Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Res ; 248: 118336, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295970

RESUMEN

Microcystins (MCs) significantly threaten the ecosystem and public health. Biodegradation has emerged as a promising technology for removing MCs. Many MCs-degrading bacteria have been identified, including an indigenous bacterium Sphingopyxis sp. YF1 that could degrade MC-LR and Adda completely. Herein, we gained insight into the MCs biodegradation mechanisms and evolutionary dynamics of MCs-degrading bacteria, and revealed the toxic risks of the MCs degradation products. The biochemical characteristics and genetic repertoires of strain YF1 were explored. A comparative genomic analysis was performed on strain YF1 and six other MCs-degrading bacteria to investigate their functions. The degradation products were investigated, and the toxicity of the intermediates was analyzed through rigorous theoretical calculation. Strain YF1 might be a novel species that exhibited versatile substrate utilization capabilities. Many common genes and metabolic pathways were identified, shedding light on shared functions and catabolism in the MCs-degrading bacteria. The crucial genes involved in MCs catabolism mechanisms, including mlr and paa gene clusters, were identified successfully. These functional genes might experience horizontal gene transfer events, suggesting the evolutionary dynamics of these MCs-degrading bacteria in ecology. Moreover, the degradation products for MCs and Adda were summarized, and we found most of the intermediates exhibited lower toxicity to different organisms than the parent compound. These findings systematically revealed the MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria. Consequently, this research contributed to the advancement of green biodegradation technology in aquatic ecology, which might protect human health from MCs.


Asunto(s)
Ecosistema , Sphingomonadaceae , Humanos , Microcistinas , Biodegradación Ambiental , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Genómica
2.
Appl Microbiol Biotechnol ; 106(11): 4211-4221, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35622123

RESUMEN

A high production mutated strain Bacillus thuringiensis X023PN (BtX023PN) was screened from the wild strain Bacillus thuringiensis X023 (BtX023) after atmospheric and room temperature plasma (ARTP) and nitrosoguanidine (NTG) mutation. BtX023PN grows faster than the wild strain, and its lysis of mother cell was 6 h ahead BtX023, but the ability of sporulation was significantly reduced. Bioassay indicated that compared with the wild type strain, the virulence of BtX023PN against Plutella xylostella (P. xylostella) and Mythimna seperata (M. seperata) increased to 2.33-fold and 2.13-fold respectively. qRT-PCR and SDS-PAGE demonstrated that the production of Cry1Ac increased by 61%. Resequence indicated that the mutated sites enriched on the key carbohydrate metabolism and amino acid metabolism. This study provides a new strain resource for the development of Bt insecticides and a feasible technical strategy for the breeding of Bt. KEY POINTS: • Atmospheric and room temperature plasma used in breeding of Bacillus thuringiensis. • Less stationary phase time with more ICP production. • Semi-lethal concentration against Plutella xylostella reduced by about 57.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Larva , Mutación , Nitrosoguanidinas , Virulencia
3.
Environ Microbiol ; 23(4): 2230-2243, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33331075

RESUMEN

Lysine metabolism plays an important role in the formation of the insecticidal crystal proteins of Bacillus thuringiensis (Bt). The genes lam, gabD and sucA encode three key enzymes of the lysine metabolic pathway in Bt4.0718. The lam gene mainly affects the cell growth at stable period, negligibly affected sporulation and insecticidal crystal protein (ICP) production. While, the deletion mutant strains of the gabD and sucA genes showed that the growth, sporulation and crystal protein formation were inhibited, cells became slender, and insecticidal activity was significantly reduced. iTRAQ proteomics and qRT-PCR used to analyse the differentially expressed protein (DEP) between the two mutant strains and the wild type strain. The functions of DEPs were visualized and statistically classified, which affect bacterial growth and metabolism by regulating biological metabolism pathways: the major carbon metabolism pathways, amino acid metabolism, oxidative phosphorylation pathways, nucleic acid metabolism, fatty acid synthesis and peptidoglycan synthesis. The gabD and sucA genes in lysine metabolic pathway are closely related to the sporulation and crystal proteins formation. The effects of DEPs and functional genes on basic cellular metabolic pathways were studied to provide new strategies for the construction of highly virulent insecticidal strains, the targeted transformation of functional genes.


Asunto(s)
Bacillus thuringiensis , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Endotoxinas , Técnicas de Inactivación de Genes , Proteínas Hemolisinas , Lisina
4.
Microb Pathog ; 161(Pt A): 105273, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34740811

RESUMEN

The Streptomyces virginiae strain W18 was screened from soil, which exhibited broad-spectrum antibacterial activity against fish pathogens. Safety assays showed that strain W18 had no toxicity to fish. Additionally, strain W18 promoted the growth performance of Carassius auratus after feeding in feed mixed with bacteria for one month. Moreover, the activities of AKP, ACP, and SOD in the serum of C. auratus were significantly increased, while the activity of LZM did not greatly change. To detect the expression levels of the genes related to immune factors in the livers, kidneys, and spleens of C. auratus, qRT-PCR was performed. The expression levels of KEAP1, IL-8, TNF-α, IL-ß, and C3 were upregulated in all three organs compared to the control, but LZM expression was downregulated in the kidney. The challenge experiment illustrated that the probability of infection with Aeromonas veronii was reduced by 60% and 40% when C. auratus was fed with two different doses of strain W18 in advance. The whole genome of strain W18 was sequenced, and the gene clusters of secondary metabolites in strain W18 were analyzed by AntiSMASH. The results showed that strain W18 contained a total of 26 gene clusters, and functional annotation analysis was conducted by using the non-coding databases COG and KEGG. All of the above results indicated that the use of strain W18 as a feed additive could enhance the resistance of C. auratus toward pathogenic bacteria and disease. In conclusion, an antagonistic strain (W18) against fish pathogenic bacteria was obtained in this study, which is of great significance for finding new treatment methods for bacterial diseases in the aquaculture industry.


Asunto(s)
Aeromonas veronii/patogenicidad , Resistencia a la Enfermedad , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Streptomyces , Alimentación Animal , Animales , Antibiosis , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Carpa Dorada , Infecciones por Bacterias Gramnegativas/veterinaria , Streptomyces/genética
5.
Microb Pathog ; 143: 104092, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32145322

RESUMEN

Aeromonas veronii is a widely distributed novel pathogen that can affect humans and animals, it can cause sepsis in fish with high mortality and serious economic losses to aquaculture. In the study, the gut microbiome of the infected and uninfected grass carp with Aeromonas veronii were analyzed probiotics and pathogenic bacteria by the Miseq high-throughput sequencing, the results showed that the infected fish were significantly higher in Proteobacteria, Firmicutes, Fusobacteria, and the immune factors in liver and kidney were up-regulated by qRT-PCR. In order to effectively inhibit the pathogen, we screened an actinomycete strain and had good antibacterial effect on Aeromonas veronii. The new antagonistic bacteria was named as Streptomyces flavotricini X101, the whole genome sequencing revealed that the metabolic process was most active. After grass carp was inoculated with the minimum inhibitory concentration of 900 µg/mL of the strain's fermentation supernatant, then Aeromonas veronii was injected, we found that the pathological symptoms such as body surface, anus and abdominal congestion were alleviated by H&E staining. Cellular experiments showed that it wasn't toxic to liver cells of grass carp. Overall, this is the first study of changes in intestinal flora, phenotype, and immune factors in grass crap infected with Aeromonas veronii, it had important theoretical significance and application value for immunization and prevention.


Asunto(s)
Aeromonas veronii/fisiología , Carpas/microbiología , Enfermedades de los Peces/microbiología , Microbioma Gastrointestinal , Infecciones por Bacterias Gramnegativas/veterinaria , Streptomyces/fisiología , Animales , Carpas/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/patología , Microbioma Gastrointestinal/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoglobulina M/metabolismo , Interleucinas/metabolismo , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Streptomyces/genética
6.
Appl Microbiol Biotechnol ; 103(18): 7647-7662, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31352508

RESUMEN

Lipopeptides (such as iturin, fengycin, and surfactin) from Bacillus possess antibacterial, antifungal, and antiviral activities and have important application in agriculture and pharmaceuticals. Although unremitting efforts have been devoted to improve lipopeptide production by designing gene regulatory circuits or optimizing fermentation process, little attention has been paid to utilizing multi-omics for systematically mining core genes and proteins during the bacterial growth cycle. Here, lipopeptide bacillomycin Lb from new Bacillus amyloliquefaciens X030 was isolated and first found to have anticancer activity in various cancer cells (such as SMMC-7721 and MDA-MB-231). A comprehensive genomic and growth proteomic analysis of X030 revealed bacillomycin Lb biosynthetic gene cluster, key enzymes and potential regulatory proteins (PerR, PhoP, CcpA, and CsfB), and novel links between primary metabolism and bacillomycin Lb production in X030. The antitumor activity of the fermentation supernatant supplemented with amino acids (such as glutamic acid) and sucrose was significantly increased, verifying the role of key metabolic switches in the metabolic regulatory network. Quantitative real-time PCR analysis confirmed that 7 differential expressed genes exhibited a positive correlation between changes at transcriptional and translational levels. The study not only will stimulate the deeper and wider antitumor study of lipopeptides but also provide a comprehensive database, which promotes an in-depth analysis of pathways and networks for complex events in lipopeptide biosynthesis and regulation and gives great help in improving the yield of bacillomycin Lb (media optimization, genetic modification, or pathway engineering).


Asunto(s)
Antineoplásicos/metabolismo , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Lipopéptidos/biosíntesis , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Fermentación , Ácido Glutámico/metabolismo , Humanos , Lipopéptidos/farmacología , Células MCF-7 , Redes y Vías Metabólicas , Ratones , Familia de Multigenes , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/farmacología , Proteómica , Sacarosa/metabolismo
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(12): 3406-9, 2015 Dec.
Artículo en Zh | MEDLINE | ID: mdl-26964219

RESUMEN

In the process of detecting ethanol content by Raman spectra, the precision of correction model prediction is affected by noise and baseline drift, which is caused by the spectral fluorescence and sample pool's background. Use ensemble empirical mode decomposition to decompose spectrum into several intrinsic mode functions, which are without aliasing. The permutation entropy is employed to judge the intrinsic mode functions. Set the intrinsic mode functions which are on behalf of noise and background to zero, and then the signal is without noise and background. In this paper combine ensemble empirical mode decomposition and permutation entropy, and apply to the Raman spectrum, which are used to detect ethanol content. At the same time compare with wavelet transform and average smoothing filter. The experimental result shows that the application of empirical mode decomposition and permutation entropy can effectively eliminate the noise and background. The precision of correction model prediction is improved. This method simply employs and doesn't need to set parameters, which has great value of application in the process of detecting ethanol content by Raman spectra.

8.
Biosens Bioelectron ; 260: 116428, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38805891

RESUMEN

To address the limitations of the CRISPR/Cas12f1 system in clinical diagnostics, which require the complex preparation of single-stranded DNA (ssDNA) or in vitro transcripts (RNA), we developed a fluorescent biosensor named PDTCTR (PAM-dependent dsDNA Target-activated Cas12f1 Trans Reporter). This innovative biosensor integrates Recombinase Polymerase Amplification (RPA) with the Cas12f_ge4.1 system, facilitating the direct detection of double-stranded DNA (dsDNA). PDTCTR represents a significant leap forward, exhibiting a detection sensitivity that is a hundredfold greater than the original Cas12f1 system. It demonstrates the capability to detect Mycoplasma pneumoniae (M. pneumoniae) and Hepatitis B virus (HBV) with excellent sensitivity of 10 copies per microliter (16.8 aM) and distinguishes single nucleotide variations (SNVs) with high precision, including the EGFR (L858R) mutations prevalent in non-small cell lung cancer (NSCLC). Clinical evaluations of PDTCTR have demonstrated its high sensitivity and specificity, with rates ranging from 93%-100% and 100%, respectively, highlighting its potential to revolutionize diagnostic approaches for infectious diseases and cancer-related SNVs.This research underscores the substantial advancements in CRISPR technology for clinical diagnostics and its promising future in early disease detection and personalized medicine.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Técnicas Biosensibles/métodos , Humanos , ARN Guía de Sistemas CRISPR-Cas/genética , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , ADN/genética , ADN/química , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/aislamiento & purificación , Proteínas Asociadas a CRISPR/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/química , Neumonía por Mycoplasma/diagnóstico
9.
Front Cell Infect Microbiol ; 12: 815436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35145928

RESUMEN

Beneficial microorganisms to control bacterial diseases has been widely used in aquaculture, Bacillus amyloliquefaciens (BaX030) as a probiotic feed additive was a commonly biological control method. Added sucrose promoted the growth of BaX030, and the yield of its antibacterial substance macrolactin A was enhanced by 1.46-fold. A total of 2055 proteins were screened through proteomics, with 143 upregulated and 307 downregulated. Differential protein expression analysis and qRT-PCR verification showed that the pentose phosphate pathway and the fatty acid synthesis pathway were upregulated, thereby providing sufficient energy and precursors for the synthesis of macrolactin A. The influence of some potential regulatory factors (SecG, LiaI, MecG and ComG) on macrolactin A was discovered. After grass carp were fed with BaX030, the abundance of probiotics (Fusobacterium, Proteobacteria, Gemmobacter) were higher than the control group, and the abundance of potential pathogenic bacteria (Planctomycetes, Aeromonas) were significantly lower than the control group. The cell and challenge experiments showed that BaX030 can significantly increase the expression of C3 and IL8 in the liver and kidney, which decreases the risk of immune organ disease. Moreover, BaX030 effectively reduced the mortality of grass carp. The results revealed that BaX030 can significantly improve the structure of the intestinal flora, enhance immunity and it is beneficial to the control of grass carp Aeromonas.


Asunto(s)
Aeromonas , Bacillus amyloliquefaciens , Carpas , Enfermedades de los Peces , Microbioma Gastrointestinal , Infecciones por Bacterias Gramnegativas , Probióticos , Aeromonas hydrophila , Animales , Antibacterianos/farmacología , Bacillus amyloliquefaciens/genética , Dieta , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Inmunidad Innata , Probióticos/farmacología
10.
Microbiol Res ; 250: 126801, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34139525

RESUMEN

Bacillus amyloliquefaciens X030 (BaX030) has broad-spectrum antibacterial activity against the fish pathogens Aeromonas hydrophila and Aeromonas veronii. To improve its antibacterial effect, BaX030 was subjected to compound mutagenesis of atmospheric and room temperature plasma (ARTP) and nitrosoguanidine (NTG). The results showed that, compared with the original strain, the production of macrolactin A and oxydifficidin in mutated strain N-11 increased to 39 % and 268 %, respectively. The re-sequencing analysis suggested that there were SNPs and InDels in the gene clusters focused on the sucrose utilization pathway, glycolysis pathway and fatty acid synthesis pathway. Scanning electron microscopy revealed that strain N-11 became thin and long. The qRT-PCR results indicated that the expression of immune factors in the liver or kidney tissue of grass carp increased after feeding with N-11. H&E staining and protection experiments also showed that the mortality and surface symptoms of grass carp infected by the two pathogens were significantly reduced. The study identified a probiotic strain with potential application value in aquaculture production and provided a new strategy for the discovery of new strains with higher antibacterial biological activity.


Asunto(s)
Aeromonas hydrophila/fisiología , Aeromonas veronii/fisiología , Bacillus amyloliquefaciens/genética , Carpas/microbiología , Interacciones Microbianas/genética , Mutación , Probióticos , Animales , Bacillus amyloliquefaciens/fisiología , Enfermedades de los Peces/microbiología
11.
Front Microbiol ; 11: 1769, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849393

RESUMEN

One of the common shortcomings with Bacillus thuringiensis (Bt) biopesticides in field application is their instability under UV irradiation. In Bt, the leuB gene encodes the 3-isopropylmalate dehydrogenase. In addition to its role in leucine biosynthesis, LeuB would be likely recruited to catalyze the dehydrogenation of malate in the final step of tricarboxylic acid cycle during sporulation. In this study, we constructed a Bt recombinant strain in which the gene leuB was deleted by using the markerless gene deletion system. The ΔleuB mutant strain showed a conditionally asporogenous phenotype while overproducing insecticidal crystal proteins and retaining its insecticidal activity well in both fermentation and LB media. Furthermore, the metabolic regulation mechanisms of LeuB was elucidated by iTRAQ-based quantitative proteomics approach. Evidences from proteomics data suggested that the inhibited supply of pyruvate (carbon source) was an important factor related to the conditionally asporogenous feature of the mutant. Consistently, the mutant regained its ability to sporulate in LB medium by adding 1% glucose or 1% sodium pyruvate. Taken together, our study demonstrated that deletion of the leuB gene resulted in delayed or completely blocked mother cell lysis, allowing the crystals encapsulated within cells, which makes this recombinant strain a good candidate for developing Bt preparations with better UV-stability.

12.
Microbiol Res ; 239: 126523, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32575022

RESUMEN

In addition to forming spores, Bacillus thuringiensis (Bt) 4.0718 can produce toxins, insecticidal crystal protein (ICP) and vegetative insecticidal protein (Vip). The Bt spoIVA was successfully knocked out by gene recombination and was shown to inhibit sporulation. The mutant strain also exhibited significantly decreased growth and crystal formation, which inhibited spore formation and partially reduced the rate of crystal synthesis. The 50 % lethal concentrations (LC50) values of Bt 4.0718, replacement, complementation and multi-copy mutant strains against the fourth larval stage of H. armigera was determined as 5.422, 6.776, 6.223 and 5.018 µg/mL, respectively. A total of 1814 proteins were identified through isobaric tags for relative and absolute protein (iTRAQ), with 41 and 54 up and downregulated proteins observed. Gene ontology enrichment analysis showed that differentially expressed proteins were primarily involved in the biological process and molecular function. Quantitative real-time PCR analysis confirmed that 9 differential expressed genes exhibited a positive correlation between changes at transcriptional and translational levels. The results of this study provide a basis for further studies of the metabolic regulatory network of spores and crystal protein formation. Moreover, they can be used to ecologically safe insecticide of farmland production because the constructed Bt spoIVA mutants did not produce spores.Provides new ideas for the targeted improvement and application of environmentally friendly spore-free strains.


Asunto(s)
Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Esporas Bacterianas/fisiología , Animales , Bacillus thuringiensis/fisiología , Proteínas Bacterianas/metabolismo , Cristalización , Técnicas de Inactivación de Genes , Insecticidas , Larva/microbiología , Biosíntesis de Proteínas
13.
Front Microbiol ; 10: 2059, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551991

RESUMEN

The small heat shock protein plays an important role in response to stresses. We wanted to investigate how Hsp20 affects sporulation and production of insecticidal crystal proteins (ICPs) in Bacillus thuringiensis (Bt) at the stationary growth phase when cells are starved. The hsp20 gene was knocked out in Bt4.0718 (wide type), which is a B. thuringiensis strain screened in our laboratory, using endonuclease I-SceI mediated unmarked gene replacement method. Deletion of Hsp20 resulted in a decrease in both sporulation and ICPs production. Bt4-Δhsp20 cells and its ICP did not have a significant difference in shape and size but entered the decline phase 2 h earlier than the Bt4.0718. In order to find the mechanism that underlies these phenotypes, we completed a proteomic study of differentially expressed proteins (DEPs). In Bt4-Δhsp20 cells, 11 DEPs were upregulated and 184 DEPs downregulated. These affected DEPs are involved in multiple metabolic pathways: (1) six DEPs (two upregulated and four downregulated) are directly related to the sporulation and ICPs synthesis; (2) supply of amino acids including amino acid synthesis and protein recycling; (3) the energy supplementation (the tricarboxylic acid cycle and glycolysis); (4) purine metabolism and mRNA stability. These results suggest that hsp20 may be critical in maintaining the homeostasis of B. thuringiensis during the production of spores and ICPs, and could provide new sight into the sporulation and ICPs formation in B. thuringiensis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA