Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Bioorg Med Chem ; 103: 117661, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489998

RESUMEN

Son of sevenless homolog 1 (SOS1) plays a pivotal role as a molecular switch in the conversion of GDP-bound inactive KRAS to its active GTP-bound form, making SOS1 a promising therapeutic target for KRAS-driven cancers. While the most advanced SOS1 inhibitor has processed to phase I clinical trial, the exploration of novel SOS1 targeting strategies with distinct modes of action remains required. By employing proteolysis targeting chimera (PROTAC) technology, we obtained a series of new SOS1 degraders. The representative compound LHF418 potently induced SOS1 degradation with a DC50 value of 209.4 nM and a Dmax value of over 80 %. Mechanistic studies have illuminated that compound LHF418 induced the formation of ternary complex involving SOS1-PROTAC-cereblon (CRBN) and triggered SOS1 protein degradation in a CRBN- and proteasome-dependent manner. In addition, compound LHF418 effectively inhibited KRAS-RAF-ERK signalling, leading to the suppression of colony formation in KRAS-driven cancer cells. Overall, compound LHF418 represents a new lead compound in the developing novel and potent therapy for the treatment of KRAS-driven cancers.


Asunto(s)
Quimera Dirigida a la Proteólisis , Proteínas Proto-Oncogénicas p21(ras) , Línea Celular Tumoral , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
2.
Macromol Rapid Commun ; 45(9): e2300652, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38407457

RESUMEN

Pyrrole-based polymers (PBPs), a type of fascinating functional polymers, play a crucial role in materials science. However, efficient synthetic strategies of PBPs with diverse structures are mainly focused on conjugated polypyrroles and still remain challenging. Herein, an atom and step economy protocol is described to access various 2,4-disubstituted PBPs by in situ formation of pyrrole core structure via copper-catalyzed [3+2] polycycloaddition of dialkynones and diisocyanoacetates. A series of PBPs is prepared with high molecular weight (Mw up to 18 200 Da) and moderate to good yield (up to 87%), which possesses a fluorescent emission located in the green to yellow light region. Blending the PBPs with polyvinyl alcohol, the stretchable composite films exhibit a significant strengthening of the mechanical properties (tensile stress up to 59 MPa, elongation at break >400%) and an unprecedented stress-responsive luminescence enhancement that over fourfold fluorescent emission intensity is maintained upon stretching up to 100%. On the basis of computational studies, the unique photophysical and mechanical properties are attributed to the substitution of carbonyl chromophores on the pyrrole unit.


Asunto(s)
Cobre , Polímeros , Pirroles , Pirroles/química , Cobre/química , Catálisis , Polímeros/química , Polímeros/síntesis química , Estructura Molecular , Reacción de Cicloadición
3.
J Org Chem ; 86(1): 207-222, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232152

RESUMEN

A novel metal-free, efficient cascade reaction has been developed to construct 1,2,3-triazole-fused 1,4-diazepinone skeletons. Mechanism investigation indicated that sodium azide has not only served as a 1,3-dipoles synthon in [3 + 2] cycloaddition but also prompted C-N bond formation. Furthermore, the potential utility of this protocol was demonstrated by scale-up synthesis of 1,2,3-triazole-fused diazepinone derivatives and the derivatization of them.

4.
Org Biomol Chem ; 19(16): 3707-3716, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908434

RESUMEN

A metal-free approach has been developed for the synthesis of benzo[c]isoxazole (anthranils) containing 1,2,3-triazoles. The reaction proceeded efficiently through a [3 + 2] azide-alkyne cycloaddition, SNAr azidation and denitrogenative cyclization sequence. The metal-free protocol enabled effective construction of one N-O and three C-N bonds in one pot. In addition, the synthetic utility of the current methodology was further demonstrated by late stage modification of the obtained products.

5.
Org Biomol Chem ; 19(34): 7480-7484, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612367

RESUMEN

A cooperative catalytic strategy is developed for a copper-catalyzed asymmetric intramolecular C-arylation reaction with ureas as the co-catalysts. By forming hydrogen bonds with 1,3-dicarbonyl structures, ureas can activate the substrates, stabilize the carbanion intermediates and the products, and fix the syn-configurations of 1,3-dicarbonyl structures. They help enhance the reactivity, prevent side reactions and improve the enantioselectivities.

6.
Angew Chem Int Ed Engl ; 55(31): 8970-4, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27265881

RESUMEN

A new BINOL-derived chiral phosphoric acid bearing 2,4,6-trimethyl-3,5-dinitrophenyl substituents at the 3,3'-positions was developed. The utility of this chiral phosphoric acid is demonstrated by a highly enantioselective (ee up to >99 %) and diastereoselective (syn/anti up to >99:1) asymmetric Mukaiyama-Mannich reaction of imines with a wide range of ketene silyl acetals. Moreover, this method was successfully applied to the construction of vicinal tertiary and quaternary stereogenic centers with excellent diastereo- and enantioselectivity. Significantly, BINOL-derived N-triflyl phosphoramide constitutes a complementary catalyst system that allows the title reaction to be applied to more challenging imines without an N-(2-hydroxyphenyl) moiety.

7.
Beilstein J Org Chem ; 11: 2600-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26734106

RESUMEN

Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C-C, C-N, C-O and other carbon-heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C-C and carbon-heteroatom bonds.

8.
Angew Chem Int Ed Engl ; 53(36): 9555-9, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25045110

RESUMEN

The enantioselective construction of all-carbon quaternary stereocenters is one of the most challenging fields in asymmetric synthesis. An asymmetric desymmetrization strategy offers an indirect and efficient method for the formation of all-carbon stereocenters. An enantioselective formation of cyano-bearing all-carbon quaternary stereocenters in 1,2,3,4,-tetrahydroquinolines and 2,3,4,5-tetrahydro-1H-benzo[b]azepines by copper-catalyzed desymmetric N-arylation is demonstrated. The cyano group at the prochiral center plays a key role for the high enantioselectivity and works as an important functional group for further transformations. DFT studies provide a model which successfully accounts for the origin of enantioselectivity.


Asunto(s)
Cobre/química , Benzazepinas/síntesis química , Catálisis , Isoquinolinas/síntesis química , Ligandos , Modelos Moleculares , Conformación Molecular , Estereoisomerismo
9.
Eur J Med Chem ; 269: 116310, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38479166

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling. While HPK1 is considered as a promising target for cancer immunotherapy, no small-molecule HPK1 inhibitors have been approved for cancer treatment. Herein, we report the discovery of a series of new HPK1 inhibitors with a 5-aminopyrido[2,3-d]pyrimidin-7(8H)-one scaffold. The most potent compound 9f inhibited HPK1 kinase activity with an IC50 of 0.32 nM in the time-resolved fluorescence resonance energy transfer (TR-FRET) assays, while displayed reasonable selectivity in a panel of 416 kinases. Cellular engagement of HPK1 by compound 9f was confirmed through the nano-bioluminescence resonance energy transfer (Nano-BRET) experiments. Compound 9f effectively reduced the phosphorylation of the downstream protein SLP-76 in primary peripheral blood mononuclear cells (PBMCs) and human T lymphocytic leukemia Jurkat cells. Compound 9f also enhanced the IL-2 and IFN-γ secretion in PBMCs. Furthermore, the binding mode of compound 9f with HPK1 was confirmed by the resolved cocrystal structure. Taken together, this study provides HPK1 inhibitors with a novel scaffold and clear binding mode for further development of HPK1-targeted therapeutic agents.


Asunto(s)
Leucocitos Mononucleares , Proteínas Serina-Treonina Quinasas , Humanos , Leucocitos Mononucleares/metabolismo , Transducción de Señal , Fosforilación
10.
Eur J Med Chem ; 264: 115974, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38007910

RESUMEN

Fms-like tyrosine kinase 3 (FLT3) has been validated as a therapeutic target for acute myeloid leukemia (AML). While a number of FLT3 kinase inhibitors have been approved for AML treatment, the clinical data revealed that they cannot achieve complete and sustained suppression of FLT3 signaling at the tolerated dose. Here we report a series of new, potent and selective FLT3 proteolysis targeting chimera degraders. The optimal compound LWY713 potently induced the degradation of FLT3 with a DC50 value of 0.64 nM and a Dmax value of 94.8% in AML MV4-11 cells with FLT3-internal tandem duplication (ITD) mutation. Mechanistic studies demonstrated that LWY713 selectively induced FLT3 degradation in a cereblon- and proteasome-dependent manner. LWY713 potently inhibited FLT3 signaling, suppressed cell proliferation, and induced cell G0/G1-phase arrest and apoptosis in MV4-11 cells. Importantly, LWY713 displayed potent in vivo antitumor activity in MV4-11 xenograft models.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Proliferación Celular , Apoptosis , Leucemia Mieloide Aguda/patología
11.
J Med Chem ; 67(10): 8043-8059, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38730324

RESUMEN

Discoidin domain receptor 1 (DDR1) is a potential target for cancer drug discovery. Although several DDR1 kinase inhibitors have been developed, recent studies have revealed the critical roles of the noncatalytic functions of DDR1 in tumor progression, metastasis, and immune exclusion. Degradation of DDR1 presents an opportunity to block its noncatalytic functions. Here, we report the discovery of the DDR1 degrader LLC355 by employing autophagosome-tethering compound technology. Compound LLC355 efficiently degraded DDR1 protein with a DC50 value of 150.8 nM in non-small cell lung cancer NCI-H23 cells. Mechanistic studies revealed compound LLC355 to induce DDR1 degradation via lysosome-mediated autophagy. Importantly, compound LLC355 potently suppressed cancer cell tumorigenicity, migration, and invasion and significantly outperformed the corresponding inhibitor 1. These results underline the therapeutic advantage of targeting the noncatalytic function of DDR1 over inhibition of its kinase activity.


Asunto(s)
Autofagia , Receptor con Dominio Discoidina 1 , Humanos , Receptor con Dominio Discoidina 1/metabolismo , Receptor con Dominio Discoidina 1/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Descubrimiento de Drogas , Movimiento Celular/efectos de los fármacos , Proteolisis/efectos de los fármacos , Relación Estructura-Actividad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proliferación Celular/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo
12.
Eur J Med Chem ; 270: 116345, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564826

RESUMEN

Several generations of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors have been developed for the treatment of non-small cell lung cancer (NSCLC) in clinic. However, emerging drug resistance mediated by new EGFR mutations or activations by pass, leads to malignant progression of NSCLC. Proteolysis targeting chimeras (PROTACs) have been utilized to overcome the drug resistance acquired by mutant EGFR, newly potent and selective degraders are still need to be developed for clinical applications. Herein, we developed autophagosome-tethering compounds (ATTECs) in which EGFR can be anchored to microtubule-associated protein-1 light chain-3B (LC3B) on the autophagosome with the assistance of the LC3 ligand GW5074. A series of EGFR-ATTECs have been designed and synthesized. Biological evaluations showed that these compounds could degrade EGFR and exhibited moderate inhibitory effects on certain NSCLC cell lines. The ATTEC 12c potently induced the degradation of EGFR with a DC50 value of 0.98 µM and a Dmax value of 81% in HCC827 cells. Mechanistic exploration revealed that the lysosomal pathway was mainly involved in this degradation. Compound 12c also exhibited promising inhibitory activity, as well as degradation efficiency in vivo. Our study highlights that EGFR-ATTECs could be developed as a new expandable EGFR degradation tool and also reveals a novel potential therapeutic strategy to prevent drug resistance acquired EGFR mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proliferación Celular , Autofagosomas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral , Receptores ErbB , Mutación , Resistencia a Antineoplásicos
13.
J Med Chem ; 67(9): 6938-6951, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38687638

RESUMEN

Nuclear receptor-binding SET domain-containing 2 (NSD2), a methyltransferase that primarily installs the dimethyl mark on lysine 36 of histone 3 (H3K36me2), has been recognized as a promising therapeutic target against cancer. However, existing NSD2 inhibitors suffer from low activity or inferior selectivity, and none of them can simultaneously remove the methyltransferase activity and chromatin binding function of NSD2. Herein we report the discovery of a novel NSD2 degrader LLC0424 by leveraging the proteolysis-targeting chimera technology. LLC0424 potently degraded NSD2 protein with a DC50 value of 20 nM and a Dmax value of 96% in acute lymphoblastic leukemia (ALL) RPMI-8402 cells. Mechanistic studies revealed LLC0424 to selectively induce NSD2 degradation in a cereblon- and proteasome-dependent fashion. LLC0424 also caused continuous downregulation of H3K36me2 and growth inhibition of ALL cell lines with NSD2 mutation. Importantly, intravenous or intraperitoneal injection of LLC0424 showed potent NSD2 degradation in vivo.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Proteolisis , Humanos , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Proteolisis/efectos de los fármacos , Animales , Línea Celular Tumoral , Ratones , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Descubrimiento de Drogas , Complejo de la Endopetidasa Proteasomal/metabolismo , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Histonas/metabolismo , Proliferación Celular/efectos de los fármacos
14.
Nat Commun ; 15(1): 2681, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538600

RESUMEN

Ovarian cancer, a group of heterogeneous diseases, presents with extensive characteristics with the highest mortality among gynecological malignancies. Accurate and early diagnosis of ovarian cancer is of great significance. Here, we present OvcaFinder, an interpretable model constructed from ultrasound images-based deep learning (DL) predictions, Ovarian-Adnexal Reporting and Data System scores from radiologists, and routine clinical variables. OvcaFinder outperforms the clinical model and the DL model with area under the curves (AUCs) of 0.978, and 0.947 in the internal and external test datasets, respectively. OvcaFinder assistance led to improved AUCs of radiologists and inter-reader agreement. The average AUCs were improved from 0.927 to 0.977 and from 0.904 to 0.941, and the false positive rates were decreased by 13.4% and 8.3% in the internal and external test datasets, respectively. This highlights the potential of OvcaFinder to improve the diagnostic accuracy, and consistency of radiologists in identifying ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/diagnóstico por imagen , Área Bajo la Curva , Extremidades , Radiólogos , Estudios Retrospectivos
15.
Eur J Med Chem ; 258: 115580, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37418973

RESUMEN

G1 to S phase transition 1 (GSPT1) is the requisite release factor for the translation termination. GSPT1 is identified as an oncogenic driver of several types of cancer and considered to be a promising cancer therapeutic target. Although two selective GSPT1 degraders were advanced into clinical trials, neither of them has been approved for clinical use. Here we developed a series of new selective GSPT1 degraders, among which the optimal compound 9q potently induced degradation of GSPT1 with a DC50 of 35 nM in U937 cells, and showed good selectivity in the global proteomic profiling study. Mechanism studies revealed that compound 9q induced GSPT1 degradation through the ubiquitin-proteasome system. Consistent with its potent GSPT1 degradation activity, compound 9q displayed good antiproliferative activities against U937 cells, MOLT-4 cells, and MV4-11 cells, with IC50 values of 0.019 µM, 0.006 µM, and 0.027 µM, respectively. Compound 9q also dose-dependently induced G0/G1 phase arrest and apoptosis in U937 cells.


Asunto(s)
Factores de Terminación de Péptidos , Proteómica , Lenalidomida/farmacología , Factores de Terminación de Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal , Apoptosis
16.
J Med Chem ; 66(3): 1873-1891, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36695404

RESUMEN

AXL kinase is heavily involved in tumorigenesis, metastasis, and drug resistance of many cancers, and several AXL inhibitors are in clinical investigations. Recent studies demonstrated that the N-terminal distal region of AXL plays more important roles in cell invasiveness than its C-terminal kinase domain. Therefore, degradation of AXL may present a novel superior therapeutic approach than the kinase inhibitor therapy. Herein, we report the discovery of a series of new AXL PROTAC degraders. One representative compound 6n potently depletes AXL with a DC50 value of 5 nM in MDA-MB-231 TNBC cells. It also demonstrates significantly improved potencies against the AXL signaling activation, cell proliferation, migration and invasion of TNBC cells comparing with the corresponding kinase inhibitor. Moreover, the compound exhibits promising therapeutic potential both in patient-derived organoids and a xenograft mouse model of MDA-MB-231 cells.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/patología , Proteínas Proto-Oncogénicas/metabolismo , Línea Celular Tumoral , Transducción de Señal , Proliferación Celular , Modelos Animales de Enfermedad
17.
J Med Chem ; 66(17): 12432-12445, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37605297

RESUMEN

The phosphoinositide kinase PIKfyve has emerged as a new potential therapeutic target in various cancers. However, limited clinical progress has been achieved with PIKfyve inhibitors. Here, we report the discovery of a first-in-class PIKfyve degrader 12d (PIK5-12d) by employing the proteolysis-targeting chimera approach. PIK5-12d potently degraded PIKfyve protein with a DC50 value of 1.48 nM and a Dmax value of 97.7% in prostate cancer VCaP cells. Mechanistic studies revealed that it selectively induced PIKfyve degradation in a VHL- and proteasome-dependent manner. PIKfyve degradation by PIK5-12d caused massive cytoplasmic vacuolization and blocked autophagic flux in multiple prostate cancer cell lines. Importantly, PIK5-12d was more effective in suppressing the growth of prostate cancer cells than the parent inhibitor and exerted prolonged inhibition of downstream signaling. Further, intraperitoneal administration of PIK5-12d exhibited potent PIKfyve degradation and suppressed tumor proliferation in vivo. Overall, PIK5-12d is a valuable chemical tool for exploring PIKfyve-based targeted therapy.


Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Autofagia , Línea Celular , Citoplasma , Lípidos , Neoplasias de la Próstata/tratamiento farmacológico
18.
J Am Chem Soc ; 134(35): 14326-9, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22913611

RESUMEN

The first highly enantioselective copper-catalyzed intramolecular Ullmann C-N coupling reaction has been developed. The asymmetric desymmetrization of 1,3-bis(2-iodoaryl)propan-2-amines catalyzed by CuI/(R)-BINOL-derived ligands led to the enantioselective formation of indolines in high yields and excellent enantiomeric excesses. This method was also applied to the formation of 1,2,3,4-tetrahydroquinolines in high yields and excellent enantioselectivity.


Asunto(s)
Carbono/química , Cobre/química , Indoles/química , Nitrógeno/química , Catálisis , Estereoisomerismo , Especificidad por Sustrato
19.
J Med Chem ; 65(3): 2313-2328, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35084180

RESUMEN

The first examples of threonine tyrosine kinase (TTK) PROTACs were designed and synthesized. Two of the most potent molecules, 8e and 8j, demonstrated strong TTK degradation in COLO-205 human colorectal cancer cells with DC50 values of 1.7 and 3.1 nM, respectively. Proteasome-mediated degradation by the compounds could last for approximately 8 h after washout. The degraders 8e and 8j demonstrated improved antiproliferative activities comparing with the structurally similar inhibitor counterparts 8q and 8r. Degraders 8e and 8j also demonstrated reasonable PK profiles and exhibited potent target degradation and in vivo anticancer efficacy in a xenograft mouse model of COLO-205 human colorectal cancer cells upon i.p. administration.


Asunto(s)
Proteínas Tirosina Quinasas/metabolismo , Proteolisis , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Humanos , Ligandos , Masculino , Ratones , Ratones SCID , Neoplasias/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/química , Proteolisis/efectos de los fármacos , Relación Estructura-Actividad , Trasplante Heterólogo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/química , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
20.
Eur J Med Chem ; 244: 114862, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36308779

RESUMEN

REarranged during Transfection (RET) is a validated target for anticancer drug discovery and two selective RET inhibitors were approved by US FDA in 2020. However, acquired resistance mediated by secondary mutations in the solvent-front region of the kinase (e.g. G810C/S/R) becomes a major challenge for selective RET inhibitor therapies. Herein, we report a structure-based design of 1-methyl-3-((4-(quinolin-4-yloxy)phenyl)amino)-1H-pyrazole-4-carboxamide derivatives as new RET kinase inhibitors which are capable of suppressing the RETG810 C/R resistant mutants. One of the representative compounds, 8q, potently suppressed wild-type RET kinase with an IC50 value of 13.7 nM. It also strongly inhibited the proliferation of BaF3 cells stably expressing various oncogenic fusions of RET kinase with solvent-front mutations, e.g. CCDC6-RETG810C, CCDC6-RETG810R, KIF5B-RETG810C and KIF5B-RETG810R, with IC50 values of 15.4, 53.2, 54.2 and 120.0 nM, respectively. Furthermore, 8q dose-dependently inhibited the activation of RET and downstream signals and obviously triggered apoptosis in Ba/F3-CCDC6-RETG810 C/R cells. The compound also exhibited significant anti-tumor efficacy with a tumor growth inhibition (TGI) value of 66.9% at 30 mg/kg/day via i. p. in a Ba/F3-CCDC6-RETG810C xenograft mouse model. Compound 8q may be utilized as a lead compound for drug discovery combating acquired resistance against selective RET inhibitor therapies.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-ret , Humanos , Ratones , Animales , Solventes , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Mutación , Transfección , Neoplasias Pulmonares/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA