Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Neurosci ; 43(31): 5593-5607, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37451981

RESUMEN

Aberrant activation of presynaptic NMDARs in the spinal dorsal horn is integral to opioid-induced hyperalgesia and analgesic tolerance. However, the signaling mechanisms responsible for opioid-induced NMDAR hyperactivity remain poorly identified. Here, we show that repeated treatment with morphine or fentanyl reduced monomeric mGluR5 protein levels in the dorsal root ganglion (DRG) but increased levels of mGluR5 monomers and homodimers in the spinal cord in mice and rats of both sexes. Coimmunoprecipitation analysis revealed that monomeric and dimeric mGluR5 in the spinal cord, but not monomeric mGluR5 in the DRG, directly interacted with GluN1. By contrast, mGluR5 did not interact with µ-opioid receptors in the DRG or spinal cord. Repeated morphine treatment markedly increased the mGluR5-GluN1 interaction and protein levels of mGluR5 and GluN1 in spinal synaptosomes. The mGluR5 antagonist MPEP reversed morphine treatment-augmented mGluR5-GluN1 interactions, GluN1 synaptic expression, and dorsal root-evoked monosynaptic EPSCs of dorsal horn neurons. Furthermore, CRISPR-Cas9-induced conditional mGluR5 knockdown in DRG neurons normalized mGluR5 levels in spinal synaptosomes and NMDAR-mediated EPSCs of dorsal horn neurons increased by morphine treatment. Correspondingly, intrathecal injection of MPEP or conditional mGluR5 knockdown in DRG neurons not only potentiated the acute analgesic effect of morphine but also attenuated morphine treatment-induced hyperalgesia and tolerance. Together, our findings suggest that opioid treatment promotes mGluR5 trafficking from primary sensory neurons to the spinal dorsal horn. Through dimerization and direct interaction with NMDARs, presynaptic mGluR5 potentiates and/or stabilizes NMDAR synaptic expression and activity at primary afferent central terminals, thereby maintaining opioid-induced hyperalgesia and tolerance.SIGNIFICANCE STATEMENT Opioids are essential analgesics for managing severe pain caused by cancer, surgery, and tissue injury. However, these drugs paradoxically induce pain hypersensitivity and tolerance, which can cause rapid dose escalation and even overdose mortality. This study demonstrates, for the first time, that opioids promote trafficking of mGluR5, a G protein-coupled glutamate receptor, from peripheral sensory neurons to the spinal cord; there, mGluR5 proteins dimerize and physically interact with NMDARs to augment their synaptic expression and activity. Through dynamic interactions, the two distinct glutamate receptors mutually amplify and sustain nociceptive input from peripheral sensory neurons to the spinal cord. Thus, inhibiting mGluR5 activity or disrupting mGluR5-NMDAR interactions could reduce opioid-induced hyperalgesia and tolerance and potentiate opioid analgesic efficacy.


Asunto(s)
Neuralgia , Receptores de N-Metil-D-Aspartato , Masculino , Femenino , Ratas , Ratones , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Analgésicos Opioides/efectos adversos , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Ratas Sprague-Dawley , Morfina/efectos adversos , Asta Dorsal de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriales/metabolismo
2.
Cancer Sci ; 115(3): 777-790, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228495

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is a highly malignant and aggressive cancer whose incidence and mortality continue to increase, whereas its prognosis remains dismal. Tumor-associated macrophages (TAMs) promote malignant progression and immune microenvironment remodeling through direct contact and secreted mediators. Targeting TAMs has emerged as a promising strategy for ICC treatment. Here, we revealed the potential regulatory function of immune responsive gene 1 (IRG1) in macrophage polarization. We found that IRG1 expression remained at a low level in M2 macrophages. IRG1 overexpression can restrain macrophages from polarizing to the M2 type, which results in inhibition of the proliferation, invasion, and migration of ICC, whereas IRG1 knockdown exerts the opposite effects. Mechanistically, IRG1 inhibited the tumor-promoting chemokine CCL18 and thus suppressed ICC progression by regulating STAT3 phosphorylation. The intervention of IRG1 expression in TAMs may serve as a potential therapeutic target for delaying ICC progression.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/patología , Macrófagos/metabolismo , Pronóstico , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Microambiente Tumoral , Quimiocinas CC/metabolismo , Factor de Transcripción STAT3/metabolismo
3.
J Neurosci ; 42(48): 8918-8935, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36257688

RESUMEN

α2δ-1 (encoded by the Cacna2d1 gene) is a newly discovered NMDA receptor-interacting protein and is the therapeutic target of gabapentinoids (e.g., gabapentin and pregabalin) frequently used for treating patients with neuropathic pain. Nerve injury causes sustained α2δ-1 upregulation in the dorsal root ganglion (DRG), which promotes NMDA receptor synaptic trafficking and activation in the spinal dorsal horn, a hallmark of chronic neuropathic pain. However, little is known about how nerve injury initiates and maintains the high expression level of α2δ-1 to sustain chronic pain. Here, we show that nerve injury caused histone hyperacetylation and diminished enrichment of histone deacetylase-2 (HDAC2), but not HDAC3, at the Cacna2d1 promoter in the DRG. Strikingly, Hdac2 knockdown or conditional knockout in DRG neurons in male and female mice consistently induced long-lasting mechanical pain hypersensitivity, which was readily reversed by blocking NMDA receptors, inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-NMDA receptor interaction at the spinal cord level. Hdac2 deletion in DRG neurons increased histone acetylation levels at the Cacna2d1 promoter, upregulated α2δ-1 in the DRG, and potentiated α2δ-1-dependent NMDA receptor activity at primary afferent central terminals in the spinal dorsal horn. Correspondingly, Hdac2 knockdown-induced pain hypersensitivity was blunted in Cacna2d1 knockout mice. Thus, our findings reveal that HDAC2 functions as a pivotal transcriptional repressor of neuropathic pain via constitutively suppressing α2δ-1 expression and ensuing presynaptic NMDA receptor activity in the spinal cord. HDAC2 enrichment levels at the Cacna2d1 promoter in DRG neurons constitute a unique epigenetic mechanism that governs acute-to-chronic pain transition.SIGNIFICANCE STATEMENT Excess α2δ-1 proteins produced after nerve injury directly interact with glutamate NMDA receptors to potentiate synaptic NMDA receptor activity in the spinal cord, a prominent mechanism of nerve pain. Because α2δ-1 upregulation after nerve injury is long lasting, gabapentinoids relieve pain symptoms only temporarily. Our study demonstrates for the first time the unexpected role of intrinsic HDAC2 activity at the α2δ-1 gene promoter in limiting α2δ-1 gene transcription, NMDA receptor-dependent synaptic plasticity, and chronic pain development after nerve injury. These findings challenge the prevailing view about the role of general HDAC activity in promoting chronic pain. Restoring the repressive HDAC2 function and/or reducing histone acetylation at the α2δ-1 gene promoter in primary sensory neurons could lead to long-lasting relief of nerve pain.


Asunto(s)
Dolor Agudo , Dolor Crónico , Neuralgia , Masculino , Femenino , Ratones , Animales , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Dolor Crónico/genética , Dolor Crónico/metabolismo , Gabapentina/uso terapéutico , Histonas/metabolismo , Neuralgia/metabolismo , Ganglios Espinales/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Receptores Presinapticos/metabolismo , Ratones Noqueados , Dolor Agudo/metabolismo , Células Receptoras Sensoriales/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo
4.
Arch Biochem Biophys ; 741: 109605, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086961

RESUMEN

Accumulating evidence have demonstrated that cytokines are enriched in tumor-derived extracellular vesicles (EVs) and widely involved in tumorigenesis of various types of carcinomas, including colorectal cancer (CRC). Nevertheless, the functions of cytokines in EVs secreted from colorectal cancer cells remain largely unknown. In the present study, we found that TNF-α was elevated in EVs from CRC patient serum samples and CRC cell lines, of which the expression was associated with aggressive features of colorectal cancer. EV TNF-α secretion is dependent on synaptosome-associated protein 23 (SNAP23). Functional experiments revealed that EV TNF-α promotes CRC cell metastasis via the NF-κB pathway by targeting SNAP23. Mechanistically, SNAP23 was transcriptionally upregulated by EV TNF-α/NF-κB axis to enhance the expression of laminin subunit beta-3 (LAMB3), thereby activating the PI3K/AKT signaling pathway and consequently facilitate CRC progression. Based on our findings, we could conclude that EV TNF-α plays an oncogenic role in CRC progression through SNAP23, which in turn promotes EV TNF-α secretion, suggesting that EV TNF-α/SNAP23 axis may serve as a diagnostic biomarker and potential therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Regulación Neoplásica de la Expresión Génica , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Kalinina
5.
J Neurosci ; 41(30): 6415-6429, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34252035

RESUMEN

N-methyl-d-aspartate receptors (NMDARs) are important for synaptic plasticity associated with many physiological functions and neurologic disorders. Protein kinase C (PKC) activation increases the phosphorylation and activity of NMDARs, and α2δ-1 is a critical NMDAR-interacting protein and controls synaptic trafficking of NMDARs. In this study, we determined the relative roles of PKC and α2δ-1 in the control of NMDAR activity. We found that α2δ-1 coexpression significantly increased NMDAR activity in HEK293 cells transfected with GluN1/GluN2A or GluN1/GluN2B. PKC activation with phorbol 12-myristate 13-acetate (PMA) increased receptor activity only in cells coexpressing GluN1/GluN2A and α2δ-1. Remarkably, PKC inhibition with GÓ§6983 abolished α2δ-1-coexpression-induced potentiation of NMDAR activity in cells transfected with GluN1/GluN2A or GluN1/GluN2B. Treatment with PMA increased the α2δ-1-GluN1 interaction and promoted α2δ-1 and GluN1 cell surface trafficking. PMA also significantly increased NMDAR activity of spinal dorsal horn neurons and the amount of α2δ-1-bound GluN1 protein complexes in spinal cord synaptosomes in wild-type mice, but not in α2δ-1 knockout mice. Furthermore, inhibiting α2δ-1 with pregabalin or disrupting the α2δ-1-NMDAR interaction with the α2δ-1 C-terminus peptide abolished the potentiating effect of PMA on NMDAR activity. Additionally, using quantitative phosphoproteomics and mutagenesis analyses, we identified S929 on GluN2A and S1413 (S1415 in humans) on GluN2B as the phosphorylation sites responsible for NMDAR potentiation by PKC and α2δ-1. Together, our findings demonstrate the interdependence of α2δ-1 and PKC phosphorylation in regulating NMDAR trafficking and activity. The phosphorylation-dependent, dynamic α2δ-1-NMDAR interaction constitutes an important molecular mechanism of synaptic plasticity.SIGNIFICANCE STATEMENT A major challenge in studies of protein phosphorylation is to define the functional significance of each phosphorylation event and determine how various signaling pathways are coordinated in response to neuronal activity to shape synaptic plasticity. PKC phosphorylates transporters, ion channels, and G-protein-coupled receptors in signal transduction. In this study, we showed that α2δ-1 is indispensable for PKC-activation-induced surface and synaptic trafficking of NMDARs, whereas the α2δ-1-NMDAR interaction is controlled by PKC-induced phosphorylation. Our findings reveal that α2δ-1 mainly functions as a phospho-binding protein in the control of NMDAR trafficking and activity. This information provides new mechanistic insight into the reciprocal roles of PKC-mediated phosphorylation and α2δ-1 in regulating NMDARs and in the therapeutic actions of gabapentinoids.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteína Quinasa C/metabolismo , Transporte de Proteínas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Fosforilación
6.
J Biol Chem ; 290(51): 30616-23, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26507659

RESUMEN

Nitric oxide (NO) is involved in a variety of physiological processes, such as vasoregulation and neurotransmission, and has a complex role in the regulation of pain transduction and synaptic transmission. We have shown previously that NO inhibits high voltage-activated Ca(2+) channels in primary sensory neurons and excitatory synaptic transmission in the spinal dorsal horn. However, the molecular mechanism involved in this inhibitory action remains unclear. In this study, we investigated the role of S-nitrosylation in the NO regulation of high voltage-activated Ca(2+) channels. The NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) rapidly reduced N-type currents when Cav2.2 was coexpressed with the Cavß1 or Cavß3 subunits in HEK293 cells. In contrast, SNAP only slightly inhibited P/Q-type and L-type currents reconstituted with various Cavß subunits. SNAP caused a depolarizing shift in voltage-dependent N-type channel activation, but it had no effect on Cav2.2 protein levels on the membrane surface. The inhibitory effect of SNAP on N-type currents was blocked by the sulfhydryl-specific modifying reagent methanethiosulfonate ethylammonium. Furthermore, the consensus motifs of S-nitrosylation were much more abundant in Cav2.2 than in Cav1.2 and Cav2.1. Site-directed mutagenesis studies showed that Cys-805, Cys-930, and Cys-1045 in the II-III intracellular loop, Cys-1835 and Cys-2145 in the C terminus of Cav2.2, and Cys-346 in the Cavß3 subunit were nitrosylation sites mediating NO sensitivity of N-type channels. Our findings demonstrate that the consensus motifs of S-nitrosylation in cytoplasmically accessible sites are critically involved in post-translational regulation of N-type Ca(2+) channels by NO. S-Nitrosylation mediates the feedback regulation of N-type channels by NO.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Óxido Nítrico/metabolismo , Secuencias de Aminoácidos , Animales , Canales de Calcio Tipo N/genética , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Óxido Nítrico/genética , Ratas , S-Nitroso-N-Acetilpenicilamina/farmacología
7.
J Biol Chem ; 289(42): 29446-56, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25190815

RESUMEN

Histamine is an important immunomodulator involved in allergic reactions and inflammatory responses. In endothelial cells, histamine induces Ca(2+) mobilization by releasing Ca(2+) from the endoplasmic reticulum and eliciting Ca(2+) entry across the plasma membrane. Herein, we show that histamine-evoked Ca(2+) entry in human umbilical vein endothelial cells (HUVECs) is sensitive to blockers of Ca(2+) release-activated Ca(2+) (CRAC) channels. RNA interference against STIM1 or Orai1, the activating subunit and the pore-forming subunit of CRAC channels, respectively, abolishes this histamine-evoked Ca(2+) entry. Furthermore, overexpression of dominant-negative CRAC channel subunits inhibits while co-expression of both STIM1 and Orai1 enhances histamine-induced Ca(2+) influx. Interestingly, gene silencing of STIM1 or Orai1 also interrupts the activation of calcineurin/nuclear factor of activated T-cells (NFAT) pathway and the production of interleukin 8 triggered by histamine in HUVECs. Collectively, these results suggest a central role of STIM1 and Orai1 in mediating Ca(2+) mobilization linked to inflammatory signaling of endothelial cells upon histamine stimulation.


Asunto(s)
Canales de Calcio/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de la Membrana/fisiología , Factores de Transcripción NFATC/fisiología , Proteínas de Neoplasias/fisiología , Calcio/metabolismo , Silenciador del Gen , Histamina/química , Humanos , Inflamación , Interleucina-8/metabolismo , Interleucinas/metabolismo , Proteína ORAI1 , Proteína ORAI2 , Interferencia de ARN , Transducción de Señal , Molécula de Interacción Estromal 1
8.
Biochem J ; 460(1): 35-47, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24597762

RESUMEN

GDF15 (growth/differentiation factor 15), a novel member of the TGFß (transforming growth factor ß) superfamily, plays critical roles in the central and peripheral nervous systems, but the signal transduction pathways and receptor subtypes involved are not well understood. In the present paper, we report that GDF15 specifically increases the IK (delayed-rectifier outward K+ current) in rat CGNs (cerebellar granule neurons) in time- and concentration-dependent manners. The GDF15-induced amplification of the IK is mediated by the increased expression and reduced lysosome-dependent degradation of the Kv2.1 protein, the main α-subunit of the IK channel. Exposure of CGNs to GDF15 markedly induced the phosphorylation of ERK (extracellular-signal-regulated kinase), Akt and mTOR (mammalian target of rapamycin), but the GDF15-induced IK densities and increased expression of Kv2.1 were attenuated only by Akt and mTOR, and not ERK, inhibitors. Pharmacological inhibition of the Src-mediated phosphorylation of TGFßR2 (TGFß receptor 2), not TGFßR1, abrogated the effect of GDF15 on IK amplification and Kv2.1 induction. Immunoprecipitation assays showed that GDF15 increased the tyrosine phosphorylation of TGFßRII in the CGN lysate. The results of the present study reveal a novel regulation of Kv2.1 by GDF15 mediated through the TGFßRII-activated Akt/mTOR pathway, which is a previously uncharacterized Smad-independent mechanism of GDF15 signalling.


Asunto(s)
Cerebelo/fisiología , Factor 15 de Diferenciación de Crecimiento/fisiología , Proteína Oncogénica v-akt/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Canales de Potasio Shab/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Cerebelo/citología , Humanos , Ratas , Ratas Sprague-Dawley , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal/genética
9.
J Biol Chem ; 288(16): 11263-72, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23447534

RESUMEN

The entry of extracellular Ca(2+), which is mediated by Ca(2+) release-activated Ca(2+) (CRAC) channels, is essential for T cell activation and the normal functioning of other immune cells. Although the molecular components of CRAC channels, the Orai1 pore-forming subunit and the STIM1-activating subunit have been recently identified, the gating mechanism by which Orai1 channels conduct Ca(2+) entry upon Orai1-STIM1 interaction following Ca(2+) store release remains elusive. Herein, we show that C-terminal truncations or point mutations prevented Orai1 from binding to STIM1 and subsequent channel opening. In contrast, an Orai1 mutant with an N-terminal truncation interacted with but failed to be activated by STIM1. Moreover, Orai1 channels with C-terminal disruption, but not N-terminal truncation, could be gated by fused functional domains of STIM1. Interestingly, the channel activities of Orai1 mutants carrying either an N-terminal or a C-terminal truncation were restored by a methionine mutation at the putative gating hinge, the conserved Gly-98 site in the first transmembrane segment (TM1) of Orai1. Collectively, these results support a stepwise gating mechanism of STIM1-operated Orai1 channels; the initial binding between STIM1 and the C terminus of Orai1 docks STIM1 onto the N terminus of Orai1 to initiate conformational changes of the pore-lining TM1 helix of Orai1, leading to the opening of the channel.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Activación del Canal Iónico/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Canales de Calcio/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Mutación , Proteínas de Neoplasias/genética , Proteína ORAI1 , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Molécula de Interacción Estromal 1
10.
Circ Res ; 111(9): 1166-75, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22896585

RESUMEN

RATIONALE: The endoplasmic reticulum (ER) is a major intracellular Ca(2+) store in endothelial cells (ECs). The Ca(2+) concentration in the ER greatly contributes to the generation of Ca(2+) signals that regulate endothelial functions. Many proteins, including stromal interaction molecule 1/2 (STIM1/2), Orai1/2/3, and sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 3 (SERCA3), are involved in the ER Ca(2+) refilling after store depletion in ECs. OBJECTIVE: This study is designed to examine the role of Ca(2+) in the ER in coronary endothelial dysfunction in diabetes. METHODS AND RESULTS: Mouse coronary ECs (MCECs) isolated from diabetic mice exhibited (1) a significant decrease in the Ca(2+) mobilization from the ER when the cells were treated by SERCA inhibitor, and (2) significant downregulation of STIM1 and SERCA3 protein expression in comparison to the controls. Overexpression of STIM1 restored (1) the increase in cytosolic Ca(2+) concentration due to Ca(2+) leak from the ER in diabetic MCECs, (2) the Ca(2+) concentration in the ER, and (3) endothelium-dependent relaxation that was attenuated in diabetic coronary arteries. CONCLUSIONS: Impaired ER Ca(2+) refilling in diabetic MCECs, due to the decrease in STIM1 protein expression, attenuates endothelium-dependent relaxation in diabetic coronary arteries, while STIM1 overexpression has a beneficial and therapeutic effect on coronary endothelial dysfunction in diabetes.


Asunto(s)
Vasos Coronarios/fisiopatología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Endotelio Vascular/fisiopatología , Glicoproteínas de Membrana/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio , Señalización del Calcio/fisiología , Células Cultivadas , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Retículo Endoplásmico/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Ácidos Grasos no Esterificados/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Molécula de Interacción Estromal 1 , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
11.
Nat Commun ; 15(1): 3653, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688896

RESUMEN

Although nontumor components play an essential role in colon cancer (CC) progression, the intercellular communication between CC cells and adjacent colonic epithelial cells (CECs) remains poorly understood. Here, we show that intact mitochondrial genome (mitochondrial DNA, mtDNA) is enriched in serum extracellular vesicles (EVs) from CC patients and positively correlated with tumor stage. Intriguingly, circular mtDNA transferred via tumor cell-derived EVs (EV-mtDNA) enhances mitochondrial respiration and reactive oxygen species (ROS) production in CECs. Moreover, the EV-mtDNA increases TGFß1 expression in CECs, which in turn promotes tumor progression. Mechanistically, the intercellular mtDNA transfer activates the mitochondrial respiratory chain to induce the ROS-driven RelA nuclear translocation in CECs, thereby transcriptionally regulating TGFß1 expression and promoting tumor progression via the TGFß/Smad pathway. Hence, this study highlights EV-mtDNA as a major driver of paracrine metabolic crosstalk between CC cells and adjacent CECs, possibly identifying it as a potential biomarker and therapeutic target for CC.


Asunto(s)
Neoplasias del Colon , ADN Mitocondrial , Progresión de la Enfermedad , Células Epiteliales , Vesículas Extracelulares , Genoma Mitocondrial , Especies Reactivas de Oxígeno , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Especies Reactivas de Oxígeno/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Masculino , Ratones , Femenino , Línea Celular Tumoral , Mitocondrias/metabolismo , Colon/metabolismo , Colon/patología , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Persona de Mediana Edad , Reprogramación Metabólica
12.
Clin Transl Med ; 14(2): e1591, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38385857

RESUMEN

BACKGROUND: Metastasis accounts for the majority of deaths among patients with colorectal cancer (CRC). Here, the regulatory role of tumour-associated macrophages (TAMs) in CRC metastasis was explored. METHODS: Immunohistochemical (IHC) analysis of the TAM biomarker CD163 was conducted to evaluate TAM infiltration in CRC. Transwell assays and an ectopic liver metastasis model were established to evaluate the metastatic ability of tumour cells. RNA sequencing (RNA-seq) and liquid chromatography-mass spectrometry (LC-MS) were applied to identify the differentially expressed genes and proteins in CRC cells and in TAM-derived extracellular vesicles (EVs). Cholesterol content measurement, a membrane fluidity assay and filipin staining were performed to evaluate cholesterol efflux in CRC cells. RESULTS: Our results showed that TAM infiltration is positively correlated with CRC metastasis. TAMs can facilitate the migration and invasion of MC-38 and CT-26 cells via EVs. According to the RNA-seq data, TAM-EVs increase cholesterol efflux and enhance membrane fluidity in CRC cells by regulating ABCA1 expression, thus affecting the motility of CRC cells. Mechanistically, DOCK7 packaged in TAM-EVs can activate RAC1 in CRC cells and subsequently upregulate ABCA1 expression by phosphorylating AKT and FOXO1. Moreover, IHC analysis of ABCA1 in patients with liver-metastatic CRC indicated that ABCA1 expression is significantly greater in metastatic liver nodules than in primary CRC tumours. CONCLUSIONS: Overall, our findings suggest that DOCK7 delivered via TAM-EVs could regulate cholesterol metabolism in CRC cells and CRC cell metastasis through the RAC1/AKT/FOXO1/ABCA1 axis. DOCK7 could thus be a new therapeutic target for controlling CRC metastasis.


Asunto(s)
Neoplasias del Colon , Vesículas Extracelulares , Humanos , Proteínas Proto-Oncogénicas c-akt , Macrófagos Asociados a Tumores , Colesterol , Proteína de Unión al GTP rac1/genética , Factores de Intercambio de Guanina Nucleótido , Proteínas Activadoras de GTPasa , Transportador 1 de Casete de Unión a ATP
13.
Asian J Surg ; 46(9): 3447-3454, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37002044

RESUMEN

Surgical smoke is a byproduct of aerosols containing several components produced by energy equipment. The characteristics of surgical smoke components produced by different types of tissues or using different kinds of energy devices vary. For example, the average diameter of smoke particles produced by electrocautery is smaller, and the possibility of viable cells and pathogens in surgical smoke produced by an ultrasonic knife is higher. According to the characteristics of its composition, surgical smoke may be an important risk factor affecting the health and safety of operating room staff and patients. The use of surgical masks, suction devices and portable smoke evacuation systems can reduce this risk to some extent. However, most operating room staff members do not implement corresponding measures to protect themselves. In this paper, the characteristics of surgical smoke and the research progress in protective measures are briefly reviewed.


Asunto(s)
Exposición Profesional , Quirófanos , Humanos , Humo/efectos adversos , Exposición Profesional/efectos adversos
14.
J Exp Clin Cancer Res ; 42(1): 286, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37891677

RESUMEN

BACKGROUND: The endoplasmic reticulum (ER) regulates critical processes, including lipid synthesis, which are affected by transmembrane proteins localized in the ER membrane. One such protein, transmembrane protein 147 (TMEM147), has recently been implicated for its role in hepatocellular carcinoma (HCC) tumorigenesis; however, the mechanisms remain unclear. We investigated the role of TMEM147 in HCC and the underlying mechanisms. METHODS: TMEM147 expression was examined in human HCC cells and adjacent non-tumorous tissues using quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. In vitro and in vivo studies were conducted to investigate the impact of TMEM147 on the progression of HCC. Proteins interacting with TMEM147 were identified via RNA-seq, immunoprecipitation, and mass spectrometry analyses. Lipidomic analysis and enzyme-linked immunosorbent assay (ELISA) were employed to determine and analyze cholesterol and 27-hydroxycholesterol (27HC) contents. Extensive experimental techniques were used to study ferroptosis in HCC cells. The fatty acid content of macrophages affected by TMEM147 was quantified using ELISA. Macrophage phenotypes were determined using immunofluorescence assay and flow cytometric analysis. RESULTS: TMEM147 mRNA and protein levels were increased in HCC cells, and the increased TMEM147 expression was associated with a poor survival. TMEM147 promoted tumor cell proliferation and metastases in vitro and in vivo. The protein was found to interact with the key enzyme 7-dehydrocholesterol reductase (DHCR7), which affected cellular cholesterol homeostasis and increased the extracellular levels of 27HC in HCC cells. TMEM147 also promoted the expression of DHCR7 by enhancing the activity of signal transducer and activator of transcription 2. 27HC expression upregulated glutathione peroxidase 4 in HCC, leading to ferroptosis resistance and promotion of HCC proliferation. HCC cell-derived 27HC expression increased the lipid metabolism in macrophages and activated peroxisome proliferator-activated receptor-γ signaling, thereby activating M2 macrophage polarization and promoting HCC cell invasion and migration. CONCLUSIONS: Our results indicate that TMEM147 confers ferroptosis resistance and M2 macrophage polarization, which are primarily dependent on the upregulation of cellular cholesterol homeostasis and 27HC secretion, leading to cancer growth and metastasis. These findings suggest that the TMEM147/STAT2/DHCR7/27HC axis in the tumor microenvironment may serve as a promising therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Macrófagos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Metabolismo de los Lípidos , Microambiente Tumoral
15.
J Cell Physiol ; 227(1): 297-307, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21412780

RESUMEN

Members of the transforming growth factor-ß (TGF-ß) family of cytokines are involved in diverse physiological processes. Although TGF-ß is known to play multiple roles in the mammalian central nervous system (CNS), its role in neuronal development has not been explored. We have studied the effects of TGF-ß1 on the electrophysiological properties and maturation of rat primary cerebellar granule neurons (CGNs). We report that incubation with TGF-ß1 increased delayed rectifier potassium current (I(K) ) amplitudes in a dose- and time-dependent manner, but did not affect the kinetic properties of the channel. Exposure to TGF-ß1 (20 ng/ml) for 36 h led to a 37.2% increase in I(K) amplitudes. There was no significant change in mRNA levels for the key Kv2.1 channel protein, but translation blockade abolished the increase in protein levels and channel activity, arguing that TGF-ß1 increases I(K) amplitudes by upregulating translation of the Kv2.1 channel protein. Although TGF-ß1 treatment did not affect the activity of protein kinase A (PKA), and constitutive activation of PKA with forskolin failed to increase I(K) amplitudes, inhibition of PKA prevented channel upregulation, demonstrating that basal PKA activity is required for TGF-ß1 stimulation of I(K) channel activity. TGF-ß1 also promoted the expression of the γ-aminobutyric acid (GABA(A) ) receptor α6 subunit, a marker of mature CGNs, and calcium influx during depolarizing stimuli was reduced by TGF-ß1. The effects of TGF-ß1 were only observed during a narrow developmental time-window, and were lost as CGNs matured. These findings suggest that TGF-ß1 upregulates K(+) channel expression and I(K) currents and thereby promotes CGN maturation.


Asunto(s)
Neuronas/metabolismo , Canales de Potasio Shab/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Western Blotting , Células Cultivadas , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
16.
J Neurochem ; 120(4): 502-14, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22118516

RESUMEN

Cholesterol is a major component of membrane lipid rafts. It is more abundant in the brain than in other tissues and plays a critical role in maintaining brain function. We report here that a significant enhancement in apoptosis in rat cerebellar granule neurons (CGNs) was observed upon incubation with 5mM K(+) /serum free (LK-S) medium. Cholesterol enrichment further potentiated CGN apoptosis incubated under LK-S medium. On the contrary, cholesterol depletion using methyl-beta-cyclodextrin protected the CGNs from apoptosis induced by LK-S treatment. Cholesterol enrichment, however, did not induce apoptosis in CGNs that have been incubated with 25mM K(+) /serum medium. Mechanistically, increased I(K) currents and DNA fragmentation were found in CGNs incubated in LK-S, which was further potentiated in the presence of cholesterol. Cholesterol-treated CGNs also exhibited increased cAMP levels and up-regulation of Kv2.1 expression. Increased levels of activated form of PKA and phospho-CREB further supported activation of the cAMP/PKA pathway upon treatment of CGNs with cholesterol-containing LK-S medium. Conversely, inhibition of PKA or small G protein Gs abolished the increase in I(K) current and the potentiation of Kv2.1 expression, leading to reduced susceptibility of CGNs to LK-S and cholesterol-induced apoptosis. Our results demonstrate that the elevation of membrane cholesterol enhances CGN susceptibility to apoptotic stimuli via cAMP/PKA/CREB-dependent up-regulation of Kv2.1. Our data provide new evidence for the role of cholesterol in eliciting neuronal cell death.


Asunto(s)
Apoptosis/genética , Proteína de Unión a CREB/metabolismo , Colesterol/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Neuronas/metabolismo , Canales de Potasio Shab/biosíntesis , Regulación hacia Arriba/fisiología , Animales , Células Cultivadas , AMP Cíclico/fisiología , Femenino , Predisposición Genética a la Enfermedad , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shab/genética , Transducción de Señal/genética
17.
Biochem J ; 438(1): 203-15, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21564022

RESUMEN

AA (arachidonic acid), which possesses both neurotoxic and neurotrophic activities, has been implicated as a messenger in both physiological and pathophysiological processes. In the present study, we investigated the effects of both extracellular and intracellular application of AA on the activity of Na(V) (voltage-gated Na(+) channels) in rat cerebellar GCs (granule cells). The extracellular application of AA inhibited the resultant I(Na) (Na(V) current), wherein the current-voltage curve shifted to a negative voltage direction. Because this effect could be reproduced by treating the GCs with ETYA (eicosa-5,8,11,14-tetraynoic acid) or a membrane-impermeable analogue of AA, AA-CoA (arachidonoyl coenzyme A), we inferred that AA itself exerted the observed modulatory effects on I(Na). In contrast, intracellular AA significantly augmented the elicited I(Na) peak when the same protocol that was used for extracellular AA was followed. The observed I(Na) increase that was induced by intracellular AA was mimicked by the AA cyclo-oxygenase metabolite PGE(2) (prostaglandin E(2)), but not by ETYA. Furthermore, cyclo-oxygenase inhibitors decreased I(Na) and quenched AA-induced channel activation, indicating that the effect of intracellular AA on Na(V) was possibly mediated through AA metabolites. In addition, the PGE2-induced activation of I(Na) was mimicked by cAMP and quenched by a PKA (protein kinase A) inhibitor, a G(s) inhibitor and EP (E-series of prostaglandin) receptor antagonists. The results of the present study suggest that extracellular AA modulates Na(V) channel activity in rat cerebellar GCs without metabolic conversion, whereas intracellular AA augments the I(Na) by PGE(2)-mediated activation of cAMP/PKA pathways. These observations may explain the dual character of AA in neuronal pathogenesis.


Asunto(s)
Ácido Araquidónico/farmacología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Canales de Sodio/metabolismo , Sodio/metabolismo , Ácido 5,8,11,14-Eicosatetrainoico/farmacología , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Cerebelo/citología , Ciclooxigenasa 2/química , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Dinoprostona/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Subtipo EP1 de Receptores de Prostaglandina E/genética , Subtipo EP1 de Receptores de Prostaglandina E/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Front Immunol ; 13: 892750, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812416

RESUMEN

Background: Complement factor H-related 4 (CFHR4) is a protein-coding gene that plays an essential role in multiple diseases. However, the prognostic value of CFHR4 in hepatocellular carcinoma (HCC) is unknown. Methods: Using multiple databases, we investigated CFHR4 expression levels in HCC and multiple cancers. The relationship between CFHR4 expression levels and clinicopathological variables was further analyzed. Various potential biological functions and regulatory pathways of CFHR4 in HCC were identified by performing a Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA). Single-sample gene set enrichment analysis (ssGSEA) was performed to confirm the correlation between CFHR4 expression and immune cell infiltration. The correlations between CFHR4 expression levels in HCC and N6-methyladenosine (m6A) modifications and the competing endogenous RNA (ceRNA) regulatory networks were confirmed in TCGA cohort. Results: CFHR4 expression levels were significantly decreased in HCC tissues. Low CFHR4 expression in HCC tissues was significantly correlated with the patients' sex, race, age, TNM stage, pathological stage, tumor status, residual tumor, histologic grade and alpha fetal protein (AFP) level. GO and KEGG analyses revealed that differentially expressed genes related to CFHR4 may be involved in the synaptic membrane, transmembrane transporter complex, gated channel activity, chemical carcinogenesis, retinol metabolism, calcium signaling pathway, PPAR signaling pathway, insulin and gastric acid secretion. GSEA revealed that the FCGR-activated reaction, PLK1 pathway, ATR pathway, MCM pathway, cascade reactions of PI3K and FGFR1, reactant-mediated MAPK activation and FOXM1 pathway were significantly enriched in HCC with low CFHR4 expression. Moreover, CFHR4 expression was inversely correlated the levels of infiltrating Th2 cells, NK CD56bright cells and Tfh cells. In contrast, we observed positive correlations with the levels of infiltrating DCs, neutrophils, Th17 cells and mast cells. CFHR4 expression showed a strong correlation with various immunomarker groups in HCC. In addition, high CFHR4 expression significantly prolonged the overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI). We observed a substantial correlation between the expression of CFHR4 and multiple N6-methyladenosine genes in HCC and constructed potential CFHR4-related ceRNA regulatory networks. Conclusions: CFHR4 might be a potential therapeutic target for improving the HCC prognosis and is closely related to immune cell infiltration.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adenosina/análogos & derivados , Apolipoproteínas , Biomarcadores , Carcinoma Hepatocelular/genética , Femenino , Humanos , Neoplasias Hepáticas/genética , Masculino
19.
Oncogenesis ; 11(1): 39, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851575

RESUMEN

Nicotinamide N-methyltransferase (NNMT), a member of the N-methyltransferase family, plays an important role in tumorigenesis. However, its expression and biological functions in intrahepatic cholangiocarcinoma (iCCA) remain to be established. In our study, we identified NNMT as an oncogene in iCCA and provided mechanistic insights into the roles of NNMT in iCCA progression. High NNMT expression in iCCA tissues was identified using western blotting and immunohistochemistry (IHC). We identified a significantly higher NNMT expression level in human iCCA tissues than that in adjacent normal tissues. Increased NNMT expression promoted iCCA cell proliferation and metastasis in vitro and in vivo. Mechanistically, NNMT inhibited the level of histone methylation in iCCA cells by consuming the methyl donor S-adenosyl methionine (SAM), thereby promoting the expression of epidermal growth factor receptor (EGFR). EGFR may activate the aerobic glycolysis pathway in iCCA cells by activating the STAT3 signaling pathway. In conclusion, we identified NNMT as an oncogene in iCCA and provided mechanistic insights into the roles of NNMT in iCCA progression.

20.
Cell Physiol Biochem ; 28(1): 163-74, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21865859

RESUMEN

BACKGROUND: Although tricyclic antidepressants amoxapine is proposed to target 5-HT and D2 receptors, very few studies have addressed the effect of amoxapine on molecular and cellular mechanisms via receptor pathways. In this study, we test the effect of amoxapine on rat cerebellar granule neurons (CGNs) to address this possibility. METHODS: CGNs cell culture, whole-cell current recording using a patch-clamp technique, western blot and non-radioactive detection analysis of phosphorylated protein kinase A (PKA) were used. RESULTS: Amoxapine inhibits delayed rectifier potassium (I(K)) current in a dose-dependent manner and modulates inactivation properties in CGNs. Those effects were not eliminated by preincubation with 5-HT or 5-HT receptor antagonists, but abolished by dopamine and D1/D5 receptor antagonists. Application of GTPγ-S and inhibitor of the Gs signalling cascade abolished the amoxapine-induced effect on I(K). The application of forskolin or dibutyryl-cAMP mimicked the inhibitory effect of amoxapine on I(K). Western blotting for phosphorylated PKA revealed that amoxapine significantly increased the intracellular levels of phosphorylated PKA, a marker of PKA activation. CONCLUSION: Amoxapine inhibits I(K) currents in rat CGNs via cAMP/PKA-dependent pathways, as in mouse cortical neurons we reported earlier, but that involves D1-like receptors instead of 5-HT receptors.


Asunto(s)
Amoxapina/farmacología , Cerebelo/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Antagonistas de Dopamina/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Receptores Dopaminérgicos/metabolismo , Animales , Células Cultivadas , Cerebelo/citología , Proteínas Quinasas Dependientes de AMP Cíclico/química , Activación Enzimática , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Dopaminérgicos/química , Antagonistas de la Serotonina/farmacología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA