Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(4): 693-698, 2022 Aug.
Artículo en Zh | MEDLINE | ID: mdl-36065704

RESUMEN

Circular RNAs (circRNAs),a group of highly conserved small RNAs,are characterized by a closed circular structure from precursor linear RNA through reverse splicing.They are powerful regulators of the physiological and pathological processes in organisms at different development stages.Zebrafish can be used for the high-throughput drug screening with low cost.Thus,the circRNAs associated with development and inflammation can be mined from zebrafish.Recently,a variety of circRNAs in zebrafish have been identified and characterized.Studies have proved that circRNAs play a vital role in the development and inflammation of zebrafish.The paper summarizes the classification,characteristics,and biological functions of circRNAs,and reviews the research progress in zebrafish's circRNAs.


Asunto(s)
ARN Circular , Pez Cebra , Animales , Inflamación , ARN/genética , Pez Cebra/genética
2.
Biophys J ; 106(8): 1792-800, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24739178

RESUMEN

MicroRNAs are key regulators of gene expression at the posttranscriptional level. In this study, we focus on miR-605 and miR-34a, which are direct transcriptional targets of p53 and in turn enhance its tumor suppressor function by acting upstream and downstream of it, respectively. miR-605 promotes p53 activation by repressing the expression of mdm2, whereas miR-34a promotes p53-dependent apoptosis by suppressing the expression of antiapoptotic genes such as bcl-2. What roles they play in the p53-mediated DNA damage response is less well understood. Here, we develop a four-module model of the p53 network to investigate the effect of miR-605 and miR-34a on the cell-fate decision after ionizing radiation. Results of numerical simulation indicate that the cell fate is closely associated with network dynamics. The concentration of p53 undergoes few pulses in response to repairable DNA damage, or it first oscillates and then switches to high plateau levels after irreparable damage. The amplitude of p53 pulses rises to various extents depending on miR-605 expression, and miR-605 accelerates the switching behavior of p53 levels to induce apoptosis. In parallel, miR-34a promotes apoptosis by enhancing the accumulation of free p53AIP1, a key proapoptotic protein. Thus, both miR-605 and miR-34a can mediate cellular outcomes and the timing of apoptosis. Moreover, miR-605 and PTEN complement each other in elevating p53 levels to trigger apoptosis. Taken together, miR-605 and miR-34a cooperate to endow the network with a fail-safe mechanism for apoptosis induction. This computational study also enriches our understanding of the action modes of p53-targeted microRNAs.


Asunto(s)
Apoptosis , Daño del ADN , MicroARNs/metabolismo , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Modelos Biológicos , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo
3.
Chin J Integr Med ; 29(12): 1111-1120, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37610554

RESUMEN

OBJECTIVE: To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms. METHODS: 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo. RESULTS: The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01). CONCLUSION: Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Células RAW 264.7 , Pez Cebra , Inhibidor NF-kappaB alfa/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Transcripción STAT3/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
4.
J Ethnopharmacol ; 317: 116743, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37331452

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular disease (CVD) is a serious disease with a high incidence rate and mortality. Inflammation is closely related to the occurrence of CVDs. As an essential medicine of promoting blood circulation and removing blood stasis in China, Salvia miltiorrhiza Bunge (Danshen) is widely used to treat CVDs due to its anti-inflammatory and cardiovascular protective effects. Salvianolic acids are the most abundant component in the water extract of S. miltiorrhiza, which has a significant effect on the treatment of CVDs. However, due to the complex composition of salvianolic acids, the active molecules and their underlying mechanisms have not been fully explored. AIM OF THIS STUDY: The present study aims to isolate and identify salvianolic acids from Danshen with anti-inflammatory activity and explore the potential mechanisms of isolates. METHODS: The structures of isolated salvianolic acids were elucidated by UV, IR, NMR, MS and electronic circular dichroism (ECD) calculations. Then anti-inflammatory activities of isolates were screened out by the zebrafish inflammation models. The most active compound was further used to explore the anti-inflammatory mechanisms on LPS-stimulated RAW 264.7 cells. The key inflammatory cytokines IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of STAT3, p-STAT3 (Tyr705), NF-κB p65, IκBα, p-IκBα (Ser32) and α7nAchR were determined by Western blotting. The nuclear translocation of p-STAT3 (Tyr705) and NF-κB p65 was evaluated by immunofluorescence assays. Finally, the in vivo anti-inflammatory mechanisms were investigated by observation of neutrophil migration, H&E staining, survival analysis and quantitative PCR (Q-PCR) in LPS-microinjected zebrafish. RESULTS: Two new and four known compounds were isolated from Danshen. Among them, isosalvianolic acid A-1 (C1) and ethyl lithospermate (C5) inhibited neutrophil migrations in three zebrafish inflammation models and C1 with the best activities decreased the secretion of IL-6 and TNF-α and inhibited the expression level of p-IκBα (Ser32) in LPS stimulated RAW 264.7 cells. In addition, C1 also reduced the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Moreover, C1 significantly upregulated the protein expression of α7nAchR, and the knockdown of α7nAchR counteracted the effects of C1 on the production of IL-6 and TNF-α and the expression levels of p-STAT3 (Tyr705), NF-κB p65 and p-IκBα (Ser32). In vivo experiments, C1 decreased the migration and infiltration of inflammatory cells, increased the survival ratio and inhibited the mRNA level of IL-6, TNF-α, STAT3, NF-κB and IκBα in LPS-microinjected zebrafish. CONCLUSION: Two new and four known compounds were isolated from Danshen. Among them, C1 exerted anti-inflammatory activities by activating α7nAchR signaling and subsequently inhibiting STAT3 and NF-κB pathways. This study provided evidence for the clinical application of Danshen and contributed to the development of C1 as a novel in the treatment of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Salvia miltiorrhiza , Animales , Ratones , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Pez Cebra , Receptor Nicotínico de Acetilcolina alfa 7 , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células RAW 264.7
5.
Zhongguo Zhong Yao Za Zhi ; 32(10): 893-8, 2007 May.
Artículo en Zh | MEDLINE | ID: mdl-17655138

RESUMEN

OBJECTIVE: To provide anatomical evidences for the morphological and histological identification of 20 medicinal species in Hypericum. METHOD: Morphological and anatomical study on the organs of 20 medicinal species in Hypericum using tissue clearing, paraffin sectioning and thin sectioning. RESULT: According to their anatomical characteristics, the secretory structures can be divided into nodules, secretory cavities (canals) and tiny secretory tubes of 20 medicinal species in Hypericum. Hypericin was produced and stored in the nodules, while the volatile oil was produced and stored in the secretory cavities (canals) and tiny secretory tubes. The types differed markedly from each other in location, diameter and distributional density of leaf, and the anatomical structures differed from each other of stem, calyx, petal, anther and fruit among the 20 species in Hypericum. CONCLUSION: The secretory structures may be as anatomical evidences for the morphological and histological identification of 20 medicinal species in Hypericum.


Asunto(s)
Hypericum/anatomía & histología , Plantas Medicinales/anatomía & histología , Antracenos , Flores/anatomía & histología , Flores/química , Frutas/anatomía & histología , Frutas/química , Hypericum/química , Hypericum/clasificación , Aceites Volátiles/análisis , Perileno/análogos & derivados , Perileno/análisis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Tallos de la Planta/anatomía & histología , Tallos de la Planta/química , Plantas Medicinales/química , Plantas Medicinales/clasificación , Especificidad de la Especie
6.
Sci Rep ; 5: 13834, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26346319

RESUMEN

Both the hypoxia-inducible factor-1 (HIF-1) and tumor suppressor p53 are involved in the cellular response to hypoxia. How the two transcription factors interact to determine cell fates is less well understood. Here, we developed a network model to characterize crosstalk between the HIF-1 and p53 pathways, taking into account that HIF-1α and p53 are targeted for proteasomal degradation by Mdm2 and compete for binding to limiting co-activator p300. We reported the network dynamics under various hypoxic conditions and revealed how the stabilization and transcriptional activities of p53 and HIF-1α are modulated to determine the cell fate. We showed that both the transrepression and transactivation activities of p53 promote apoptosis induction. This work provides new insight into the mechanism for the cellular response to hypoxia.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Modelos Biológicos , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Humanos , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , MicroARNs/genética , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA