RESUMEN
Inferferon-gamma (LFN-γ) exerts anti-tumor effects, but there is currently no reliable and comprehensive study on prognostic function of IFN-γ-related genes in liver cancer. In this study, IFN-γ-related differentially expressed genes (DEGs) in liver cancer were identified through GO/KEGG databases and open-access literature. Based on these genes, individuals with liver cancer were clustered. A prognostic model was built based on the intersection genes between differential genes in clusters and in liver cancer. Then, model predictive performance was analyzed and validated in GEO dataset. Regression analysis was fulfilled on the model, and a nomogram was utilized to evaluate model ability as an independent prognostic factor and its clinical application value. An immune-related analysis was conducted on both the H- and L-groups, with an additional investigation into link of model genes to drug sensitivity. Significant differential expression of IFN-γ-related genes was observed between the liver cancer and control groups. Subsequently, individuals with liver cancer were classified into two subtypes based on these genes, which displayed a notable difference in survival between the two subtypes. A 10-gene liver cancer prognostic model was constructed, with good prognostic performance and was an independent prognosticator for patient analysis. L-group patients possessed higher immune infiltration levels, immune checkpoint expression levels, and immunophenoscore, as well as lower TIDE scores. Drugs that had high correlations with the feature genes included SPANXB1: PF-04217903, SGX-523, MMP1: PF-04217903, DUSP13: Imatinib, TFF1: KHK-Indazole, and Fulvestrant. We built a 10-gene liver cancer prognostic model. It was found that L-group patients were more suitable for immunotherapy. This study provided valuable information on the prognosis of liver cancer.
Asunto(s)
Interferón gamma , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Pronóstico , Interferón gamma/genética , Regulación Neoplásica de la Expresión Génica , NomogramasRESUMEN
BACKGROUND: Ubiquitin Specific Peptidase 28 (USP28), as a member of the DUBs family, has been reported to regulate the occurrence and development of some tumors, but its oncogenic role in tumor immunity is still unknown. METHODS: The comprehensive view of USP28 expression in tumor and normal samples was obtained from public databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE). We analyzed the genomic alterations of USP28 in various cancers using the cBioPortal dataset. Besides, gene set enrichment analysis was used to analyze the associated cancer hallmarks with USP28 expression, and TIMER2.0 was taken to investigate the immune cell infiltrations related to the USP28 level. RESULTS: USP28 is highly expressed in most tumors and has prognostic value across various cancer types. Moreover, a significant correlation exists between USP28 and immune regulators, clinical staging, checkpoint inhibitor response, MSI, TMB, CNV, MMR defects, and DNA methylation. Additionally, USP28 expression is strongly associated with the infiltration levels of neutrophils and NK cells in most tumor types. One of the most significant findings of our study was that USP28 could serve as a significant predictor of anti-CTLA4 therapy response in melanoma patients. Additionally, our molecular biology experiments validated that the knockdown of USP28 substantially reduced the proliferative and invasive abilities of the HCC cell lines. CONCLUSIONS: Our study suggests that USP28 could potentially serve as a biomarker for cancer immunologic infiltration and poor prognosis, with potential applications in developing novel cancer treatment strategies.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Pronóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Línea Celular , Proteasas Ubiquitina-Específicas , Ubiquitina TiolesterasaRESUMEN
BACKGROUND: VRK1 is a member of the vaccinia-related kinase (VRK) family of serine/threonine protein kinases, which is related to the occurrence and development of malignant tumors. The expression pattern, predictive value, and biological function of VRK1 in various cancers remain largely elusive and warrant further investigation. METHODS: Public databases, such as TCGA, GTEx, and UCEC, were utilized to comprehensively analyze the expression of VRK1 across multiple cancer types. Prognostic significance was assessed through Univariate Cox regression and Kaplan-Meier analyses. Additionally, Spearman's correlation analysis was employed to explore the potential associations between VRK1 expression and various factors, including tumor microenvironment scores, immune cell infiltration, and immune-related genes. Moreover, to validate the findings, differential expression of VRK1 in HCC tissues and cell lines was further confirmed using qPCR, Western blot, and immunohistochemistry techniques. RESULTS: The upregulation of VRK1 was observed in most cancer types, and was associated with worse prognosis in ACC, KICH, KIRP, LGG, LIHC, LUAD, MESO, and PCPG. In various cancers, VRK1 expression exhibited positive correlations with immune infiltrating cells, immune checkpoint-related genes, TMB, and MSI. Furthermore, the promoter methylation status of VRK1 varied across different tumor types, and this variation was associated with patient prognosis in certain cancers. In our experimental analyses, we observed significantly elevated expression of VRK1 in both HCC tissues and HCC cells. Functionally, we found that the downregulation of VRK1 had a profound impact on HCC cells, leading to a significant decrease in their proliferation, migration, and invasion capabilities. CONCLUSION: The expression of VRK1 exerts a notable influence on the prognosis of several tumors and exhibits a strong correlation with tumor immune infiltration. Moreover, in the context of HCC, VRK1 may act as an oncogene, actively promoting tumor progression.