Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38544021

RESUMEN

Compared to fault diagnosis across operating conditions, the differences in data distribution between devices are more pronounced and better aligned with practical application needs. However, current research on transfer learning inadequately addresses fault diagnosis issues across devices. To better balance the relationship between computational resources and diagnostic accuracy, a knowledge distillation-based lightweight transfer learning framework for rolling bearing diagnosis is proposed in this study. Specifically, a deep teacher-student model based on variable-scale residual networks is constructed to learn domain-invariant features relevant to fault classification within both the source and target domain data. Subsequently, a knowledge distillation framework incorporating a temperature factor is established to transfer fault features learned by the large teacher model in the source domain to the smaller student model, thereby reducing computational and parameter overhead. Finally, a multi-kernel domain adaptation method is employed to capture the feature probability distribution distance of fault characteristics between the source and target domains in Reproducing Kernel Hilbert Space (RKHS), and domain-invariant features are learned by minimizing the distribution distance between them. The effectiveness and applicability of the proposed method in situations of incomplete data across device types were validated through two engineering cases, spanning device models and transitioning from laboratory equipment to real-world operational devices.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13297-13313, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37405894

RESUMEN

In multi-modal multi-agent trajectory forecasting, two major challenges have not been fully tackled: 1) how to measure the uncertainty brought by the interaction module that causes correlations among the predicted trajectories of multiple agents; 2) how to rank the multiple predictions and select the optimal predicted trajectory. In order to handle the aforementioned challenges, this work first proposes a novel concept, collaborative uncertainty (CU), which models the uncertainty resulting from interaction modules. Then we build a general CU-aware regression framework with an original permutation-equivariant uncertainty estimator to do both tasks of regression and uncertainty estimation. Furthermore, we apply the proposed framework to current SOTA multi-agent multi-modal forecasting systems as a plugin module, which enables the SOTA systems to: 1) estimate the uncertainty in the multi-agent multi-modal trajectory forecasting task; 2) rank the multiple predictions and select the optimal one based on the estimated uncertainty. We conduct extensive experiments on a synthetic dataset and two public large-scale multi-agent trajectory forecasting benchmarks. Experiments show that: 1) on the synthetic dataset, the CU-aware regression framework allows the model to appropriately approximate the ground-truth Laplace distribution; 2) on the multi-agent trajectory forecasting benchmarks, the CU-aware regression framework steadily helps SOTA systems improve their performances. Especially, the proposed framework helps VectorNet improve by 262 cm regarding the Final Displacement Error of the chosen optimal prediction on the nuScenes dataset; 3) in multi-agent multi-modal trajectory forecasting, prediction uncertainty is proportional to future stochasticity; 4) the estimated CU values are highly related to the interactive information among agents. The proposed framework can guide the development of more reliable and safer forecasting systems in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA