Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Appl Toxicol ; 44(11): 1725-1741, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39030772

RESUMEN

Oleanolic acid (OA) is a naturally occurring pentacyclic triterpene compound that has been reported to cause cholestatic liver injury. However, the regulation and pathogenic role of bile acids in OA-induced development of cholestatic liver injury remains largely unclear. Farnesoid X receptor (FXR) is a metabolic nuclear receptor that plays an important role in bile acid homeostasis in the liver by regulating efflux transporters bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2). The aim of this study was to investigate the effect of OA on hepatocyte tight junction function and determine the role of FXR, BSEP, and MRP2 in the mechanism of impairment of transport of bile acids induced by OA. Both in vivo and in vitro models were used to characterize the OA-induced liver injury. The liquid chromatography-tandem mass spectrometry (LC-MS) was employed to characterize the efflux function of the transporters, and the results showed that OA caused a blockage of bile acids efflux. OA treatment resulted in decreased expression levels of the tight junction proteins zonula occludens-1 and occludin. Immunofluorescence results showed that OA treatment significantly reduced the number of bile ducts and the immunofluorescence intensity. Pretreatment with agonists of FXR and MRP2, respectively, in animal experiments attenuated OA-induced liver injury, while pretreatment with inhibitors of BSEP and MRP2 further aggravated OA-induced liver injury. These results suggest that OA inhibits FXR-mediated BSEP and MRP2, leading to impaired bile acid efflux and disruption of tight junctions between liver cells, resulting in liver damage.


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Ácidos y Sales Biliares , Hepatocitos , Ácido Oleanólico , Receptores Citoplasmáticos y Nucleares , Uniones Estrechas , Ácido Oleanólico/farmacología , Ácido Oleanólico/análogos & derivados , Animales , Receptores Citoplasmáticos y Nucleares/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Ácidos y Sales Biliares/metabolismo , Masculino , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL
2.
Toxicol Appl Pharmacol ; 467: 116509, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37028458

RESUMEN

Oleanolic acid (OA) is a pentacyclic triterpenoid compound used clinically for acute and chronic hepatitis. However, high dose or long-term use of OA causes hepatotoxicity, which limits its clinical application. Hepatic Sirtuin (SIRT1) participates in the regulation of FXR signaling and maintains hepatic metabolic homeostasis. This study was designed to determine whether SIRT1/FXR signaling pathway contributes to the hepatotoxicity caused by OA. C57BL/6J mice were administered with OA for 4 consecutive days to induce hepatotoxicity. The results showed that OA suppressed the expression of FXR and its downstream targets CYP7A1, CYP8B1, BSEP and MRP2 at both mRNA and protein levels, breaking the homeostasis of bile acid leading to hepatotoxicity. However, treatment with FXR agonist GW4064 noticeably attenuated hepatotoxicity caused by OA. Furthermore, it was found that OA inhibited protein expression of SIRT1. Activation of SIRT1 by its agonist SRT1720 significantly improved OA-induced hepatotoxicity. Meanwhile, SRT1720 significantly reduced the inhibition of protein expression of FXR and FXR-downstream proteins. These results suggested that OA may cause hepatotoxicity through SIRT1 dependent suppression of FXR signaling pathway. In vitro experiments confirmed that OA suppressed protein expressions of FXR and its targets through inhibition of SIRT1. It was further revealed that silencing of HNF1α with siRNA significantly weakened regulatory effects of SIRT1 on the expression of FXR as well as its target genes. In conclusion, our study reveals that SIRT1/FXR pathway is crucial in OA-induced hepatotoxicity. Activation of SIRT1/HNF1α/FXR axis may represent a novel therapeutic target for ameliorating OA and other herb-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Ácido Oleanólico , Sirtuinas , Ratones , Animales , Sirtuina 1/genética , Sirtuina 1/metabolismo , Ácido Oleanólico/farmacología , Sirtuinas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Ratones Endogámicos C57BL , Hígado , Transducción de Señal , Ácidos y Sales Biliares/metabolismo
3.
J Appl Toxicol ; 43(8): 1201-1213, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36846903

RESUMEN

Natural pentacyclic triterpenoid oleanolic acid (OA) is used as an over-the-counter drug for acute and chronic hepatitis. However, clinical use of OA-containing herbal medicines has been reported to cause cholestasis, and the specific mechanism is unknown. The purpose of this study was to explore how OA causes cholestatic liver injury via the AMP-activated protein kinase (AMPK)-farnesoid X receptor (FXR) pathway. In animal experiments, it was found that OA treatment activated AMPK and decreased FXR and bile acid efflux transport proteins expression. When intervened with the specific inhibitor Compound C (CC), it was observed that AMPK activation was inhibited, the reduction of FXR and bile acid efflux transport protein expression was effectively alleviated, serum biochemical indicators were significantly reduced, and liver pathological damage brought about by OA was effectively ameliorated. In addition, OA was found to downregulate the expression of FXR and bile acid efflux transport proteins by activating the ERK1/2-LKB1-AMPK pathway in cellular experiments. The ERK1/2 inhibitor U0126 was used to pretreat primary hepatocytes, and this drastically reduced the phosphorylation levels of LKB1 and AMPK. The inhibition effects of OA on FXR and bile acid efflux transport proteins were also effectively alleviated after pretreatment with CC. In addition, OA-induced downregulation of FXR gene and protein expression levels was significantly prevented after silencing AMPKα1 expression in AML12 cells. Our study demonstrated that OA inhibited FXR and bile acid efflux transporters through the activation of AMPK, thus leading to cholestatic liver injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Colestasis , Hepatopatías , Ácido Oleanólico , Animales , Ratones , Proteínas Quinasas Activadas por AMP , Ácido Oleanólico/farmacología , Ácido Oleanólico/metabolismo , Ácido Oleanólico/uso terapéutico , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Hígado , Colestasis/inducido químicamente , Hepatopatías/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/farmacología , Proteínas Portadoras/uso terapéutico , Ácidos y Sales Biliares/metabolismo , Ratones Endogámicos C57BL
4.
J Appl Toxicol ; 42(8): 1323-1336, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35128688

RESUMEN

Farnesoid X receptor (FXR) is a nuclear receptor involved in the metabolism of bile acid. However, the molecular signaling of FXR in bile acid homeostasis in cholestatic drug-induced liver injury remains unclear. Oleanolic acid (OA), a natural triterpenoid, has been reported to produce evident cholestatic liver injury in mice after a long-term use. The present study aimed to investigate the role of FXR in OA-induced cholestatic liver injury in mice using C57BL/6J (WT) mice and FXR knockout (FXR-/- ) mice. The results showed that a significant alleviation in OA-induced cholestatic liver injury was observed in FXR-/- mice as evidenced by decreases in serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase as well as reduced hepatocyte necrosis. UPLC-MS analysis of bile acids revealed that the contents of bile acids decreased significantly in liver and serum, while increased in the bile in FXR-/- mice compared with in WT mice. In addition, the mRNA expressions of hepatic transporter Bsep, bile acid synthesis enzymes Bacs and Baat, and bile acids detoxifying enzymes Cyp3a11, Cyp2b10, Ephx1, Ugt1a1, and Ugt2b5 were increased in liver tissues of FXR-/- mice treated with OA. Furthermore, the expression of membrane protein BSEP was significantly higher in livers of FXR-/- mice compared with WT mice treated with OA. These results demonstrate that knockout of FXR may alleviate OA-induced cholestatic liver injury in mice by decreasing accumulation of bile acids both in the liver and serum, increasing the export of bile acids via the bile, and by upregulation of bile acids detoxification enzymes.


Asunto(s)
Colestasis , Ácido Oleanólico , Animales , Ácidos y Sales Biliares/metabolismo , Colestasis/inducido químicamente , Colestasis/metabolismo , Cromatografía Liquida , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ácido Oleanólico/metabolismo , Ácido Oleanólico/toxicidad , Espectrometría de Masas en Tándem
5.
J Pharmacol Exp Ther ; 369(1): 121-128, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30837279

RESUMEN

Icariin (ICA), a major flavonoid extracted from the Chinese tonic herb Epimedium, exerts beneficial effects in a variety of age-dependent diseases, such as Alzheimer's disease (AD). However, the antiaging mechanisms remain unclear. The senescence-accelerated mouse-prone 8 (SAMP8) model has been used to study age-related neurodegenerative changes associated with aging and the pathogenesis of AD. Hence, the current study was designed to examine the effect of ICA on age-related cognitive decline in SAMP8 mice and explore the role of autophagy in the ICA-mediated neuroprotection. SAMP8 mice were administered with ICA starting at 5 months of age, and the treatment lasted for 3 consecutive months. Morris water maze was used to evaluate cognitive function. The senescence-associated ß-galactosidase staining was used to determine the number of senescence cells. The neuronal morphologic changes were examined via Nissl staining. The hippocampal neuronal ultrastructure was examined by transmission electron microscopy. The expression of autophagy protein was examined by Western blot. ICA-treated SAMP8 mice exhibited a robust improvement in spatial learning and memory function. Meanwhile, ICA reduced the number of senescence cells in the brains of SAMP8 mice, inhibited neuronal loss, and reversed neuronal structural changes in the hippocampi of SAMP8 mice. Moreover, ICA treatment also decreased the formation of autophagosomes in the hippocampus of SAMP8 mice, and reduced the expression of autophagy-related proteins LC3-II and p62. These results demonstrate that ICA possesses the ability to delay brain aging in SAMP8 mice, and the mechanisms are possibly mediated through the regulation of autophagy.


Asunto(s)
Envejecimiento/efectos de los fármacos , Autofagia/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Flavonoides/farmacología , Animales , Encéfalo/citología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Memoria/efectos de los fármacos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Animales
6.
Toxicol Appl Pharmacol ; 379: 114639, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31251943

RESUMEN

Sirtuin-3 (SIRT3) is a mitochondrial NAD + -dependent deacetylase that is essential in regulating mitochondrial proteins and maintaining cellular antioxidant properties. It has been reported that icariin (ICA) is neuroprotective over various neurotoxicant induced oxidative stress. This study aimed to determine whether ICA exerts neuroprotective effects on rotenone (ROT)-induced neurotoxicity through activation of SIRT3. Rats treated with ROT exhibited a marked loss of dopamine (DA) neurons and a decline in motor function, along with a decrease in protein expressions of SIRT3 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in the substantia nigra (SN). Administration of ICA significantly alleviated the loss of DA neurons, improved behavioral function, and concomitantly enhanced SIRT3 and PGC-1α expressions. The neuroprotective effect of ICA on ROT-induced cytotoxicity was further confirmed in the PC12 cell model, which showed significant improvement in the survival of ROT-treated cells with ICA pretreatment. The cytoprotective effect of ICA was abolished in ROT-treated cells by SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP), along with a resultant decrease in PGC-1α expression. In addition, knockdown of PGC-1α by siRNA suppressed ICA-mediated protective effects but did not affect SIRT3 expression, indicating the role of regulation of PGC-1α by SIRT3 in the protective action of ICA. Furthermore, we showed that ICA improved mitochondrial respiration, oxidative status, enhanced antioxidant enzyme SOD activity and GSH/GSSG ratio in cells treated with ROT. However, these protective effects of ICA on ROT-treated cells was markedly abolished by SIRT3 inhibitor 3-TYP. Our findings demonstrate that ICA exerts a neuroprotective role through upregulation of SIRT3.


Asunto(s)
Flavonoides/farmacología , Glucósidos/farmacología , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/etiología , Rotenona/toxicidad , Sirtuinas/metabolismo , Animales , Western Blotting , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/prevención & control , Estrés Oxidativo/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Células PC12/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Rotenona/antagonistas & inhibidores , Superóxido Dismutasa/metabolismo
7.
BMC Complement Altern Med ; 18(1): 34, 2018 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-29378551

RESUMEN

BACKGROUND: Icariin (ICA), a major ingredient of Epimediumbrevicornum, has various pharmacological activities including central nervous system protective functions such as the improvement of learning and memory function in mice models of Alzheimer's disease. It has been reported that ICA can promote regeneration of peripheral nerve and functional recovery. The purpose of this study was to investigate the potentiating effect of ICA on the proliferation of rat hippocampal neural stem cells, and explore the possible mechanism involved. METHODS: Primary neural stem cells were prepared from the hippocampus of newly born SD rats, and cells were cultured in special stem cell culture medium. Neural stem cells were confirmed by immunofluorescence detection of nestin, NSE and GFAP expression. The effect of ICA on the growth and proliferation of the neural stem cells was evaluated by 5-ethynyl-2-deoxyuridine (EdU) labeling of proliferating cells, and photomicrographic images of the cultured neural stem cells. Further, the mechanism of ICA-induced cell proliferation of neural stem cells was investigated by analyzing the gene and protein expression of cell cycle related genes cyclin D1 and p21. RESULTS: The present study showed that icariin promotes the growth and proliferation of neural stem cells from rat hippocampus in a dose-dependent manner. Incubation of cells with icariin resulted in significant increase in the number of stem cell spheres as well as the increased incorporation of EdU when compared with cells exposed to control vehicle. In addition, it was found that icariin-induced effect on neural stem cells is associated with increased mRNA and protein expression of cell cycle genes cyclin D1 and p21. CONCLUSIONS: This study evidently demonstrates the potentiating effect of ICA on neural stem cell growth and proliferation, which might be mediated through regulation of cell cycle gene and protein expression promoting cell cycle progression.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Flavonoides/farmacología , Hipocampo/citología , Células-Madre Neurales/efectos de los fármacos , Animales , Células Cultivadas , Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Ratas , Ratas Sprague-Dawley
8.
Environ Toxicol ; 31(12): 1808-1818, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26332274

RESUMEN

The induction of oxidative stress and damage appears to be involved in acrylonitrile induction of brain astrocytomas in rat. The present study examined the effects of dietary antioxidant supplementation on acrylonitrile-induced oxidative stress and oxidative damage in rats in vivo. To assess the effects of antioxidants on biomarkers of acrylonitrile-induced oxidative stress, female F344 rats were provided with diets containing vitamin E (0.05%), green tea polyphenols (GTP, 0.4%), N-acetyl cysteine (NAC, 0.3%), sodium selenite (0.1mg/kg), and taurine (10g/kg) for 7 days, and then co-administered with 0 and 100 ppm acrylonitrile in drinking water for 28 days. Significant increase in oxidative DNA damage in brain, evidenced by elevated 8OHdG levels, was seen in acrylonitrile-exposed rats. Supplementation with vitamin E, GTP, and NAC reduced acrylonitrile-induced oxidative DNA damage in brain while no protective effects were seen with the selenium or taurine supplementation. Acrylonitrile increased oxidative DNA damage, measured by the fpg-modified alkaline Comet assay in rat WBCs, which was reduced by supplementation of Vitamin E, GTP, NAC, selenium, and taurine. In addition to stimulation of oxidative DNA damage, acrylonitrile triggered induction of pro-inflammatory cytokines Tnfα, Il-1ß, and Ccl2, and the growth stimulatory cyclin D1 and cyclin D2 genes, which were effectively down-regulated with antioxidant treatment. Antioxidant treatment also was able to stimulate the pro-apoptotic genes Bad, Bax, and FasL and DNA repair genes Xrcc6 and Gadd45α. The results of this study support the involvement of oxidative stress in the development of acrylonitrile-induced astrocytomas and suggest that antioxidants block acrylonitrile-mediated damage through mechanisms that may involve in the suppression of inflammatory responses, inhibition of cell proliferation and stimulation of apoptosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1808-1818, 2016.


Asunto(s)
Acrilonitrilo/toxicidad , Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Carcinógenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Camellia sinensis/química , Daño del ADN/efectos de los fármacos , Suplementos Dietéticos , Femenino , Polifenoles/farmacología , Ratas Endogámicas F344 , Selenio/farmacología , Taurina/farmacología , Vitamina E/farmacología
9.
J Ethnopharmacol ; 330: 118253, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38679400

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl. (DNL) is a well-known traditional Chinese medicine that has been recorded in the Chinese Pharmacopoeia (2020 edition). The previous data showed that Dendrobium nobile Lindl. alkaloids (DNLA) protect against CCl4-induced liver damage via oxidative stress reduction and mitochondrial function improvement, yet the exact regulatory signaling pathways remain undefined. AIM OF THE STUDY: The aim of the present study was to investigate the role of necroptosis in the mode of CCl4-induced liver injury and determine whether DNLA protects against CCl4-induced acute liver injury (ALI) by inhibiting mitochondrial ROS (mtROS)-mediated necroptosis. MATERIALS AND METHODS: DNLA was extracted from DNL, and the content was determined using liquid chromatograph mass spectrometer (LC-MS). In vivo experiments were conducted in C57BL/6J mice. Animals were administrated with DNLA (20 mg/kg/day, ig) for 7 days, and then challenged with CCl4 (20 µL/kg, ip). CCl4-induced liver injury in mice was evaluated through the assessment of biochemical indicators in mouse serum and histopathological examination of hepatic tissue using hematoxylin and eosin (H&E) staining. The protein and gene expressions were determined with western blotting and quantitative real-time PCR (RT-qPCR). Reactive oxygen species (ROS) production was detected using the fluorescent probe DCFH-DA, and mitochondrial membrane potential was evaluated using a fluorescent probe JC-1. The mtROS level was assessed using a fluorescence probe MitoSOX. RESULTS: DNLA lessened CCl4-induced liver injury, evident by reduced AST and ALT levels and improved liver pathology. DNLA suppressed necroptosis by decreasing RIPK1, RIPK3, and MLKL phosphorylation, concurrently enhancing mitochondrial function. It also broke the positive feedback loop between mtROS and RIPK1/RIPK3/MLKL activation. Similar findings were observed with resveratrol and mitochondrial SOD2 overexpression, both mitigating mtROS and necroptosis. Further mechanistic studies found that DNLA inhibited the oxidation of RIPK1 and reduced its phosphorylation level, whereby lowering the phosphorylation of RIPK3 and MLKL, blocking necroptosis, and alleviating liver injury. CONCLUSIONS: This study demonstrates that DNLA inhibits the necroptosis signaling pathway by reducing mtROS mediated oxidation of RIPK1, thereby reducing the phosphorylation of RIPK1, RIPK3, and MLKL, and protecting against liver injury.


Asunto(s)
Alcaloides , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas , Dendrobium , Ratones Endogámicos C57BL , Necroptosis , Especies Reactivas de Oxígeno , Animales , Dendrobium/química , Especies Reactivas de Oxígeno/metabolismo , Necroptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Masculino , Ratones , Tetracloruro de Carbono/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo
10.
Int J Biol Macromol ; 280(Pt 4): 136087, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341326

RESUMEN

The disappearance of the protective barrier after skin injury leads to the overproduction of reactive oxygen species (ROS) in response to various stimuli. Oxidative stress is one of the most important causes of delayed wound healing, leading to negative outcomes, such as excessive inflammatory response and impaired angiogenesis. In this study, we used microfluidic technology to integrate Prussian blue nanozymes and vascular endothelial growth factor and constructed multifunctional microspheres that improved local oxidative stress. In order to enhance the adhesion of the microspheres on the wound surface and prolong the release of the drug, we coated them with dopamine, ensuring uniform encapsulation on their surface. The microspheres adhered well to the wound surface and promoted wound healing by scavenging ROS, reducing the inflammatory response, and promoting angiogenesis. This strategy of integrating nanozymes and growth factors can have a synergistic effect, which is significant for wound healing.

11.
Commun Biol ; 7(1): 621, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783088

RESUMEN

Nuclear factor erythroid 2-related factor-2 (Nrf2) antioxidant signaling is involved in liver protection, but this generalization overlooks conflicting studies indicating that Nrf2 effects are not necessarily hepatoprotective. The role of Nrf2/heme oxygenase-1 (HO-1) in cholestatic liver injury (CLI) remains poorly defined. Here, we report that Nrf2/HO-1 activation exacerbates liver injury rather than exerting a protective effect in CLI. Inhibiting HO-1 or ameliorating bilirubin transport alleviates liver injury in CLI models. Nrf2 knockout confers hepatoprotection in CLI mice, whereas in non-CLI mice, Nrf2 knockout aggravates liver damage. In the CLI setting, oxidative stress activates Nrf2/HO-1, leads to bilirubin accumulation, and impairs mitochondrial function. High levels of bilirubin reciprocally upregulate the activation of Nrf2 and HO-1, while antioxidant and mitochondrial-targeted SOD2 overexpression attenuate bilirubin toxicity. The expression of Nrf2 and HO-1 is elevated in serum of patients with CLI. These results reveal an unrecognized function of Nrf2 signaling in exacerbating liver injury in cholestatic disease.


Asunto(s)
Bilirrubina , Colestasis , Hemo-Oxigenasa 1 , Ratones Noqueados , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Ratones , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Colestasis/metabolismo , Colestasis/patología , Colestasis/genética , Humanos , Masculino , Bilirrubina/metabolismo , Bilirrubina/sangre , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/lesiones , Hígado/patología , Modelos Animales de Enfermedad , Proteínas de la Membrana
12.
FEBS J ; 291(10): 2221-2241, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400523

RESUMEN

It was reported that the Wnt/ß-catenin pathway is involved in the regulation of aerobic glycolysis and that brain glycolytic dysfunction results in the development of Alzheimer's disease (AD). Icariin (ICA), an active component extracted from Epimedii Folium, has been reported to produce neuroprotective effects in multiple models of AD, but its underlying mechanism remains to be fully described. We aimed to investigate the protective effects of ICA on animal and cell models of AD and confirm whether the Wnt/ß-catenin pathway has functions in the neuroprotective function of ICA. The 3 × Tg-AD mice were treated with ICA. HT22 cells, the Aß25-35 peptide and Dickkopf-1 (DKK1) agent (a specific inhibitor of the Wnt/ß-catenin pathway) were used to further explore the underlying mechanism of ICA that produces anti-AD effects. Behavioral examination, western blotting assay, staining analysis, biochemical test, and lactate dehydrogenase (LDH) assays were applied. We first demonstrated that ICA significantly improved cognitive function and autonomous behavior, reduced neuronal damage, and reversed the protein levels and activities of glycolytic key enzymes, and expression of protein molecules of the canonical Wnt signaling pathway, in 3 × Tg-AD mice back to wild-type levels. Next, we further found that ICA increased cell viability and effectively improved the dysfunctional glycolysis in HT22 cells injured by Aß25-35. However, when canonical Wnt signaling was inhibited by DKK1, the above effects of ICA on glycolysis were abolished. In summary, ICA exerts neuroprotective effects in 3 × Tg-AD animals and AD cellular models by enhancing the function of glycolysis through activation of the Wnt/ß-catenin pathway.


Asunto(s)
Enfermedad de Alzheimer , Flavonoides , Glucólisis , Ratones Transgénicos , Vía de Señalización Wnt , Animales , Masculino , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Modelos Animales de Enfermedad , Flavonoides/farmacología , Glucólisis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
13.
J Neurochem ; 124(1): 147-57, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23106139

RESUMEN

Aluminum (Al(3+)) is the most prevalent metal in the earth's crust and is a known human neurotoxicant. Al(3+) has been shown to accumulate in the substantia nigra of patients with Parkinson's disease (PD), and epidemiological studies suggest correlations between Al(3+) exposure and the propensity to develop both PD and the amyloid plaque-associated disorder Alzheimer's disease (AD). Although Al(3+) exposures have been associated with the development of the most common neurodegenerative disorders, the molecular mechanism involved in Al(3+) transport in neurons and subsequent cellular death has remained elusive. In this study, we show that a brief exposure to Al(3+) decreases mitochondrial membrane potential and cellular ATP levels, and confers dopamine (DA) neuron degeneration in the genetically tractable nematode Caenorhabditis elegans (C. elegans). Al(3+) exposure also exacerbates DA neuronal death conferred by the human PD-associated protein α-synuclein. DA neurodegeneration is dependent on SMF-3, a homologue to the human divalent metal transporter (DMT-1), as a functional null mutation partially inhibits the cell death. We also show that SMF-3 is expressed in DA neurons, Al(3+) exposure results in a significant decrease in protein levels, and the neurodegeneration is partially dependent on the PD-associated transcription factor Nrf2/SKN-1 and caspase Apaf1/CED-4. Furthermore, we provide evidence that the deletion of SMF-3 confers Al(3+) resistance due to sequestration of Al(3+) into an intracellular compartment. This study describes a novel model for Al(3+)-induced DA neurodegeneration and provides the first molecular evidence of an animal Al(3+) transporter.


Asunto(s)
Aluminio/toxicidad , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte de Catión/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Adenosina Trifosfato/metabolismo , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/farmacología , Proteínas de Unión al Calcio/farmacología , Proteínas de Unión al ADN/farmacología , Humanos , Espectrometría de Masas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Factores de Transcripción/farmacología , Tirosina 3-Monooxigenasa/metabolismo
14.
Biomed Pharmacother ; 157: 114043, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36462312

RESUMEN

Dendrobium is a traditional medicinal plant, which has a variety of clinical applications in China. It has been reported that Dendrobium contains various bioactive components, mainly including polysaccharides and alkaloids. Previous studies have shown that Dendrobium has pharmacological activities including antiviral, anti-inflammatory, and antioxidant effects, as well as immune regulation. Particularly, the anti-aging functions and neuroprotective effects of Dendrobium have been well characterized in a wide array of cell and animal models. In recent years, the effect of Dendrobium on the liver has emerged as a new direction to explore its therapeutic benefits and has received more and more attention. This review is focused on the beneficial effects of Dendrobium on liver toxicity and various liver disorders, which presumably are attributed to a consequence of an array of modes of action due to its multiple bioactive components, and largely lack mechanistic and pharmacokinetic characterization. A particular emphasis is placed on the potential action mechanisms related to Dendrobium's liver protection. Research perspectives in regard to the potential therapeutic application for Dendrobium are also discussed in this review.


Asunto(s)
Alcaloides , Dendrobium , Plantas Medicinales , Animales , Polisacáridos/farmacología , Hígado
15.
Mol Neurobiol ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38087172

RESUMEN

Mitochondrial dysfunction is critically involved in the degeneration of dopamine (DA) neurons in the substantia nigra, a common pathological feature of Parkinson's disease (PD). Previous studies have demonstrated that the NAD+-dependent acetylase Sirtuin 3 (SIRT3) participates in maintaining mitochondrial function and is downregulated in aging-related neurodegenerative disorders. The exact mechanism of action of SIRT3 on mitochondrial bioenergetics in PD pathogenesis, however, has not been fully described. In this study, we investigated the regulatory role of SIRT3-mediated deacetylation of mitochondrial complex II (succinate dehydrogenase) subunit A (SDHA) and its effect on neuronal cell survival in rotenone (ROT)-induced rat and differentiated MN9D cell models. The results revealed that SIRT3 activity was suppressed in both in vivo and in vitro PD models. Accompanying this downregulation of SIRT3 was the hyperacetylation of SDHA, impaired activity of mitochondrial complex II, and decreased ATP production. It was found that the inhibition of SIRT3 activity was attributed to a reduction in the NAD+/NADH ratio caused by ROT-induced inhibition of mitochondrial complex I. Activation of SIRT3 by icariin and honokiol inhibited SDHA hyperacetylation and increased complex II activity, leading to increased ATP production and protection against ROT-induced neuronal damage. Furthermore, overexpression of SDHA also exerted potent protective benefits in cells treated with ROT. In addition, treatment of MN9D cells with the NAD+ precursor nicotinamide mononucleotide increased SIRT3 activity and complex II activity and promoted the survival of cells exposed to ROT. These findings unravel a regulatory SIRT3-SDHA axis, which may be closely related to PD pathology. Bioenergetic rescue through SIRT3 activation-dependent improvement of mitochondrial complex II activity may provide an effective strategy for protection from neurodegeneration.

16.
Front Aging Neurosci ; 15: 1218267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744386

RESUMEN

Objective: To investigate the mechanism of RNA-binding protein hnRNP A1 in mouse hippocampal neurons (HT22) on glycolysis. Methods: RIP and CLIP-qPCR were performed by HT22 in vitro to observe the mechanism of hnRNP A1 regulating the expression of key proteins in glycolysis. The RNA binding domain of hnRNP A1 protein in HT22 was inhibited by VPC-80051, and the effect of hnRNP A1 on glycolysis of HT22 was observed. Lentivirus overexpression of hnRNP A1 was used to observe the effect of overexpression of hnRNP A1 on glycolysis of Aß25-35-injured HT22. The expression of hnRNP A1 in brain tissues of wild-type mice and triple-transgenic (APP/PS1/Tau) AD mice at different ages was studied by Western blot assay. Results: The results of RIP experiment showed that hnRNP A1 and HK1 mRNA were significantly bound. The results of CLIP-qPCR showed that hnRNP A1 directly bound to the 2605-2821 region of HK1 mRNA. hnRNP A1 inhibitor can down-regulate the expression of HK1 mRNA and HK1 protein in HT22 cells. Overexpression of hnRNP A1 can significantly reduce the toxic effect of Aß25-35 on neurons via the hnRNP A1/HK1/ pyruvate pathway. In addition, inhibition of hnRNP A1 binding to amyloid precursor protein (APP) RNA was found to increase Aß expression, while Aß25-35 also down-regulated hnRNP A1 expression by enhancing phosphorylation of p38 MAPK in HT22. They interact to form bidirectional regulation, further down-regulating the expression of hnRNP A1, and ultimately aggravating glycolytic dysfunction. Protein immunoblotting showed that hnRNP A1 decreased with age in mouse brain tissue, and the decrease was greater in AD mice, suggesting that the decrease of hnRNP A1 may be a predisposed factor in the pathogenesis of AD.

17.
Neural Regen Res ; 18(1): 183-188, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35799540

RESUMEN

Icariin, a major prenylated flavonoid found in Epimedium spp., is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer's disease. In this study, we investigated the neuroprotective mechanism of icariin in an APP/PS1/Tau triple-transgenic mouse model of Alzheimer's disease. We performed behavioral tests, pathological examination, and western blot assay, and found that memory deficits of the model mice were obviously improved, neuronal and synaptic damage in the cerebral cortex was substantially mitigated, and amyloid-ß accumulation and tau hyperphosphorylation were considerably reduced after 5 months of intragastric administration of icariin at a dose of 60 mg/kg body weight per day. Furthermore, deficits of proteins in the insulin signaling pathway and their phosphorylation levels were significantly reversed, including the insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3-kinase, protein kinase B, and glycogen synthase kinase 3ß, and the levels of glucose transporter 1 and 3 were markedly increased. These findings suggest that icariin can improve learning and memory impairments in the mouse model of Alzheimer's disease by regulating brain insulin signaling and glucose transporters, which lays the foundation for potential clinical application of icariin in the prevention and treatment of Alzheimer's disease.

18.
Biomed Pharmacother ; 147: 112642, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35078094

RESUMEN

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among all types of diseases in the world, affecting many millions of individuals every year. CVD includes hypertension, atherosclerosis, pulmonary hypertension, heart failure, cardiomyopathy, coronary heart disease, etc., which are involved in complex etiology, pathogenesis and many risk factors. Modern pharmacological studies have revealed that Epimedium possesses a variety of beneficial effects in regulating cardiovascular inflammation and other biological activities, which provides a therapeutic value for the prevention and treatment of these cardiovascular diseases. In this review, we discuss the cardiovascular protective effects of icariin, an active component from Epimedium, and its metabolites. We summarize a range of studies showing that the modes of action of icariin on CVD relate to its inhibition of myocardial apoptosis and prevention of inflammation on endothelial cell injury, emphasizing the multiple effects of icariin and its metabolites in the repair of common heart failure and myocardial infarction, as well as the formation of neointima. In particular, an emphasis is placed on the discussion of the action mechanism of icariin in combination with new advances in the understanding of the pathology of CVD with potential application of icariin in the treatment of this human disorder.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Epimedium/química , Flavonoides/farmacología , Fitoquímicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Flavonoides/farmacocinética , Humanos , Mediadores de Inflamación/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Neovascularización Patológica/patología , Calcificación Vascular/patología
19.
Huan Jing Ke Xue ; 43(11): 4876-4887, 2022 Nov 08.
Artículo en Zh | MEDLINE | ID: mdl-36437060

RESUMEN

China is one of the largest rice producers in the world, and rice production plays an important role in food security. Currently, arsenic pollution in paddy soils is one of most serious soil pollutions in China. Since paddy soils are maintained in a flooding anoxic condition for long periods, the rate and extent of arsenic transformation processes governed by microbial activities are stronger than that of chemical processes. Thus, understanding the key processes and relating mechanisms of microbial arsenic fixation in paddy soils will provide a theoretical basis for controlling arsenic pollution in paddy soils. In this study, based on a comprehensive analysis of arsenic migration in paddy soils and relating influencing factors, two important pathways relating to As(Ⅲ) fixation through microbial activities were illustrated:microbial CFe(Ⅱ) oxidation coupled with As(Ⅲ) fixation (indirect process) and direct fixation through microbial As(Ⅲ) oxidation (direct process). Additionally, the influences of speciation and the distribution of nitrogen in paddy soils to the processes of microbial arsenic fixations were discussed and by extension, the expressions of key genes and metabolic mechanisms relating to microbial arsenic fixation and nitrogen transformation. Finally, the recent advances in microbial remediation used to control arsenic pollution in paddy soils were summarized, and relating future perspectives targeting microbial remediation were proposed.


Asunto(s)
Arsénico , Suelo , Nitrógeno , Inundaciones , Clima
20.
Biomedicines ; 10(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36359319

RESUMEN

Objective: To investigate the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) against chronic alcoholic liver injury. C57BL/6J mice were fed with the Lieber−DeCarli alcohol diet to induce chronic alcoholic liver injury. DNLA (20 mg/kg/day) was gavaged along with the alcohol diet for 28 days. Liver injury was evaluated by serum enzymes. Triglyceride levels, histopathology, and transcriptome changes were examined by RNA-Seq and qPCR. DNLA decreased serum triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were ameliorated by DNLA, as evidenced by H&E and Oil-red O staining. DNLA brought the alcohol-induced aberrant gene expression pattern towards normal. Alcohol induced 787 differentially expressed genes (padj < 0.01). DNLA induced 280 differentially expressed genes to a much less extent. Ingenuity pathway analysis showed that DNLA ameliorated alcohol-induced oxidative stress and xenobiotic metabolism disruption. qPCR verified that DNLA alleviated over-activation of Cyp2a4, Cyp2b10, and Abcc4; attenuated oxidative stress (Hmox1, Gstm3, Nupr1), reduced the expression of Nrf2 genes (Nqo1, Gclc, Vldlr); and rescued some metabolic genes (Insig1, Xbp1, Socs3, Slc10a2). In conclusion, DNLA was effective against alcohol-induced fatty liver disease, and the protection may be attributed to alleviated oxidative stress and restored metabolism homeostasis, probably through modulating nuclear receptor CAR-, PXR-, and Nrf2-mediated gene expression pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA