric field, while the zero-field band gap of BN/graphene/BN remains unaffected by the electric field. When both types of trilayer systems are contacted with gold electrodes, a metal-like conduction is predicted in the low-field regime, which changes to a p-type conduction with an increase in the applied perpendicular bias field.


Asunto(s)
Compuestos de Boro/química , Grafito/química , Teoría Cuántica , Electrones , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA