Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(3): 1383-1395, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36481932

RESUMEN

In response to stressful events, the hypothalamic-pituitary-adrenal (HPA) axis is activated, and consequently glucocorticoids are released by the adrenal gland into the blood circulation. A large body of research has illustrated that excessive glucocorticoids in the hippocampus exerts negative feedback regulation of the HPA axis through glucocorticoid receptor (GR), which is critical for the homeostasis of the HPA axis. Maternal prenatal stress causes dysfunction of the HPA axis feedback mechanism in their offspring in adulthood. Here we report that telomerase reverse transcriptase (TERT) gene knockout causes hyperactivity of the HPA axis without hippocampal GR deficiency. We found that the level of TERT in the dentate gyrus (DG) of the hippocampus during the developmental stage determines the responses of the HPA axis to stressful events in adulthood through modulating the excitability of the dentate granular cells (DGCs) rather than the expression of GR. Our study also suggests that the prenatal high level of glucocorticoids exposure-induced hypomethylation at Chr13:73764526 in the first exon of mouse Tert gene accounted for TERT deficiency in the DG and HPA axis abnormality in the adult offspring. This study reveals a novel GR-independent mechanism underlying prenatal stress-associated HPA axis impairment, providing a new angle for understanding the mechanisms for maintaining HPA axis homeostasis.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Receptores de Glucocorticoides , Femenino , Embarazo , Animales , Ratones , Sistema Hipotálamo-Hipofisario/metabolismo , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Homeostasis
2.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881345

RESUMEN

Inflammation is a complex process that usually refers to the general response of the body to the harmful stimuli of various pathogens, tissue damage, or exogenous pollutants. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defense against oxidative damage and toxicity by expressing genes related to oxidative stress response and drug detoxification. In addition to its antioxidant properties, Nrf2 is involved in many other important physiological processes, including inflammation and metabolism. Nrf2 can bind the promoters of antioxidant genes and upregulates their expressions, which alleviate oxidation-induced inflammation. Nrf2 has been shown to upregulate heme oxygenase-1 expression, which promotes NF-κB activation and is closely related with inflammation. Nrf2, as a key factor in antioxidant response, is closely related to the expressions of pro-inflammatory factors, NF-κB pathway and cell metabolism. Bioactive peptides come from a wide range of sources and have many biological functions. Increasing evidence indicates that bioactive peptides have potential anti-inflammatory activities. This article summarized the sources, absorption and utilization of bioactive peptides and their role in alleviating inflammation via Nrf2 pathway. Bioactive peptides can also regulate gut microbiota and alter metabolites, which regulates the Nrf2 pathway through novel pathway and supplement the anti-inflammatory mechanisms of bioactive peptides. This review provides a reference for further study on the anti-inflammatory effect of bioactive peptides and the development and utilization of functional foods.

3.
J Sep Sci ; 47(11): e2300917, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38819793

RESUMEN

In this work, the antioxidant components in persimmon (Diospyros kaki) leaves were separated by offline two-dimensional liquid chromatography-electrochemical detection (LC×LC-ECD) and identified by LC-tandem mass spectrometry (LC-MS/MS). A total of 33 antioxidants, mainly proanthocyanidins, and glycosides of kaempferol and quercetin, were identified. The antioxidant assays demonstrated that the fractions collected from the first-dimension LC (1D-LC) possessed considerable radical scavenging capabilities, with correlation coefficients of peak area versus radical scavenging capability of 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) being 0.9335 and 0.9116, respectively. The fingerprinting showed that 37 peaks were present in all samples. The major antioxidant components of persimmon leaves were the glycosides of kaempferol and quercetin. Finally, fourteen antioxidants were quantitatively assessed. Offline LC×LC provided high peak capacity and separation; ECD enabled specific screening and detection of antioxidant components; and MS/MS provided excellent identification capability. In this study, the combination of the three approaches was utilized to screen for antioxidant components in persimmon leaves, with satisfactory findings. In conclusion, this technique is an effective means for rapid analysis of antioxidant components and quality control of medicinal plants, achieving rapid separation of congeners and facilitating more accurate qualitative and quantitative analyses.


Asunto(s)
Antioxidantes , Diospyros , Hojas de la Planta , Espectrometría de Masas en Tándem , Diospyros/química , Espectrometría de Masas en Tándem/métodos , Hojas de la Planta/química , Antioxidantes/análisis , Antioxidantes/química , Cromatografía Liquida/métodos , Técnicas Electroquímicas , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Extractos Vegetales/análisis
4.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473801

RESUMEN

Epidermal cells are the main avenue for signal and material exchange between plants and the environment. Leaf epidermal cells primarily include pavement cells, guard cells, and trichome cells. The development and distribution of different epidermal cells are tightly regulated by a complex transcriptional regulatory network mediated by phytohormones, including jasmonic acid, and transcription factors. How the fate of leaf epidermal cells is determined, however, is still largely unknown due to the diversity of cell types and the complexity of their regulation. Here, we characterized the transcriptional profiles of epidermal cells in 3-day-old true leaves of Arabidopsis thaliana using single-cell RNA sequencing. We identified two genes encoding BASIC LEUCINE-ZIPPER (bZIP) transcription factors, namely bZIP25 and bZIP53, which are highly expressed in pavement cells and early-stage meristemoid cells. Densities of pavement cells and trichome cells were found to increase and decrease, respectively, in bzip25 and bzip53 mutants, compared with wild-type plants. This trend was more pronounced in the presence of jasmonic acid, suggesting that these transcription factors regulate the development of trichome cells and pavement cells in response to jasmonic acid.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Oxilipinas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Células Epidérmicas , Factores de Transcripción , Hojas de la Planta , Tricomas , Análisis de Secuencia de ARN , Regulación de la Expresión Génica de las Plantas
5.
Molecules ; 29(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38999085

RESUMEN

Vitex negundo has strong antioxidant activity, but its primary antioxidant components are not clear. In this study, the antioxidant components were screened by offline two-dimensional liquid chromatography coupled with electrochemical detection (2D-LC-ECD) and subsequently assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, radical scavenging capacity, and molecular docking. Various fractions were isolated from Vitex negundo leaves, and 39 antioxidant components were screened and identified. All of the fractions containing the antioxidant components exhibited certain antioxidant activity. Correlation analysis revealed a strong correlation between the response of LC-ECD and the in vitro antioxidant activity of the fractions. Molecular docking demonstrated that components with high response to LC-ECD exhibited robust interaction with antioxidant-related target proteins. The main antioxidant components of Vitex negundo leaves were isoorientin, chlorogenic acid, agnuside, cynaroside, and scutellarin. The 2D-LC-ECD combined with LC-MS/MS was rapid and effective in screening the antioxidant components in Vitex negundo leaves and could also provide technical support for the discovery of antioxidant components with different polarities and contents in other medicinal and edible plants.


Asunto(s)
Antioxidantes , Simulación del Acoplamiento Molecular , Hojas de la Planta , Espectrometría de Masas en Tándem , Vitex , Vitex/química , Hojas de la Planta/química , Espectrometría de Masas en Tándem/métodos , Antioxidantes/química , Antioxidantes/análisis , Cromatografía Liquida/métodos , Extractos Vegetales/química , Cromatografía Líquida con Espectrometría de Masas
6.
Plant J ; 110(1): 7-22, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218590

RESUMEN

The leaf veins of higher plants contain a highly specialized vascular system comprised of xylem and phloem cells that transport water, organic compounds and mineral nutrients. The development of the vascular system is controlled by phytohormones that interact with complex transcriptional regulatory networks. Before the emergence of true leaves, the cotyledons of young seedlings perform photosynthesis that provides energy for the sustainable growth and survival of seedlings. However, the mechanisms underlying the early development of leaf veins in cotyledons are still not fully understood, in part due to the complex cellular composition of this tissue. To better understand the development of leaf veins, we analyzed 14 117 single cells from 3-day-old cotyledons using single-cell RNA sequencing. Based on gene expression patterns, we identified 10 clusters of cells and traced their developmental trajectories. We discovered multiple new marker genes and developmental features of leaf veins. The transcription factor networks of some cell types indicated potential roles of CYCLING DOF FACTOR 5 (CDF5) and REPRESSOR OF GA (RGA) in the early development and function of the leaf veins in cotyledons. These new findings lay a foundation for understanding the early developmental dynamics of cotyledon veins. The mechanisms underlying the early development of leaf veins in cotyledons are still not fully understood. In this study, we comprehensively characterized the early differentiation and development of leaf veins in 3-day-old cotyledons based on single-cell transcriptome analysis. We identified the cell types and novel marker genes of leaf veins and characterized the novel regulators of leaf vein.


Asunto(s)
Cotiledón , Regulación de la Expresión Génica de las Plantas , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , ARN/metabolismo , Plantones
7.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37300491

RESUMEN

Aging-related cognitive impairment, mainly Alzheimer's disease (AD), has been widely studied. However, effective prevention and treatment methods are still lacking. In recent years, researchers have observed beneficial effects of plant-based supplements, such as flavonoids, on cognitive protection. This provides a new clue for the prevention of cognitive dysfunction. Studies have shown that dietary flavonoids have neuroprotective effects, but the mechanism is not clear. In this review, we systematically reviewed the research progress on the effects of dietary flavonoids on gut microbes and their metabolites, and concluded that flavonoids could improve cognitive function through the gut-brain axis. Flavonoids can be absorbed through the intestine, cross the blood-brain barrier, and enter the brain tissue. Flavonoids can inhibit the expression and secretion of inflammatory factors in brain tissue, reduce the damage caused by oxidative stress, clear neural damage proteins and inhibit neuronal apoptosis, thereby ameliorating age-related cognitive disorders. Future work will continue to explore the gut-brain axis and target genes regulated by flavonoids. In addition, clinical research and its mechanisms need to be further explored to provide solutions or advise for patients with cognitive impairment.

8.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870876

RESUMEN

An imbalance between energy consumption and energy expenditure causes obesity. It is characterized by increased adipose accumulation and accompanied by chronic low-grade inflammation. Many studies have suggested that the gut microbiota of the host mediates the relationship between high-fat diet consumption and the development of obesity. Diet and nutrition of the body are heavily influenced by gut microbiota. The alterations in the microbiota in the gut may have effects on the homeostasis of the host's energy levels, systemic inflammation, lipid metabolism, and insulin sensitivity. The liver is an important organ for fat metabolism and gut-liver axis play important role in the fat metabolism. Gut-liver axis is a bidirectional relationship between the gut and its microbiota and the liver. As essential plant components, lignans have been shown to have different biological functions. Accumulating evidences have suggested that lignans may have lipid-lowering properties. Lignans can regulate the level of the gut microbiota and their metabolites in the host, thereby affecting signaling pathways related to fat synthesis and metabolism. These signaling pathways can make a difference in inhibiting fat accumulation, accelerating energy metabolism, affecting appetite, and inhibiting chronic inflammation. It will provide the groundwork for future studies on the lipid-lowering impact of lignans and the creation of functional meals based on those findings.

9.
Org Biomol Chem ; 21(22): 4672-4682, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37219018

RESUMEN

Phototherapy is a promising approach for the treatment of cancers and other diseases. So far, many photosensitizers have been developed for photodynamic therapy (PDT) or photothermal therapy (PTT). However, it remains a challenge to develop a system for synergistic PDT and PTT with specific targeting and real-time fluorescence tracking. Herein, we designed a multifunctional BODIPY derivative, Lyso-BDP, for synergistic PDT and PTT against tumors. Lyso-BDP was composed of three parts: (1) the BODIPY fluorophore was selected as a theranostic core, (2) a morpholine group modified on meso-BODIPY served as a lysosome-targeting unit for enhancing the antitumor effect, and (3) N,N-diethyl-4-vinylaniline was attached to the BODIPY core to extend its wavelength to the near-infrared region. Finally, Lyso-BDP shows near-infrared absorption and emission, photosensitizing activity, lysosomal targeting, and synergistic PDT and PTT effects, and effectively kills cancer cells both in vitro and in vivo. Therefore, our study demonstrates that Lyso-BDP can serve as a promising photosensitizer in the therapy of cancer with potential clinical application prospects.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Terapia Fototérmica , Fototerapia , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
10.
Anal Biochem ; 643: 114544, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973938

RESUMEN

This work developed an electrochemical impedance spectroscopy (EIS) sensor for detection of EGFR (epidermal growth factor receptor)-overexpressing tumor cell and preliminary estimation of EGFR expression. Here, EGFR antibodies as the specific antibodies for cancer cells were conjugated on magnetic gold-decorated graphene oxide nanocomposites, which were used to capture the EGFR-overexpressing tumor cells. The magnetically responsive tumor cells were enriched and immobilized on a magnetic glassy carbon electrode (mGCE) surface, leading to increased electron-transfer resistance (Ret) utilized for determination of cells and preliminary evaluation of EGFR expression level. This strategy enables the enrichment, fixation and detection of tumor cells to be accomplished in a facile way. An excellent linearity in the range of 2.0 × 102 - 3.0 × 105 cell mL-1 with the detection limit of 152 cell mL-1 for MDA-MB-231 cells was obtained. Investigation on the expression levels of EGFR on various types of cells was conducted. MDA-MB-231 cells showed a distinctly higher EGFR expression, compared with MHCC97-L and L02 cells, providing the possibility for the EGFR-targeted therapy of the tumors. It is expected that the proposed sensor has the potential to be applied for cancer monitoring.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Nanocompuestos/química , Carbono/química , Electrodos , Receptores ErbB/biosíntesis , Receptores ErbB/metabolismo , Oro/química , Grafito/química , Humanos , Fenómenos Magnéticos , Células Tumorales Cultivadas
11.
Hum Genomics ; 15(1): 55, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419170

RESUMEN

Whether microRNAs (miRNAs) from plasma exosomes might be dysregulated in patients with depression, especially treatment-resistant depression (TRD), remains unclear, based on study of which novel biomarkers and therapeutic targets could be discovered. To this end, a small sample study was performed by isolation of plasma exosomes from patients with TRD diagnosed by Hamilton scale. In this study, 4 peripheral plasma samples from patients with TRD and 4 healthy controls were collected for extraction of plasma exosomes. Exosomal miRNAs were analyzed by miRNA sequencing, followed by image collection, expression difference analysis, target gene GO enrichment analysis, and KEGG pathway enrichment analysis. Compared with the healthy controls, 2 miRNAs in the plasma exosomes of patients with TRD showed significant differences in expression, among which has-miR-335-5p were significantly upregulated and has-miR-1292-3p were significantly downregulated. Go and KEGG analysis showed that dysregulated miRNAs affect postsynaptic density and axonogenesis as well as the signaling pathway of axon formation and cell growths. The identification of these miRNAs and their target genes may provide novel biomarkers for improving diagnosis accuracy and treatment effectiveness of TRD.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento/genética , Exosomas/genética , MicroARNs/genética , Adolescente , Adulto , Anciano , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/patología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ARN/métodos , Adulto Joven
12.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36315046

RESUMEN

Quinoa is known to be a rich source of nutrients and bioactive components. Quinoa bran, used mainly as animal feed in processing by-products, is also a potential source of bioactive ingredients being conducive to human health. The importance of nutrition and function of quinoa seed has been discussed in many studies, but the bioactive properties of quinoa bran often are overlooked. This review systemically summarized the progress in bioactive components, extraction, and functional investigations of quinoa bran. It suggests that chemically assisted electronic fractionation could be used to extract albumin from quinoa bran. Ultrasound-assisted extraction method is a very useful method for extracting phenolic acids, triterpene saponins, and flavonoids from quinoa bran. Based on in vitro and in vivo studies for biological activities, quinoa bran extract exhibits a wide range of beneficial properties, including anti-oxidant, anti-diabetes, anti-inflammation, anti-bacterial and anti-cancer functions. However, human experiments and action mechanisms need to investigate. Further exploring quinoa bran will promote its applications in functional foods, pharmaceuticals, and poultry feed in the future.

13.
Bioorg Chem ; 128: 106102, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35998519

RESUMEN

This is the first study to profile natural sesquiterpene coumarins (SCs) in Ferula bungeana, a medicinal plant of the genus Ferula in China. Eight undescribed sesquiterpene coumarins (1-8), along with six known ones (9-14) were obtained from the whole plant of F. bungeana. These unreported SCs (1-8) enriched the structural diversity of natural SCs, especially these with the hydroxy or carbonyl group at C-7' and a hydroperoxy group at C-7' or C-8'. Compounds (9-14) were reported for the first time from this plant. The in vitro anti-neuroinflammatory activity assay showed that compounds 2 and 9 showed stronger inhibitory effect on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglia, compared with positive control minocycline, and compounds 5 and 10 showed moderate inhibitory effects.


Asunto(s)
Ferula , Sesquiterpenos , Cumarinas/química , Cumarinas/farmacología , Ferula/química , Lipopolisacáridos/farmacología , Óxido Nítrico , Sesquiterpenos/química , Sesquiterpenos/farmacología
14.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563290

RESUMEN

Cotton refers to species in the genus Gossypium that bear spinnable seed coat fibers. A total of 50 species in the genus Gossypium have been described to date. Of these, only four species, viz. Gossypium, hirsutum, G. barbadense, G. arboretum, and G. herbaceum are cultivated; the rest are wild. The black dot-like structures on the surfaces of cotton organs or tissues, such as the leaves, stem, calyx, bracts, and boll surface, are called gossypol glands or pigment glands, which store terpenoid aldehydes, including gossypol. The cotton (Gossypium hirsutum) pigment gland is a distinctive structure that stores gossypol and its derivatives. It provides an ideal system for studying cell differentiation and organogenesis. However, only a few genes involved in the process of gland formation have been identified to date, and the molecular mechanisms underlying gland initiation remain unclear. The terpenoid aldehydes in the lysigenous glands of Gossypium species are important secondary phytoalexins (with gossypol being the most important) and one of the main defenses of plants against pests and diseases. Here, we review recent research on the development of gossypol glands in Gossypium species, the regulation of the terpenoid aldehyde biosynthesis pathway, discoveries from genetic engineering studies, and future research directions.


Asunto(s)
Gossypium , Gosipol , Aldehídos/metabolismo , Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Gossypium/metabolismo , Gosipol/metabolismo , Gosipol/farmacología , Organogénesis , Terpenos/metabolismo
15.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055047

RESUMEN

There are numerous exchanges of signals and materials between leaves and roots, including nitrogen, which is one of the essential nutrients for plant growth and development. In this study we identified and characterized the Chlorophyll A/B-Binding Protein (CAB) (named coe2 for CAB overexpression 2) mutant, which is defective in the development of chloroplasts and roots under normal growth conditions. The phenotype of coe2 is caused by a mutation in the Nitric Oxide Associated (NOA1) gene that is implicated in a wide range of chloroplast functions including the regulation of metabolism and signaling of nitric oxide (NO). A transcriptome analysis reveals that expression of genes involved in metabolism and lateral root development are strongly altered in coe2 seedlings compared with WT. COE2 is expressed in hypocotyls, roots, root hairs, and root caps. Both the accumulation of NO and the growth of lateral roots are enhanced in WT but not in coe2 under nitrogen limitation. These new findings suggest that COE2-dependent signaling not only coordinates gene expression but also promotes chloroplast development and function by modulating root development and absorption of nitrogen compounds.


Asunto(s)
Nitrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Clorofila A/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Desarrollo de la Planta/genética , Fenómenos Fisiológicos de las Plantas , Unión Proteica , Transducción de Señal
16.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163000

RESUMEN

As sessile organisms, plants are constantly challenged by several environmental stresses. Different kinds of stress often occur simultaneously, leading to the accumulation of reactive oxygen species (ROS) produced by respiratory burst oxidase homolog (RBOHD) and calcium fluctuation in cells. Extensive studies have revealed that flagellin sensitive 2 (FLS2) can sense the infection by pathogenic microorganisms and activate cellular immune response by regulating intracellular ROS and calcium signals, which can also be activated during plant response to abiotic stress. However, little is known about the roles of FLS2 and RBOHD in regulating abiotic stress. In this study, we found that although the fls2 mutant showed tolerance, the double mutant rbohd rbohf displayed hypersensitivity to abiotic stress, similar to its performance in response to immune stress. An analysis of the transcriptome of the fls2 mutant and rbohd rbohf double mutant revealed that phytochrome interacting factor 4 (PIF4) acted downstream of FLS2 and RBOHD to respond to the abiotic stress. Further analysis showed that both FLS2 and RBOHD regulated the response of plants to drought and salt stress by regulating the expression of PIF4. These findings revealed an FLS2-RBOHD-PIF4 module in regulating plant response to biotic and abiotic stresses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , NADPH Oxidasas/genética , Proteínas Quinasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino , Análisis de Secuencia de ARN
17.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269904

RESUMEN

As sessile organisms, plants constantly face challenges from the external environment. In order to meet these challenges and survive, plants have evolved a set of sophisticated adaptation strategies, including changes in leaf morphology and epidermal cell development. These developmental patterns are regulated by both light and hormonal signaling pathways. However, our mechanistic understanding of the role of these signaling pathways in regulating plant response to environmental stress is still very limited. By applying single-cell RNA-Seq, we determined the expression pattern of PHYTOCHROME INTERACTING FACTOR (PIF) 1, PIF3, PIF4, and PIF5 genes in leaf epidermal pavement cells (PCs) and guard cells (GCs). PCs and GCs are very sensitive to environmental stress, and our previous research suggests that these PIFs may be involved in regulating the development of PCs, GCs, and leaf morphology under environmental stress. Growth analysis showed that pif1/3/4/5 quadruple mutant maintained tolerance to drought and salt stress, and the length to width ratio of leaves and petiole length under normal growth conditions were similar to those of wild-type (WT) plants under drought and salt treatment. Analysis of the developmental patterns of PCs and GCs, and whole leaf morphology, further confirmed that these PIFs may be involved in mediating the development of epidermal cells under drought and salt stress, likely by regulating the expression of MUTE and TOO MANY MOUTHS (TMM) genes. These results provide new insights into the molecular mechanism of plant adaptation to adverse growth environments.


Asunto(s)
Proteínas de Arabidopsis , Sequías , Proteínas de Arabidopsis/genética , Epidermis/metabolismo , Regulación de la Expresión Génica de las Plantas , RNA-Seq , Estrés Salino , Estrés Fisiológico/genética
18.
Fa Yi Xue Za Zhi ; 38(1): 82-85, 2022 Feb 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-35725709

RESUMEN

OBJECTIVES: To study the relationship between water temperature and floating time of aquatic cadavers, providing a reference for more precise positioning and searching for floating corpses. METHODS: The floating model of guinea pig after drowning at 17-30 ℃ was established, and the floating times of carcasses were recorded. The collected data of 32 floating corpse cases in the Pearl River were sorted out and analyzed according to the floating time of corpses corresponding to each degree of water temperature. The relationship models between water temperature and the floating time of guinea pig carcass, and between that and the floating time of real cases were established. RESULTS: The floating time of the cadaver was negatively correlated with water temperature. The power function fitting equation of the relationship between floating time and water temperature of guinea pig carcass was y=1×1015x-10.530(R2=0.871, P<0.01), and the power function fitting equation of the relationship between corpse floating time and water temperature was y=3×106x-3.467(R2=0.802, P<0.01). CONCLUSIONS: It is found that average floating cadaver time has a power function with water temperature, which provides a reference for locating floating cadavers and establishing search models.


Asunto(s)
Ahogamiento , Agua , Animales , Cadáver , Cobayas , Cambios Post Mortem , Ríos , Temperatura
19.
Fa Yi Xue Za Zhi ; 38(1): 71-76, 2022 Feb 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-35725707

RESUMEN

OBJECTIVES: To study the phenomenon of pulmonary hypostasis in corpses of various causes of death, and to explore the potential value of this phenomenon in assisting forensic pathological diagnosis of drowning. METHODS: A total of 235 cases with clear cause of death through systematic autopsy were collected from January 2011 to June 2021 in Guangzhou. According to the location of body discovery, the cases were divided into the water body group (97 cases) and the non-water body group (138 cases), and the water body group was further divided into the water drowning group (90 cases) and the water non-drowning group (7 cases). Non-water body group was further divided into the non-water drowning group (1 case) and the non-water non-drowning group (137 cases). Three senior forensic pathologists independently reviewed autopsy photos to determine whether there was hypostasis in the lungs. The detection rate of pulmonary hypostasis was calculated. RESULTS: The detection rate of pulmonary hypostasis in the water drowning group (90 cases) was 0, and the negative rate was 100%. The detection rate of pulmonary hypostasis in the water non-drowning group (7 cases) was 100% and the negative rate was 0. The detection rate of pulmonary hypostasis in the water body group and in the non-water body group (after excluding 2 cases, 136 cases were calculated) was 7.22% and 87.50%, respectively. There were statistically significant differences in the detection rate of pulmonary hypostasis between water body group and non-water body group, and between water drowning group and water non-drowning group (P<0.05). CONCLUSIONS: The disappearance of pulmonary hypostasis can be used as a specific cadaveric sign to assist in the forensic pathological diagnosis of drowning.


Asunto(s)
Ahogamiento , Autopsia , Ahogamiento/diagnóstico , Ahogamiento/patología , Patologia Forense , Humanos , Pulmón/patología , Agua
20.
BMC Bioinformatics ; 22(1): 217, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910497

RESUMEN

BACKGROUND: lncRNA may be involved in the occurrence, metastasis, and chemical reaction of hepatocellular carcinoma (HCC) through various pathways associated with autophagy. Therefore, it is urgent to reveal more autophagy-related lncRNAs, explore these lncRNAs' clinical significance, and find new targeted treatment strategies. METHODS: The corresponding data of HCC patients and autophagy genes were obtained from the TCGA database, and the human autophagy database respectively. Based on the co-expression and Cox regression analysis to construct prognostic prediction signature. RESULTS: Finally, a signature containing seven autophagy-related lncRNAs (PRRT3-AS1, RP11-479G22.8, RP11-73M18.8, LINC01138, CTD-2510F5.4, CTC-297N7.9, RP11-324I22.4) was constructed. Based on the risk score of signature, Overall survival (OS) curves show that the OS of high-risk patients is significantly lower than that of low-risk patients (P = 2.292e-10), and the prognostic prediction accuracy of risk score (AUC = 0.786) is significantly higher than that of ALBI (0.532), child_pugh (0.573), AFP (0.5751), and AJCC_stage (0.631). Moreover, multivariate Cox analysis and Nomogram of risk score are indicated that the 1-year and 3-year survival rates of patients are obviously accuracy by the combined analysis of the risk score, child_pugh, age, M_stage, and Grade (The AUC of 1- and 3-years are 0.87, and 0.855). Remarkably, the 7 autophagy-related lncRNAs may participate in Spliceosome, Cell cycle, RNA transport, DNA replication, and mRNA surveillance pathway and be related to the biological process of RNA splicing and mRNA splicing. CONCLUSION: In conclusion, the 7 autophagy-related lncRNAs might be promising prognostic and therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Autofagia , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Niño , Preescolar , Humanos , Lactante , Neoplasias Hepáticas/genética , Pronóstico , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA