Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anim Biotechnol ; 34(4): 1261-1272, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34965845

RESUMEN

With the gradual completion of the human genome project, proteomes have gained extremely important value in the fields of human disease and biological process research. In our previous research, we performed transcriptomic analyses of longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle and conducted in-depth studies on the muscles of both species through epigenetics. However, it is unclear whether differentially expressed proteins in Kazakh cattle and Xinjiang brown cattle regulate muscle production and development. In this study, a proteomic analysis was performed on Xinjiang brown cattle and Kazakh cattle by using TMT markers, HPLC classification, LC/MS and bioinformatics analysis. A total of 13,078 peptides were identified, including 11,258 unique peptides. We identified a total of 1874 proteins, among which 1565 were quantifiable. Compared to Kazakh cattle, Xinjiang brown cattle exhibited 75 upregulated proteins and 44 downregulated proteins. These differentially expressed proteins were enriched for the functions of adrenergic signaling in cardiomyocytes, fatty acid degradation and glutathione metabolism. In our research, we found differentially expressed proteins in longissimus dorsi tissue between Kazakh cattle and Xinjiang brown cattle. We predict that these proteins regulate muscle production and development through select enriched signaling pathways. This study provides novel insights into the roles of proteomes in cattle genetics and breeding.


Asunto(s)
Proteoma , Proteómica , Humanos , Bovinos/genética , Animales , Proteoma/genética , Perfilación de la Expresión Génica/veterinaria
2.
Sensors (Basel) ; 23(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37299752

RESUMEN

The burgeoning complexity of space missions has amplified the research focus on robots that are capable of assisting astronauts in accomplishing tasks within space stations. Nevertheless, these robots grapple with substantial mobility challenges in a weightless environment. This study proposed an omnidirectional continuous movement method for a dual-arm robot, inspired by the movement patterns of astronauts within space stations. On the basis of determining the configuration of the dual-arm robot, the kinematics and dynamics model of the robot during contact and flight phases were established. Thereafter, several constraints are determined, including obstacle constraints, prohibited contact area constraints, and performance constraints. An optimization algorithm based on the artificial bee colony algorithm was proposed to optimize the trunk motion law, contact point positions between the manipulators and the inner wall, as well as the driving torques. Through the real-time control of the two manipulators, the robot is capable of achieving omnidirectional continuous movement across various inner walls with complex structures while maintaining optimal comprehensive performance. Simulation results demonstrate the correctness of this method. The method proposed in this paper provides a theoretical basis for the application of mobile robots within space stations.


Asunto(s)
Robótica , Robótica/métodos , Movimiento (Física) , Algoritmos , Simulación por Computador , Fenómenos Biomecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA