Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
FASEB J ; 38(3): e23458, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38315453

RESUMEN

Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3ß (glycogen synthase kinase 3ß), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3ß participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3ß in DKD and its damage mechanism in different intrinsic renal cells. GSK3ß is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3ß inhibitors on DKD are also discussed.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Glucógeno Sintasa Quinasa 3 beta , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Riñón/metabolismo
2.
J Am Chem Soc ; 146(11): 7198-7203, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456819

RESUMEN

A new and efficient synthesis of rubriflordilactone A has been realized. The key transformations include the following: (1) an intramolecular Prins cyclization to establish the seven-membered ring containing two contiguous stereocenters; (2) a Mukaiyama hydration/oxa-Michael cascade to construct the B-ring; and (3) an unprecedented stereocontrol intermolecular o-QM type [4 + 2]-cycloaddition to rapidly assemble core structure of rubriflordilactone A.

3.
J Am Chem Soc ; 145(25): 13549-13555, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37307044

RESUMEN

The asymmetric total synthesis of (-)-retigeranic acid A has been realized. The key features of the current synthesis include (1) a Pt-catalyzed Conia-ene 5-exo-dig cyclization of enolyne to establish the key quaternary stereochemical center of C-10 (D/E ring), (2) an intramolecular diastereoselective Prins cyclization to construct the trans-hydrindane backbone (A/B ring), and (3) a late-stage intramolecular Fe-mediated hydrogen atom transfer (HAT) Baldwin-disfavored 5-endo-trig radical cyclization to rapidly assemble vicinal quaternary centers and the core structure of (-)-retigeranic acid A (C ring).

4.
Angew Chem Int Ed Engl ; 61(2): e202112907, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34643982

RESUMEN

The selective oxidation of aniline to metastable and valuable azoxybenzene, azobenzene or nitrosobenzene has important practical significance in organic synthesis. However, uncontrollable selectivity and laborious synthesis of the expensive required catalysts severely hinders the uptake of these reactions in industrial settings. Herein, we have pioneered the discovery of Zr(OH)4 as an efficient heterogeneous catalyst capable of the selective oxidation of aniline, using either peroxide or O2 as oxidant, to selectively obtain various azoxybenzenes, symmetric/unsymmetric azobenzenes, as well as nitrosobenzenes, by simply regulating the reaction solvent, without the need for additives. Mechanistic experiments and DFT calculations demonstrate that the activation of H2 O2 and O2 is primarily achieved by the bridging hydroxyl and terminal hydroxyl groups of Zr(OH)4 , respectively. The present work provides an economical and environmentally friendly strategy for the selective oxidation of aniline in industrial applications.

5.
J Nat Prod ; 84(9): 2468-2474, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34427432

RESUMEN

Clonorosins A (1) and B (2), two novel indole alkaloids featuring unprecedented 6/5/6/6/5 and 6/5/5 cores, together with seven known indole-linked 2,5-diketopiperazine alkaloids (3-9), were isolated from the soil-derived fungus Clonostachys rosea YRS-06. The new structures were proposed through HR-MS, NMR, and ECD spectroscopic data. They were established by comparing the calculated NMR, ECD, and specific rotation data with the experimental. To assist in determining the absolute configuration of the chiral carbon in the side chain of 2,5-diketopiperazine derivatives, flexible analogues 3i-3iv were synthesized and analyzed. 1 was active against Fusarium oxysporum with an MIC value of 50 µg/mL. 7 and 8 showed excellent activity against human HeLa and HepG2 cells with IC50 values of 0.12-0.60 µM.


Asunto(s)
Antibacterianos/farmacología , Hypocreales/química , Alcaloides Indólicos/farmacología , Antibacterianos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Células HeLa , Células Hep G2 , Humanos , Alcaloides Indólicos/aislamiento & purificación , Estructura Molecular , Microbiología del Suelo
6.
Angew Chem Int Ed Engl ; 60(17): 9395-9400, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33528075

RESUMEN

While the presence of sulfur⋅⋅⋅π bonding interaction is a general phenomenon in the biological systems, the exploitation of this noncovalent force in a chemical process yet remains elusive. Herein, we describe the concept of chalcogen⋅⋅⋅π bonding catalysis that activates molecules of π systems through the interaction between chalcogen and π-electron cloud. The proof-of-concept studies using a vinylindole-based Diels-Alder benchmark reaction demonstrate that S⋅⋅⋅π and Se⋅⋅⋅π bonding interaction can drive the cycloaddition reaction efficiently. Experimental results suggest that a simultaneously double Se⋅⋅⋅π bonding interaction directs the stereoselectivity in this cycloaddition process.

7.
Angew Chem Int Ed Engl ; 60(42): 22717-22721, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34352156

RESUMEN

Herein, we describe a new catalysis platform, supramolecular carbon-bonding catalysis, which exploits the highly directional weak interactions between carbon centers of catalysts and electron donors to drive chemical reactions. To demonstrate this catalysis approach, we discovered a class of cyclopropane derivatives incorporated with carbonyl, ester and cyano groups as catalysts which showed general catalysis capability in different types of benchmark reactions. Among these typical examples, a challenging tail-to-head terpene cyclization can be achieved by supramolecular carbon-bonding catalysis. The co-crystal structures of catalyst and electron donors, comparison experiments, and titrations support a catalysis mode of carbon-bonding activation of Lewis basic reactants.

8.
Phys Chem Chem Phys ; 20(16): 11386-11395, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29645034

RESUMEN

The characters of σ- and π-holes of bromopentafluorobenzene (C6F5Br) enable it to interact with an electron-rich atom or group like pyridine which possesses an electron lone-pair N atom and a π ring. Theoretical studies of intermolecular interactions between C6F5Br and C5H5N have been carried out at the M06-2X/aug-cc-pVDZ level without and with the counterpoise method, together with single point calculations at M06-2X/TZVP, wB97-XD/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels. The σ- and π-holes of C6F5Br exhibiting positive electrostatic potentials make these sites favorably interact with the N atom and the π ring of C5H5N with negative electrostatic potentials, leading to five different dimers connected by a σ-holen bond, a σ-holeπ bond or a π-holeπ bond. Their geometrical structures, characteristics, nature and spectroscopy behaviors were systematically investigated. EDA analyses reveal that the driving forces in these dimers are different. NCI, QTAIM and NBO analyses confirm the existence of intermolecular interactions formed via σ- and π-holes of C6F5Br and the N atom and the π ring of C5H5N. The experimental IR and Raman spectra gave us important information about the formation of molecular complexes between C6F5Br and C5H5N. We expect that the results could provide valuable insights into the investigation of intermolecular interactions involving σ- and π-holes.

9.
J Org Chem ; 82(6): 3046-3061, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28225628

RESUMEN

The Diels-Alder reaction between 3-vinylindoles and methyleneindolinone can proceed both under catalyst-free conditions and with bisthiourea as the catalyst. The reaction with bisthiourea is much faster and results in higher stereoselectivity of the product. The reaction mechanism, origin of stereoselectivity, and role of the catalyst were elaborated based on quantum mechanical calculations and theoretical methods of reactivity indices, NCI, QTAIM, and distortion/interaction models. In the uncatalyzed reaction, the two C-C bonds that are formed undergo conversion from noncovalent to covalent bonding via a concerted asynchronous mechanism. The weak intermolecular interactions formed in the transition state play important roles. The difference between the interaction and distortion energies is responsible for the stereoselectivity. In the catalyzed reaction, bisthiourea induces both the diene and dienophile to approach it via weak intermolecular interactions, which greatly lowers the energy barrier of the reaction and leads to the product with excellent stereoselectivity. The possible pathways of this reaction were explored, which suggested that the formation of the two C-C bonds goes through either a stepwise or concerted asynchronous mechanism. These results detail the reaction mechanism and shed light on both the significant role of the bisthiourea catalyst and the origin of stereoselectivity for this type of Diels-Alder reaction and related ones.

11.
J Chem Phys ; 147(13): 134303, 2017 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-28987121

RESUMEN

Condensed-to-atom Fukui functions which reflect the atomic reactivity like the tendency susceptible to either nucleophilic or electrophilic attack demonstrate the bonding trend of an atom in a molecule. Accordingly, Fukui functions based concepts, that is, bonding reactivity descriptors which reveal the bonding properties of molecules in the reaction were put forward and then applied to pericyclic and cluster reactions to confirm their effectiveness and reliability. In terms of the results from the bonding descriptors, a covalent bond can readily be predicted between two atoms with large Fukui functions (i.e., one governs nucleophilic attack while the other one governs electrophilic attack, or both of them govern radical attacks) for pericyclic reactions. For SinOm clusters' reactions, the clusters with a low O atom ratio readily form a bond between two Si atoms with big values of their Fukui functions in which they respectively govern nucleophilic and electrophilic attacks or both govern radical attacks. Also, our results from bonding descriptors show that Si-Si bonds can be formed via the radical mechanism between two Si atoms, and formations of Si-O and O-O bonds are possible when the O content is high. These results conform with experimental findings and can help experimentalists design appropriate clusters to synthesize Si nanowires with high yields. The approach established in this work could be generalized and applied to study reactivity properties for other systems.

12.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 37(4): 410-413, 2017 04.
Artículo en Zh | MEDLINE | ID: mdl-30650495

RESUMEN

Objective To observe the correlation of hepatocyte growth factor (HGF) and Hepato- cyte growth factor receptor (c-Met ) in serum and gastric mucosa tissues of chronic erosive gastritis pa- tients. Methods Totally 70 patients with chronic erosive gastritis were selected and assigned to turbidity toxin intrinsic syndrome group and Gan-wei disharmony syndrome group, HGF expression level of ser- um,and HGF,c-Met expression level of gastric mucosa tissues were measured;the correlation of HGF and c-Met in gastric mucosa tissues, and the correlation of HGF in serum and gastric mucosa tissues were analyzed. Results The expression level of HGF and c-Met in turbidity toxin intrinsic syndrome group was higher than that in Gan-wei disharmony syndrome group (P <0. 05) ; the expression level of HGF in gastric mucosa tissues was positively correlated with c-Met(r =0. 831 , P <0. 05) ; the expression level of HGF in serum was positively correlated with that of gastric mucosa tissues(r =0. 656, P <0. 05). Conclusions There was correlation between turbidity toxin intrinsic syndrome of Chronic Erosive Gastri- tis patients and the expression level of HGF and c-Met.


Asunto(s)
Gastritis , Factor de Crecimiento de Hepatocito , Proteínas Proto-Oncogénicas c-met , Mucosa Gástrica , Gastritis/sangre , Gastritis/metabolismo , Factor de Crecimiento de Hepatocito/sangre , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Medicina Tradicional China , Proteínas Proto-Oncogénicas c-met/sangre , Proteínas Proto-Oncogénicas c-met/metabolismo , Úlcera Gástrica
13.
Phys Chem Chem Phys ; 17(18): 12185-93, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25884049

RESUMEN

A series of benzene derivatives with different substituents adsorbed on graphene was investigated using a density-functional tight-binding method with a dispersion correction. Compared to benzene, the derivative with either an electron-withdrawing or -donating substituent exhibits stronger physisorption. Moreover, the steric size of the substituent is important in determining the adsorption strength, while the direction and the number of H atoms in the substituent affect the electron transfer from graphene. NBO analysis reveals that the stereoelectronic effect of the conjugation between the substituent and the benzene ring strongly influences the π···π interaction region between the molecule and graphene. The findings can deepen the understanding of the interaction between an aromatic molecule and graphene as well as the corresponding adsorption mechanism.

14.
Org Lett ; 26(15): 3097-3102, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38574397

RESUMEN

This study introduces a novel approach involving XB-mediated cross-coupling of α-trifluoromethylated alkyl bromides with coumarins and quinolinones under visible light irradiation. Both density functional theory (DFT) calculations and experimental studies converge to suggest that the noncovalent interaction between alkyl bromides and DMAP, intensified by the α-trifluoromethyl group, plays a pivotal role in facilitating this chemoselective reaction.

15.
J Mol Model ; 30(2): 26, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191945

RESUMEN

CONTEXT: The reaction between Na and HF is a typical harpooning reaction which is of great interest due to its significance in understanding the elementary chemical reaction kinetics. This work aims to investigate the detailed reaction mechanisms of sodium with hydrogen fluoride and the adsorption of HF on the resultant NaF as well as the (NaF)4 tetramer. The results suggest that the reaction between Na and HF leads to the formation of sodium fluoride salt NaF and hydrogen gas. Na interacts with HF to form a complex HF···Na, and then the approaching of F atom of HF to Na results in a transition state H···F···Na. Accompanied by the broken of H-F bond, the bond forms between F and Na atoms as NaF, then the product NaF is yielded due to the removal of H atom. The resultant NaF can further form (NaF)4 tetramer. The interaction of NaF with HF leads to the complex NaF···HF; the form I as well as II of (NaF)4 can interact with HF to produce two complexes (i.e., (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF), but the form III of (NaF)4 can interact with HF to produce only one complex (NaF)4(III)···HF. These complexes were explored in terms of noncovalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analyses. NCI analyses confirm the existences of attractive interactions in the complexes HF···Na, NaF···HF, (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF, and (NaF)4(III)···HF. QTAIM analyses suggest that the F···Na interaction forms in the HF···Na complex while the F···H hydrogen bonds form in NaF···HF, (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF, and (NaF)4(III)···HF complexes. Natural bond orbital (NBO) analyses were also applied to analyze the intermolecular donor-acceptor orbital interactions in these complexes. These results would provide valuable insight into the chemical reaction of Na and HF and the adsorption interaction between sodium fluoride salt and HF. METHODS: The calculations were carried out at the M06-L/6-311++G(2d,2p) level of theory which were performed using the Gaussian16 program. Intrinsic reaction coordinate (IRC) calculations were carried out at the same level of theory to confirm that the obtained transition state was true. The molecular surface electrostatic potential (MSEP) was employed to understand how the complex forms. Quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) analysis was used to know the topology parameters at bond critical points (BCPs) and intermolecular interactions in the complex and intermediate. The topology parameters and the BCP plots were obtained by the Multiwfn software.

16.
Nat Commun ; 14(1): 6347, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816750

RESUMEN

The activation of ethers by weak interactions is a long-standing objective in supramolecular catalysis, but yet it remains an underdeveloped topic. The obstacles towards solving this problem are prominent since it is difficult for a weak interaction to cleave a relatively strong C-O σ-bond and moreover, the ionic intermediate composing of an alkoxide ion and an electrophilic carbocation would deactivate weak interaction donors. Herein, we describe a distinctive activation mode, dual Se···π and Se···O bonding, that could activate benzylic as well as allylic ether C-O σ-bonds to achieve cyclization, coupling and elimination reactions. This dual Se···π and Se···O bonding catalysis approach could tolerate various alkoxide leaving groups, while the other representative weak interaction donors showed no catalytic activity.

17.
RSC Adv ; 13(30): 21021-21035, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37484866

RESUMEN

To investigate the polymorphism in 4-phenylamino-benzoic acids (4-PABAs) in general, and the effect on the polymorphism of these compounds exerted by substitution in particular, a series of 4-PABAs (1-8) varying in the substitution position and pattern were synthesized, and their polymorphic behavior was investigated for the first time. A relatively comprehensive polymorph screening led to the discovery of two forms, one solvent-free and the other solvate, for compounds 1, 3 and 8, and one form for the other compounds. The crystal structures were determined by single-crystal XRD. All the 4-PABAs in the crystal structures are highly twisted, and all the solvent-free crystals are based on the conventional acid-acid dimer motif, except for 2, which has a rarely observed acid-acid catemer motif. Two of the solvates (1-S and 8-S) have pyridine in the lattice while the other (3-S) has dichloromethane. The observation indicates that neither conformational flexibility or substitution alone nor the combination of both leads to polymorphism in these compounds, which is in dramatic contrast to the polymorphism of fenamic acids. The thermal properties of each system were investigated by differential scanning calorimetry and desolvation of the solvates was studied by thermogravimetric analysis. Hirshfeld surface analysis and molecular dynamics simulation were performed to study the mechanism of polymorphism and the intermolecular interactions contributing to the formation and stability of each crystal form.

18.
J Chem Phys ; 137(8): 084311, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22938237

RESUMEN

A whole dataset containing 55 hydrogen bonds were studied at the MP2/aug-cc-pVTZ level of theory. The changes of geometries and stretching vibrational frequencies show that there are 31 redshifted and 24 blueshifted hydrogen-bonded complexes. Natural bond orbital analysis was carried out at the B3LYP/aug-cc-pVTZ level of theory to obtain the electron densities in the bonding and antibonding orbitals of the proton donor X-H bond, which are closely associated with its bond length. Based on their relationship, a generally applicable method considering both the electron densities in the bonding and antibonding orbitals of the proton donor X-H bond has been developed to quantitatively describe the hyperconjugative effect on the X-H bond length changes in these hydrogen-bonded complexes.


Asunto(s)
Protones , Teoría Cuántica , Enlace de Hidrógeno , Vibración
19.
Nat Commun ; 13(1): 3563, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732663

RESUMEN

The activation of aziridines typically involves the use of strong Lewis acids or transition metals, and methods relying on weak interactions are rare. Herein, we report that cooperative chalcogen bonding interactions in confined sites can activate sulfonyl-protected aziridines. Among the several possible distinct bonding modes, our experiments and computational studies suggest that an activation mode involving the cooperative Se···O and Se···N interactions is in operation. The catalytic reactions between weakly bonded supramolecular species and nonactivated alkenes are considered as unfavorable approaches. However, here we show that the activation of aziridines by cooperative Se···O and Se···N interactions enables the cycloaddition of weakly bonded aziridine-selenide complex with nonactivated alkenes in a catalytic manner. Thus, weak interactions can indeed enable these transformations and are an alternative to methods relying on strong Lewis acids.


Asunto(s)
Aziridinas , Calcógenos , Alquenos , Reacción de Cicloadición , Ácidos de Lewis
20.
Org Lett ; 24(2): 542-547, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34989585

RESUMEN

A radical [1,4]-oxygen-atom transfer has been realized by the reaction of linear alkyne-tethered ketoximes and ethynylbenziodoxolones (EBX) under sequential catalytic conditions. Mechanism studies indicate that the O atom transfer experiences a cascade O atom radical cyclization/alkynylation/N-O bond photocleavage and subsequent N,O-diradical rearrangement. By the diversification of catalytic sequences, a series of structurally important 3H-pyrrol-3-ones and chlorinated furo[3,2-b]pyrroles are divergently synthesized along with an O atom shift under the catalysis of Cu/Ir photosensitization and Cu/Ir photosensitization/AlCl3, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA