Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 276: 116317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615641

RESUMEN

We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.


Asunto(s)
ADN Mitocondrial , Hepatocitos , Estrés Oxidativo , Receptor Toll-Like 9 , Tricloroetileno , Animales , Ratones , Hepatocitos/efectos de los fármacos , Tricloroetileno/toxicidad , Receptor Toll-Like 9/metabolismo , Estrés Oxidativo/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Células RAW 264.7 , Enfermedad Hepática Inducida por Sustancias y Drogas , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
2.
Toxicol Ind Health ; 39(9): 515-527, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37449946

RESUMEN

Trichloroethylene (TCE) is a metal detergent commonly used in industry that can enter the human body through the respiratory tract and skin, causing occupational medicamentosa-like dermatitis due to TCE (OMDT) and multiple organ damage, including liver failure. However, the pathogenesis of liver injury remains unclear. Kupffer cells (KCs) are important tissue macrophages in the body because the polarization of KCs plays a crucial role in immune-mediated liver injury. However, the mechanism of KCs polarization in TCE-induced immune liver injury has not been thoroughly elucidated. In this study, we investigated the effect of TCE-induced KCs polarization on liver function and signal transduction pathways using the TCE sensitization model developed by our group. BALB/c mouse skin was exposed to TCE for sensitization, and an increase in the expression of M1 macrophage-specific markers (CD16/CD32, iNOS), M1 macrophage-specific cytokines IL-1ß, and IFN-γ, P-JAK-1 and P-STAT1 levels were also found to be dramatically increased. When using low doses of gadolinium trichloride (GdCl3), the expression of these proteins and mRNA was significantly reduced. This phenomenon indicates that GdCl3 blocks TCE-induced polarization of KCs and suggests that the IFN-γ/STAT1 signaling pathway may be involved in the polarization process of KCs. These findings clarify the relationship between the polarization of KCs and immune liver injury and highlight the importance of further study of immune-mediated liver injury in TCE-sensitized mice.


Asunto(s)
Tricloroetileno , Humanos , Animales , Ratones , Tricloroetileno/toxicidad , Macrófagos del Hígado/metabolismo , Hígado , Transducción de Señal , Citocinas/metabolismo , Ratones Endogámicos BALB C , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA