Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33270815

RESUMEN

A large amount of omics data and number of bioinformatics tools has been produced. However, the methods for further exploring omics data are simple, in particular, to mine key regulatory genes, which are a priority concern in biological systems, and most of the specific functions are still unknown. First, raw data of two genotypes of melon (susceptible and resistant) were obtained by transcriptome analysis. Second, 391 transcription factors (TFs) were identified from the plant transcription factor database and cucurbit genomics database. Then, functional enrichment analysis indicated that these genes were mainly annotated in the process of transcription regulation. Third, 243 and 230 module-specific TFs were screened by weighted gene coexpression network analysis and short time series expression miner, respectively. Several TF genes, such as WRKYs and bHLHs, were regarded as key regulatory genes according to the values of significantly different modules. The coexpression network showed that these TF genes were significant correlated with resistance (R) genes, such as DRP2, RGA3, DRP1 and NB-ARC. Fourth, cis-acting element analysis illustrated that these R genes may bind to WRKY and bHLH. Finally, the expression of WRKY genes was verified by quantitative reverse transcription PCR (RT-qPCR). Phylogenetic analysis was carried out to further confirm that these TFs may play a critical role in Curcurbitaceae disease resistance. This study provides a new optimized combination strategy to explore the functions of TFs in a wide spectrum of biological processes. This strategy may also effectively predict potential relationships in the interactions of essential genes.


Asunto(s)
Cucurbitaceae , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
2.
J Proteome Res ; 21(1): 90-100, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34783559

RESUMEN

RT-PCR is the primary method to diagnose COVID-19 and is also used to monitor the disease course. This approach, however, suffers from false negatives due to RNA instability and poses a high risk to medical practitioners. Here, we investigated the potential of using serum proteomics to predict viral nucleic acid positivity during COVID-19. We analyzed the proteome of 275 inactivated serum samples from 54 out of 144 COVID-19 patients and shortlisted 42 regulated proteins in the severe group and 12 in the non-severe group. Using these regulated proteins and several key clinical indexes, including days after symptoms onset, platelet counts, and magnesium, we developed two machine learning models to predict nucleic acid positivity, with an AUC of 0.94 in severe cases and 0.89 in non-severe cases, respectively. Our data suggest the potential of using a serum protein-based machine learning model to monitor COVID-19 progression, thus complementing swab RT-PCR tests. More efforts are required to promote this approach into clinical practice since mass spectrometry-based protein measurement is not currently widely accessible in clinic.


Asunto(s)
COVID-19 , Humanos , Proteómica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Manejo de Especímenes
3.
Biochem Biophys Res Commun ; 634: 203-210, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36274333

RESUMEN

Long noncoding RNAs (lncRNAs) have attracted widespread attention because of their meaningful roles in various plant biological processes. However, the potential functions of lncRNAs in the plant-beneficial microorganism interactions have not been fully explored. Arbuscular mycorrhiza (AM) symbiosis is accompanied by the systemic induction of defense responses in the host leaves. In the present study, we globally profiled lncRNA expression and explored their potential regulatory roles in AM fungi-inoculated tomato leaves. Among 851 differentially expressed lncRNAs, a novel lncRNA (lncRNA69908) that was significantly downregulated in the leaves of AM fungi inoculated tomato, affected tomato resistance after pathogen infection. One of the competing endogenous RNA networks, lncRNA69908-sly-miR319c, was verified by using a coexpression system. Silencing of lncRNA69908 or overexpression of sly-miR319c enhanced tomato resistance to Phytophthora infestans, whereas overexpression of lncRNA69908 decreased the reactive oxygen species scavenging. As above, we speculated that lncRNA69908 may be involved in mycorrhiza-induced defense responses. Our findings can broaden the knowledge on the potential regulatory roles of ncRNAs in AM symbiosis.


Asunto(s)
Micorrizas , ARN Largo no Codificante , Solanum lycopersicum , Solanum lycopersicum/microbiología , Resistencia a la Enfermedad/genética , ARN Largo no Codificante/genética , Micorrizas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
4.
Bioinformatics ; 37(2): 273-275, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33416829

RESUMEN

SUMMARY: The rapid progresses of high-throughput sequencing technology-based omics and mass spectrometry-based proteomics, such as data-independent acquisition and its penetration to clinical studies have generated increasing number of proteomic datasets containing hundreds to thousands of samples. To analyze these quantitative proteomic datasets and other omics (e.g. transcriptomics and metabolomics) datasets more efficiently and conveniently, we present a web server-based software tool ProteomeExpert implemented in Docker, which offers various analysis tools for experimental design, data mining, interpretation and visualization of quantitative proteomic datasets. ProteomeExpert can be deployed on an operating system with Docker installed or with R language environment. AVAILABILITY AND IMPLEMENTATION: The Docker image of ProteomeExpert is freely available from https://hub.docker.com/r/lifeinfo/proteomeexpert. The source code of ProteomeExpert is also openly accessible at http://www.github.com/guomics-lab/ProteomeExpert/. In addition, a demo server is provided at https://proteomic.shinyapps.io/peserver/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Genomics ; 112(3): 2499-2509, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32044327

RESUMEN

Thaumatin-like proteins (TLPs), which belong to pathogenesis-related (PR) protein family 5 (PR5), are involved in plant host defense and various developmental processes. The functions of the TLP family have been extensively discussed in multiple organisms, whereas the detailed information of this family in melon has not been reported yet. In this study, we identified 28 TLP genes in the melon genome and a N-terminal signal peptide was found highly conserved within each member of this family. Phylogeny analysis indicated that TLPs from melon and other plant species were clustered into ten groups. Twelve segmental and seven tandem duplication gene pairs that underwent purifying selection were identified. TLP genes expressed differentially in different tissues/organs, and were significantly induced after Podosphaera xanthii infection. TLPs in breeding line MR-1 tend to express early after pathogen infection compared with cultivar Top Mark. Our study provides a comprehensive understanding of the melon TLP family and demonstrates their potential roles in disease resistance, therefore provides more reference for further research.


Asunto(s)
Cucumis melo/genética , Proteínas de Plantas/genética , Ascomicetos , Cromosomas de las Plantas , Cucumis melo/crecimiento & desarrollo , Cucumis melo/metabolismo , Duplicación de Gen , Genoma de Planta , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
6.
Plant J ; 97(5): 933-946, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472748

RESUMEN

Our previous studies indicated that tomato WRKY1 transcription factor acts as a positive regulator during tomato resistance to Phytophthora infestans. However, the molecular mechanism of WRKY1-mediated resistance regulation remains unclear. Here, we used a comparative transcriptome analysis between wild-type and WRKY1-overexpressing tomato plants to identify differentially expressed genes (DEGs) and long non-coding RNAs (DELs), and we examined long non-coding RNA (lncRNA)-gene networks. The promoter sequences of the upregulated DEGs and DELs were analyzed. Among 1073 DEGs and 199 DELs, 1 kb 5'-upstream regions of 59 DEGs and 22 DELs contain the W-box, the target sequence of the WRKY1. The results of promoter-ß-glucuronidase (GUS) fusion and yeast one-hybrid assay showed that lncRNA33732 was activated by WRKY1 through sequence-specific interactions with the W-box element in its promoter. The overexpression and silencing analysis of lncRNA33732 in tomato showed that lncRNA33732 acts as a positive regulator and enhanced tomato resistance to P. infestans by induction of the expression of respiratory burst oxidase (RBOH) and increase in the accumulation of H2 O2 . When the expression of RBOH gene was inhibited in tomato plants, H2 O2 accumulation decreased and resistance were impaired. These findings suggest that lncRNA33732 activated by WRKY1 induces RBOH expression to increase H2 O2 accumulation in early defense reaction of tomato to P. infestans attack. Our results provide insights into the WRKY1-lncRNA33732-RBOH module involved in the regulation of H2 O2 accumulation and resistance to P. infestans, as well as provide candidates to enhance broad-spectrum resistance to pathogens in tomato.


Asunto(s)
Interacciones Huésped-Patógeno , Phytophthora infestans/fisiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , ARN Largo no Codificante/genética , Solanum lycopersicum/genética , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/fisiología , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Proteínas de Plantas/genética , ARN de Planta/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Theor Appl Genet ; 133(12): 3235-3248, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33025081

RESUMEN

KEY MESSAGE: The complex interplay among sRNAs, lncRNAs and circRNAs has been implicated in plants under biotic and abiotic stresses. Here, we review current advances in our understanding of ncRNA interactions and links, which have considerable potential for improving the agronomic traits and the environmental adaptability of plants. Plants can respond to biotic or abiotic stresses. To cope with various conditions, numerous intricate molecular regulatory mechanisms have evolved in plants. Noncoding RNAs (ncRNAs) can be divided into small noncoding RNAs (sRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). Emerging evidence has demonstrated that interplay among the ncRNAs acts as a novel layer in the regulatory mechanisms, which has attracted substantial interest. Links between sRNAs can affect plant immune responses and development in synergistic or antagonistic manners. Additionally, multiple interactions between lncRNAs and sRNAs are involved in crop breeding, disease resistance and high tolerance to environmental stresses. Here, we summarize current knowledge of the interactions and links among the ncRNAs in plant responses to stresses and the methods for identifying ncRNA interactions. Furthermore, challenges and prospects for further progress in elucidating ncRNA interactions and links are highlighted.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , ARN Largo no Codificante/genética , Estrés Fisiológico , MicroARNs , Plantas , ARN Circular
8.
FASEB J ; 33(11): 11941-11958, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373855

RESUMEN

Disruptor of telomeric silencing-1 like (DOT1L) protein specifically catalyzes the methylation of histone H3 on Lys79 (H3K79) and is implicated in tumors. But its role in tissue fibrosis remains unclear. Here we demonstrated that injury to the kidney increased DOT1L expression and H3K79 dimethylation in renal tubular epithelial cells and myofibroblasts in a murine model of unilateral ureteral obstruction. Administration of EPZ5676, a highly selective inhibitor of DOT1L, attenuated renal fibrosis. Treatment with EPZ5676 or DOT1L small interfering RNA also inhibited TGF-ß1 and serum-induced activation of renal interstitial fibroblasts and epithelial-mesenchymal transition (EMT) in vitro. Moreover, blocking DOT1L abrogated injury-induced epithelial G2/M arrest; reduced expression of Snail, Twist, and Notch1; and inactivated several profibrotic signaling molecules in the injured kidney, including Smad3, epidermal growth factor receptor, platelet-derived growth factor receptor, signal transducer and activator of transcription 3, protein kinase B, and NF-κB. Conversely, DOT1L inhibition increased expression of phosphatase and tensin homolog, a protein associated with dephosphorylation of tyrosine kinase receptors, and prevented decline in levels of Klotho and Smad7, 2 renoprotective factors. Thus, our data indicate that targeting DOT1L attenuates renal fibrosis through inhibition of renal fibroblasts and EMT by suppressing activation of multiple profibrotic signaling pathways while retaining expression of renoprotective factors.-Liu, L., Zou, J., Guan, Y., Zhang, Y., Zhang, W., Zhou, X., Xiong, C., Tolbert, E., Zhao, T. C., Bayliss, G., Zhuang, S. Blocking the histone lysine 79 methyltransferase DOT1L alleviates renal fibrosis through inhibition of renal fibroblast activation and epithelial-mesenchymal transition.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibroblastos/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Riñón/efectos de los fármacos , Animales , Línea Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibrosis , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/prevención & control , Ratones Endogámicos C57BL , Interferencia de ARN , Ratas , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/prevención & control
9.
FASEB J ; 33(7): 8249-8262, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30951378

RESUMEN

In this study, we examined the effect of MC1568, a selective class IIa histone deacetylase (HDAC) inhibitor, on the development and progression of renal fibrosis in a murine model of renal fibrosis induced by unilateral ureteral obstruction (UUO). All 4 class IIa HDAC isoforms, in particular HDAC4, were up-regulated in renal epithelial cells of the injured kidney. Administration of MC1568 immediately after UUO injury reduced expression of α-smooth muscle actin (α-SMA), fibronectin, and collagen 1. MC1568 treatment or small interfering RNA-mediated silencing of HDAC4 also suppressed expression of those proteins in cultured renal epithelial cells. Mechanistically, MC1568 abrogated UUO-induced phosphorylation of Smad3, NF-κB, and up-regulation of integrin ɑVß6 in the kidney and inhibited TGF-ß1-induced responses in cultured renal epithelial cells. MC1568 also increased renal expression of klotho, bone morphogenetic protein 7, and Smad7. Moreover, delayed administration of MC1568 at 3 d after ureteral obstruction reversed the expression of α-SMA, fibronectin, and collagen 1 and increased expression of matrix metalloproteinase (MMP)-2 and -9. Collectively, these results suggest that selectively targeting class IIa HDAC isoforms (in particular HDAC4) may inhibit development and progression of renal fibrosis by suppressing activation and expression of multiple profibrotic molecules and increasing expression of antifibrotic proteins and MMPs.-Xiong, C., Guan, Y., Zhou, X., Liu, L., Zhuang, M. A., Zhang, W., Zhang, Y., Masucci, M. V., Bayliss, G., Zhao, T. C., Zhuang, S. Selective inhibition of class IIa histone deacetylases alleviates renal fibrosis.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Enfermedades Renales/enzimología , Pirroles/farmacología , Obstrucción Ureteral/enzimología , Animales , Proteína Morfogenética Ósea 7/metabolismo , Línea Celular Transformada , Fibrosis , Enfermedades Renales/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/patología
10.
Phytopathology ; 110(4): 873-880, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31876247

RESUMEN

Our previous study has indicated that a long noncoding RNA (lncRNA), lncRNA39026, can be responsive to Phytophthora infestans infection. However, the function and regulation mechanism of lncRNA39026 during tomato resistance to P. infestans are unknown. In this study, an lncRNA39026 sequence was cloned from tomato Zaofen No. 2, and this sequence contained an endogenous target mimicry for miR168a, which might suppress the expression of miR168a. LncRNA39026 was strongly downregulated at 3 h in the tomato plants infected with P. infestans, and its expression level displayed a negative correlation with the expression level of miR168a and a positive correlation with the expression levels of SlAGO1 genes (target gene of miR168a) upon P. infestans infection. Tomato plants in which lncRNA39026 was overexpressed displayed enhanced resistance to P. infestans, decreased level of miR168a, and increased level of SlAGO1, whereas the resistance was impaired, level of miR168a was increased, and level of SlAGO1 was decreased after lncRNA39026 silencing. In addition, lncRNA39026 could also induce the expression of pathogenesis-related (PR) genes, as shown by increased and decreased expression levels of PR genes in tomato plants with overexpressed and silenced lncRNA39026, respectively. The result demonstrated that lncRNA39026 might function to decoy miR168a and affect the expression of PR genes in tomato plants, increasing resistance to disease.


Asunto(s)
Phytophthora infestans , Solanum lycopersicum , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas
11.
Biochem Biophys Res Commun ; 519(2): 253-260, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31495494

RESUMEN

The exocyst, an evolutionarily conserved octomeric protein complex, has been demonstrated as an essential component for vesicle tethering during cell exocytosis, and participates in various physiological processes in the cell. Although subunits of the exocyst complex have been reported to be involved in the regulation of TGF-ß induced cancer cell migration and epithelial-mesenchymal transition (EMT), the potential function of Sec3 in these regulated processes remains unclear. Here, we show that Sec3 knockdown abolishes TGF-ß stimulated A549 lung cancer cell migration in vitro and causes defects in the regulated EMT process. In addition, we find that depletion of Sec3 significantly inhibits TGF-ß stimulated Akt phosphorylation in A549 cells, whereas the increase of Smad2 phosphorylation is unaffected. Furthermore, replenishment of an RNAi-resistant form of Sec3 is shown to restore the defects of TGF-ß induced cell migration, EMT and Akt signaling activation. In summary, our study provides evidence that Sec3 is involved in TGF-ß induced cell migration and EMT processes, presumably through the regulation of PI3K/Akt signaling activation in A549 cancer cells.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/farmacología , Proteínas de Transporte Vesicular/deficiencia , Células A549 , Movimiento Celular/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Cicatrización de Heridas/efectos de los fármacos
12.
J Transl Med ; 17(1): 72, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30845965

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) were originally characterized by the ability to differentiate into different mesenchymal lineages in vitro, and their immunomodulatory and trophic functions have recently aroused significant interest in the application of MSCs in cell-based regenerative medicine. However, a major problem in clinical practice is the replicative senescence of MSCs, which limits the cell proliferation potential of MSCs after large-scale expansion. Telomeric zinc finger-associated protein (TZAP), a novel specific telomere-binding protein, was recently found to stimulate telomere trimming and prevent excessive telomere elongation. The aim of this study was to elucidate the role of TZAP in regulating MSCs senescence, differentiation and proliferation. METHOD: Primary porcine mesenchymal stromal cells (pMSCs) were isolated from the bone marrow of Tibet minipigs by a noninvasive method in combination with frequent medium changes (FMCs). The deterioration of the pMSCs' proliferation capacity and their resultant entry into senescence were analyzed by using CCK8 and EdU incorporation assays, SA-ß-gal staining and comparisons of the expression levels of cellular senescence markers (p16INK14 and p21) in pMSC cell lines with TZAP overexpression or knockout. The effects of TZAP overexpression or knockout on the differentiation potential of pMSCs were assessed by alizarin red S staining after osteogenic induction or by oil red O staining after adipogenic induction. The effect of TZAP overexpression and the involvement of the p53 signaling pathway were evaluated by detecting changes in ARF, MDM2, P53 and P21 protein levels in pMSCs. RESULTS: TZAP levels were significantly elevated in late-passage pMSCs compared to those in early-passage pMSCs. We also observed significantly increased levels of the senescence markers p16INK4A and p21. Overexpression of TZAP reduced the differentiation potential of the cells, leading to premature senescence in early-passage pMSCs, while knockout of TZAP led to the opposite phenotype in late-passage pMSCs. Furthermore, overexpression of TZAP activated the P53 pathway (ARF-MDM2-P53-P21WAF/CDKN1A) in vitro. TZAP also downregulated the expression levels of PPARγ and Cebpα, two key modulators of adipogenesis. CONCLUSIONS: This study demonstrates that the level of TZAP is closely related to differentiation potential in pMSCs and affects cellular senescence outcomes via the p53 pathway. Therefore, attenuation of intracellular TZAP levels could be a new strategy for improving the efficiency of pMSCs in cell therapy and tissue engineering applications.


Asunto(s)
Autorrenovación de las Células , Senescencia Celular , Proteínas de Unión al ADN/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Porcinos
13.
FASEB J ; : fj201800237R, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29775417

RESUMEN

Enhancer of zeste homolog-2 (EZH2) is a methyltransferase that induces histone H3 lysine 27 trimethylation (H3K27me3) and functions as an oncogenic factor in many cancer types. Its role in renal epithelial-mesenchymal transition (EMT) remains unknown. In this study, we found that EZH2 and H3K27me3 were highly expressed in mouse kidney with unilateral ureteral obstruction and cultured mouse kidney proximal tubular (TKPT) cells undergoing EMT. Inhibition of EZH2 with 3-deazaneplanocin A (3-DZNeP) attenuated renal fibrosis, which was associated with preserving E-cadherin expression and inhibiting Vimentin up-regulation in the obstructed kidney. Treatment with 3-DZNeP or transfection of EZH2 siRNA also inhibited TGF-ß1-induced EMT of TKPT cells. Injury to the kidney or cultured TKPT cells resulted in up-regulation of Snail-l family transcriptional repressor (Snail)-1 and Twist family basic helix-loop-helix (BHLH) transcription factor (Twist)-1, which are 2 transcription factors, and down-regulation of phosphatase and tensin homolog, a protein tyrosine phosphatase associated with inhibition of PI3K-protein kinase B (AKT) signaling; EZH2 inhibition or silencing reversed all those responses. 3-DZNeP was also effective in suppressing epithelial arrest at the G2/M phase and dephosphorylating AKT and ß-catenin in vivo and in vitro. These data indicate that EZH2 activation contributes to renal EMT and fibrosis through activation of multiple signaling pathways and suggest that EZH2 has potential as a therapeutic target for treatment of renal fibrosis.-Zhou, X., Xiong, C., Tolbert, E., Zhao, T. C., Bayliss, G., Zhuang, S. Targeting histone methyltransferase enhancer of zeste homolog-2 inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis.

14.
Planta ; 248(6): 1487-1503, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30132153

RESUMEN

MAIN CONCLUSION: MYB49-overexpressing tomato plants showed significant resistance to Phytophthora infestans and tolerance to drought and salt stresses. This finding reveals the potential application of tomato MYB49 in future molecular breeding. Biotic and abiotic stresses severely reduce the productivity of tomato worldwide. Therefore, it is necessary to find key genes to simultaneously improve plant resistance to pathogens and tolerance to various abiotic stresses. In this study, based on homologous relationships with Arabidopsis R2R3-MYBs (AtMYBs) involved in responses to biotic and abiotic stresses, we identified a total of 24 R2R3-MYB transcription factors in the tomato genome. Among these tomato R2R3-MYBs, MYB49 (Solyc10g008700.1) was clustered into subgroup 11 by phylogenetic analysis, and its expression level was significantly induced after treatment with P. infestans, NaCl and PEG6000. Overexpression of MYB49 in tomato significantly enhanced the resistance of tomato to P. infestans, as evidenced by decreases in the number of necrotic cells, sizes of lesion, abundance of P. infestans, and disease index. Likewise, MYB49-overexpressing transgenic tomato plants also displayed increased tolerance to drought and salt stresses. Compared to WT plants, the accumulation of reactive oxygen species (ROS), malonaldehyde content, and relative electrolyte leakage was decreased, and peroxidase activity, superoxide dismutase activity, chlorophyll content, and photosynthetic rate were increased in MYB49-overexpressing tomato plants under P. infestans, salt or drought stress. These results suggested that tomato MYB49, as a positive regulator, could enhance the capacity to scavenge ROS, inhibit cell membrane damage and cell death, and protect chloroplasts, resulting in an improvement in resistance to P. infestans and tolerance to salt and drought stresses, and they provide a candidate gene for tomato breeding to enhance biotic stress resistance and abiotic stress tolerance.


Asunto(s)
Resistencia a la Enfermedad , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/inmunología , Solanum lycopersicum/fisiología , Deshidratación , Sequías , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Solanum lycopersicum/parasitología , Filogenia , Fitomejoramiento , Enfermedades de las Plantas/parasitología , Salinidad , Estrés Fisiológico , Agua/fisiología
15.
Fish Shellfish Immunol ; 72: 69-76, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29054825

RESUMEN

MicroRNAs (miRNAs) constitute a family of endogenous non-coding small RNAs that have been demonstrated to be the key effectors in mediating host-pathogen interactions. Additionally, high-throughput sequencing provides unexampled opportunities to identify the pathogenic mechanism underlying miRNAs. In the present study, the target genes of immune-related miRNAs (miR-31, miR-2008, miR-92a, miR-210 and miR-7) and specific miRNAs (miR-2004) in Echinodermata were predicted in silico and validated. Gene ontology (GO) analysis of the target genes of these six miRNAs were conducted to further understand the regulatory function in the host immunity of Apostichopus japonicus (A. japonicus). Among the putative target genes of the six miRNAs, various immune-related targets were annotated, such as Nephl, SEC14Ll, p105, GL2, LYS, FNIAL, mTOR, LITAF, SLC44, TLR3, Apaf-1, and CNTN4. This work will provide valuable genetic resources to understand the interaction of multiple mRNA-miRNAs and the regulation mechanism in the anti-bacterial process in the sea cucumber.


Asunto(s)
Inmunidad Innata , Stichopus/genética , Stichopus/inmunología , Transcriptoma , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Ontología de Genes , MicroARNs/genética , MicroARNs/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Clin Exp Pharmacol Physiol ; 44(3): 344-352, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27998006

RESUMEN

Oxidative stress plays an important role in atherosclerosis, a vascular disease with high morbidity and mortality. The ETS domain-containing protein ELK1 is an oxidative stress-sensitive factor modulated by the extracellular signal-regulated kinase (ERK) 1/2 pathway. However, the role of ELK1 in the prevention of atherosclerosis by pravastatin remains unclear. In the present study, male apolipoprotein E-knockout (apoE-/- ) mice fed a diet containing 1.25% cholesterol (w/w) were divided into two groups, one treated with pravastatin (80 mg/kg, 2-2.4 mg/mouse per day) for 8 weeks and the other not. Male C57BL/6J mice fed with a normal diet were used as a control group. Human umbilical vein endothelial cells (HUVEC) were cultured and treated with pravastatin (10 µmol/L) for 18 hours before testing for the presence or absence of 100 µmol/L H2 O2 (24 hours). Examination of pathological sections from mice aortas revealed that pravastatin treatment almost prevented atherosclerotic plaque formation. Pravastatin also inhibited increases in serum and aortic levels of oxidized low-density lipoprotein and aortic malondialdehyde levels and decreases in aortic reduced glutathione, and the activities of superoxide dismutase, catalase and glutathione peroxidase. H2 O2 -induced increases in reactive oxygen species in HUVECs were reversed by pravastatin by 48%. Pravastatin blocked the phosphorylation of ELK1 and ERK1/2 proteins and reduced mRNA levels of early growth response 1, a known atherogenic transcription factor upregulated by the ROS/ERK/ELK1 pathway, in mice. In conclusion, pravastatin attenuates the action of ELK1 induced by oxidative stress to prevent atherosclerosis, which is dependent partly on modulation of ERK1/2 signalling.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pravastatina/uso terapéutico , Proteína Elk-1 con Dominio ets/metabolismo , Animales , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Pravastatina/administración & dosificación
17.
J Am Soc Nephrol ; 27(7): 2092-108, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26701983

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is a methyltransferase that induces histone H3 lysine 27 trimethylation (H3K27me3) and functions as an oncogenic factor in many cancer types. However, the role of EZH2 in renal fibrogenesis remains unexplored. In this study, we found high expression of EZH2 and H3K27me3 in cultured renal fibroblasts and fibrotic kidneys from mice with unilateral ureteral obstruction and humans with CKD. Pharmacologic inhibition of EZH2 with 3-deazaneplanocin A (3-DZNeP) or GSK126 or siRNA-mediated silencing of EZH2 inhibited serum- and TGFß1-induced activation of renal interstitial fibroblasts in vitro, and 3-DZNeP administration abrogated deposition of extracellular matrix proteins and expression of α-smooth muscle actin in the obstructed kidney. Injury to the kidney enhanced Smad7 degradation, Smad3 phosphorylation, and TGFß receptor 1 expression, and 3-DZNeP administration prevented these effects. 3-DZNeP also suppressed phosphorylation of the renal EGF and PDGFß receptors and downstream signaling molecules signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2 after injury. Moreover, EZH2 inhibition increased the expression of phosphatase and tensin homolog (PTEN), a protein previously associated with dephosphorylation of tyrosine kinase receptors in the injured kidney and serum-stimulated renal interstitial fibroblasts. Finally, blocking PTEN with SF1670 largely diminished the inhibitory effect of 3-DZNeP on renal myofibroblast activation. These results uncovered the important role of EZH2 in mediating the development of renal fibrosis by downregulating expression of Smad7 and PTEN, thus activating profibrotic signaling pathways. Targeted inhibition of EZH2, therefore, could be a novel therapy for treating CKD.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/fisiología , Fibroblastos/metabolismo , Enfermedades Renales/etiología , Riñón/patología , Fosfohidrolasa PTEN/biosíntesis , Proteína smad7/biosíntesis , Animales , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Fibrosis/prevención & control , Enfermedades Renales/prevención & control , Masculino , Ratones , Factor de Crecimiento Transformador beta/fisiología
18.
Kidney Int ; 89(1): 68-81, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26444028

RESUMEN

Increased Src activity has been associated with the pathogenesis of renal tumors and some glomerular diseases, but its role in renal interstitial fibrosis remains elusive. To evaluate this, cultured renal interstitial fibroblasts (NRK-49F) were treated with PP1, a selective inhibitor of Src. This resulted in decreased expression of α-smooth muscle actin, fibronectin, and collagen I in response to serum, angiotension II, or transforming growth factor-ß1 (TGF-ß1). Silencing Src with siRNA also inhibited expression of those proteins. Furthermore, inhibition of Src activity blocked renal fibroblast proliferation. In a murine model of renal interstitial fibrosis induced by unilateral ureteral obstruction, the active form of Src (phopsho-Src Tyr416) was upregulated in both renal interstitial fibroblasts and renal tubular cells of the fibrotic kidney. Its inactivation reduced renal fibroblast activation and attenuated extracellular matrix protein deposition. Src inhibition also suppressed activation of TGF-ß1 signaling, activation of the epidermal growth factor receptor and STAT3, and reduced the number of renal epithelial cells arrested at the G2/M phase of the cell cycle after ureteral obstruction. Thus, Src is an important mediator of renal interstitial fibroblast activation and renal fibrosis, and we suggest that Src is a potential therapeutic target for treatment of chronic renal fibrosis.


Asunto(s)
Riñón/enzimología , Riñón/patología , Miofibroblastos/enzimología , Obstrucción Ureteral/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Colágeno Tipo I/metabolismo , Células Epiteliales , Receptores ErbB/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibrosis , Puntos de Control de la Fase G2 del Ciclo Celular , Silenciador del Gen , Túbulos Renales Proximales/enzimología , Túbulos Renales Proximales/patología , Puntos de Control de la Fase M del Ciclo Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/patología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , ARN Interferente Pequeño/farmacología , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Familia-src Quinasas/genética
19.
Am J Physiol Cell Physiol ; 308(6): C463-72, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25588875

RESUMEN

Activation of the purinergic P2X7 receptor (P2X7R) has been associated with the development of experimental nephritis and diabetic and hypertensive nephropathy. However, its role in acute kidney injury (AKI) remains unknown. In this study, we examined the effects of P2X7R inhibition in a murine model of ischemia-reperfusion (I/R)-induced AKI using A438079, a selective inhibitor of P2X7R. At 24 h after I/R, mice developed renal dysfunction and renal tubular damage, which was accompanied by elevated expression of P2X7R. Early administration of A438079 immediately or 6 h after the onset of reperfusion protected against renal dysfunction and attenuated kidney damage whereas delayed administration of A438079 at 24 h after restoration of perfusion had no protective effects. The protective actions of A438079 were associated with inhibition of renal tubule injury and cell death and suppression of renal expression of monocyte chemotactic protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). Moreover, I/R injury led to an increase in phosphorylation (activation) of extracellular signal-regulated kinases 1/2 in the kidney; treatment with A438079 diminished this response. Collectively, these results indicate that early P2X7R inhibition is effective against renal tubule injury and proinflammatory response after I/R injury and suggest that targeting P2X7R may be a promising therapeutic strategy for treatment of AKI.


Asunto(s)
Lesión Renal Aguda/prevención & control , Riñón/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Receptores Purinérgicos P2X7/efectos de los fármacos , Daño por Reperfusión/prevención & control , Tetrazoles/farmacología , Agentes Urológicos/farmacología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Proteínas de Fase Aguda/metabolismo , Animales , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Citoprotección , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Lipocalina 2 , Lipocalinas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Oncogénicas/metabolismo , Fosforilación , Interferencia de ARN , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección
20.
J Pharmacol Exp Ther ; 354(2): 142-51, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26022003

RESUMEN

Although activation of sirtuin-1 (SIRT1) has been shown to protect the kidney from acute injury, its role in renal fibrosis remains controversial since both inhibition and activation of SIRT1 have been reported to attenuate renal fibrosis. To resolve this conflict, we further examined the effect of SIRT1 activators on the activation of renal interstitial fibroblasts and development of renal fibrosis in vivo and in vitro. In a murine model of renal fibrosis induced by unilateral ureteral obstruction, administration of SRT1720 (N-[2-[3-(piperazin-1-ylmethyl)imidazo[2,1-b][1,3]thiazol-6-yl]phenyl]quinoxaline-2-carboxamide), a potent activator of SIRT1, accelerated deposition of collagen fibrils and increased expression of fibroblast activation markers (α-smooth muscle actin [α-SMA], collagen I, and fibronectin) in the obstructive kidney of mice. In cultured rat renal interstitial fibroblasts (NRK-49F), exposure of cells to SRT1720 or YK-3-237 (B-[2-methoxy-5-[(1E)-3-oxo-3-(3,4,5-trimethoxyphenyl)-1-propen-1-yl]phenyl]-boronic acid), another SIRT1 activator, also resulted in enhanced expression of α-SMA and fibronectin. Mechanistic studies showed that augmentation of renal fibrogenesis by SRT1720 is associated with elevated phosphorylation of epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor ß (PDGFRß). SRT1720 treatment also increased the phosphorylation of signal transducer and activator of transcription 3 and protein kinase B in the fibrotic kidney and NRK-49F cells. However, SRT1720 treatment did not affect expression of proliferating cell nuclear protein, a proliferation marker and activation of extracellular signal regulated kinase 1/2 in vitro and in vivo. These results indicate that SIRT1-activating compounds can provoke renal fibrogenesis through a mechanism involved in the activation of EGFR and PDGFR signaling pathways and suggest that long-term use of SIRT1 activators risks the development and progression of chronic kidney disease.


Asunto(s)
Fibroblastos/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Sirtuina 1/metabolismo , Animales , Células Cultivadas , Fibroblastos/patología , Fibrosis/metabolismo , Fibrosis/patología , Riñón/patología , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA