Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 25(4): 622-632, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454157

RESUMEN

The development of a vaccine specific to severe acute respiratory syndrome coronavirus 2 Omicron has been hampered due to its low immunogenicity. Here, using reverse mutagenesis, we found that a phenylalanine-to-serine mutation at position 375 (F375S) in the spike protein of Omicron to revert it to the sequence found in Delta and other ancestral strains significantly enhanced the immunogenicity of Omicron vaccines. Sequence FAPFFAF at position 371-377 in Omicron spike had a potent inhibitory effect on macrophage uptake of receptor-binding domain (RBD) nanoparticles or spike-pseudovirus particles containing this sequence. Omicron RBD enhanced binding to Siglec-9 on macrophages to impair phagocytosis and antigen presentation and promote immune evasion, which could be abrogated by the F375S mutation. A bivalent F375S Omicron RBD and Delta-RBD nanoparticle vaccine elicited potent and broad nAbs in mice, rabbits and rhesus macaques. Our research suggested that manipulation of the Siglec-9 pathway could be a promising approach to enhance vaccine response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Conejos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Macaca mulatta , Macrófagos , Nanovacunas , Fagocitosis , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
2.
Cell ; 182(3): 734-743.e5, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32643603

RESUMEN

COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. Here, we overcome this difficulty by exogenous delivery of human ACE2 with a replication-deficient adenovirus (Ad5-hACE2). Ad5-hACE2-sensitized mice developed pneumonia characterized by weight loss, severe pulmonary pathology, and high-titer virus replication in lungs. Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Pandemias/prevención & control , Neumonía Viral/patología , Neumonía Viral/prevención & control , Vacunación , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , SARS-CoV-2 , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Organismos Libres de Patógenos Específicos , Transducción Genética , Células Vero , Carga Viral , Replicación Viral
3.
Proc Natl Acad Sci U S A ; 120(4): e2202820120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652473

RESUMEN

Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.


Asunto(s)
COVID-19 , Resfriado Común , Coronavirus Humano 229E , Coronavirus Humano NL63 , Humanos , Animales , Ratones , Anciano , SARS-CoV-2 , Protección Cruzada
4.
Genome Res ; 32(2): 228-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35064006

RESUMEN

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , ARN/sangre , COVID-19/sangre , COVID-19/genética , Ácidos Nucleicos Libres de Células/sangre , Síndrome de Liberación de Citoquinas , Humanos , SARS-CoV-2
5.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059908

RESUMEN

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Humanos , COVID-19/diagnóstico , Ácidos Nucleicos Libres de Células/genética
6.
J Virol ; 96(3): e0184221, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34817197

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a beta coronavirus that emerged in 2012, causing severe pneumonia and renal failure. MERS-CoV encodes five accessory proteins. Some of them have been shown to interfere with host antiviral immune response. However, the roles of protein 8b in innate immunity and viral virulence was rarely studied. Here, we introduced individual MERS-CoV accessory protein genes into the genome of an attenuated murine coronavirus (Mouse hepatitis virus, MHV), respectively, and found accessory protein 8b could enhance viral replication in vivo and in vitro and increase the lethality of infected mice. RNA-seq analysis revealed that protein 8b could significantly inhibit type I interferon production (IFN-I) and innate immune response in mice infected with MHV expressing protein 8b. We also found that MERS-CoV protein 8b could initiate from multiple internal methionine sites and at least three protein variants were identified. Residues 1-23 of protein 8b was demonstrated to be responsible for increased virulence in vivo. In addition, the inhibitory effect on IFN-I of protein 8b might not contribute to its virulence enhancement as aa1-23 deletion did not affect IFN-I production in vitro and in vivo. Next, we also found that protein 8b was localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, which was disrupted by C-terminal region aa 88-112 deletion. This study will provide new insight into the pathogenesis of MERS-CoV infection. IMPORTANCE Multiple coronaviruses (CoV) cause severe respiratory infections and become global public health threats such as SARS-CoV, MERS-CoV, and SARS-CoV-2. Each coronavirus contains different numbers of accessory proteins which show high variability among different CoVs. Accessory proteins are demonstrated to play essential roles in pathogenesis of CoVs. MERS-CoV contains 5 accessory proteins (protein 3, 4a, 4b, 5, 8b), and deletion of all four accessory proteins (protein 3, 4a, 4b, 5), significantly affects MERS-CoV replication and pathogenesis. However, whether ORF8b also regulates MERS-CoV infection is unknown. Here, we constructed mouse hepatitis virus (MHV) recombinant virus expressing MERS-CoV protein 8b and demonstrated protein 8b could significantly enhance the virulence of MHV, which is mediated by N-terminal domain of protein 8b. This study will shed light on the understanding of pathogenesis of MERS-CoV infection.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Virus de la Hepatitis Murina/fisiología , Dominios y Motivos de Interacción de Proteínas , Proteínas Reguladoras y Accesorias Virales/genética , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Ratones , Mortalidad , Proteínas Reguladoras y Accesorias Virales/química , Tropismo Viral , Virulencia/genética , Factores de Virulencia/genética
7.
Clin Infect Dis ; 73(2): e426-e433, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32642757

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia is a newly recognized disease, and its diagnosis is primarily confirmed by routine reverse transcriptase -polymerase chain reaction (RT-PCR) detection of SARS-CoV-2. METHODS: However, we report a confirmed case of SARS-CoV-2 pneumonia with a negative routine RT-PCR. RESULTS: This case was finally diagnosed by nanopore sequencing combined with antibody of SARS-CoV-2. Simultaneously, the ORF and NP gene variations of SARS-CoV-2 were found. CONCLUSIONS: This case highlighted that false-negative results could be present in routine RT-PCR diagnosis, especially with virus variation. Currently, nanopore pathogen sequencing and antibody detection have been found to be effective in clinical diagnosis.


Asunto(s)
COVID-19 , SARS-CoV-2 , China , Humanos , ADN Polimerasa Dirigida por ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
J Virol ; 94(15)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32434886

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory disease in humans. MERS-CoV strains from early epidemic clade A and contemporary epidemic clade B have not been phenotypically characterized to compare their abilities to infect cells and mice. We isolated the clade B MERS-CoV ChinaGD01 strain from a patient infected during the South Korean MERS outbreak in 2015 and compared the phylogenetics and pathogenicity of MERS-CoV EMC/2012 (clade A) and ChinaGD01 (clade B) in vitro and in vivo Genome alignment analysis showed that most clade-specific mutations occurred in the orf1ab gene, including mutations that were predicted to be potential glycosylation sites. Minor differences in viral growth but no significant differences in plaque size or sensitivity to beta interferon (IFN-ß) were detected between these two viruses in vitro ChinaGD01 virus infection induced more weight loss and inflammatory cytokine production in human DPP4-transduced mice. Viral titers were higher in the lungs of ChinaGD01-infected mice than with EMC/2012 infection. Decreased virus-specific CD4+ and CD8+ T cell numbers were detected in the lungs of ChinaGD01-infected mice. In conclusion, MERS-CoV evolution induced changes to reshape its pathogenicity and virulence in vitro and in vivo and to evade adaptive immune response to hinder viral clearance.IMPORTANCE MERS-CoV is an important emerging pathogen and causes severe respiratory infection in humans. MERS-CoV strains from early epidemic clade A and contemporary epidemic clade B have not been phenotypically characterized to compare their abilities to infect cells and mice. In this study, we showed that a clade B virus ChinaGD01 strain caused more severe disease in mice, with delayed viral clearance, increased inflammatory cytokines, and decreased antiviral T cell responses, than the early clade A virus EMC/2012. Given the differences in pathogenicity of different clades of MERS-CoV, periodic assessment of currently circulating MERS-CoV is needed to monitor potential severity of zoonotic disease.


Asunto(s)
Infecciones por Coronavirus/virología , Genotipo , Interacciones Huésped-Patógeno , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Adulto , Animales , Modelos Animales de Enfermedad , Genoma Viral , Interacciones Huésped-Patógeno/inmunología , Humanos , Interferón Tipo I/farmacología , Masculino , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/clasificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Filogenia , ARN Viral , Linfocitos T/inmunología , Linfocitos T/metabolismo , Virulencia , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Secuenciación Completa del Genoma
9.
J Med Virol ; 93(5): 3257-3260, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33506974

RESUMEN

Previous studies have revealed a diagnostic role of pathogen-specific IgA in respiratory infections. However, co-detection of serum specific IgA for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and common respiratory pathogens remains largely unexplored. This study utilizes a protein microarray technology for simultaneous and quantitative measurements of specific IgAs for eight different respiratory pathogens including adenovirus, respiratory syncytial virus, influenza virus type A, influenza virus type B, parainfluenza virus, mycoplasma pneumoniae, chlamydia pneumoniae, and SARS-CoV-2 in serum sample of patients with coronavirus disease 2019 (COVID-19). A total of 42 patients with COVID-19 were included and categorized into severe cases (20 cases) and nonsevere cases (22 cases). The results showed that co-detection rate of specific-IgA for SARS-CoV-2 with at least one pathogen were significantly higher in severe cases than that of nonsevere cases (72.2% vs. 46.2%, p = .014). Our study indicates that co-detection of IgA antibodies for respiratory pathogens might provide diagnostic value for the clinics and also be informative for risk stratification and disease management in patients with COVID-19.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Inmunoglobulina A/sangre , SARS-CoV-2/inmunología , Adulto , Especificidad de Anticuerpos , COVID-19/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Chemistry ; 20(4): 952-6, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24281876

RESUMEN

Monitoring the in situ growth of Mn-doped ZnS quantum dots is shown to be a route to selectively detect H2S, an important endogenously produced signalling molecule. The use of Mn(2+) as a dopant resulted in orange phosphorescence, making it possible to avoid the background fluorescence from biological surroundings that can occur at other wavelengths. The choice of ZnS QDs as the host material ensured selectivity, since only sulfide can precipitate Zn(2+) and Mn(2+) from aqueous solution.


Asunto(s)
Sulfuro de Hidrógeno/sangre , Mediciones Luminiscentes/métodos , Manganeso/química , Puntos Cuánticos/química , Sulfuros/química , Compuestos de Zinc/química , Animales , Bovinos , Sulfuro de Hidrógeno/análisis , Sensibilidad y Especificidad
13.
Vaccines (Basel) ; 12(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38793729

RESUMEN

Despite significant strides in vaccine research and the availability of vaccines for many infectious diseases, the threat posed by both known and emerging infectious diseases persists. Moreover, breakthrough infections following vaccination remain a concern. Therefore, the development of novel vaccines is imperative. These vaccines must exhibit robust protective efficacy, broad-spectrum coverage, and long-lasting immunity. One promising avenue in vaccine development lies in leveraging T-cells, which play a crucial role in adaptive immunity and regulate immune responses during viral infections. T-cell recognition can target highly variable or conserved viral proteins, and memory T-cells offer the potential for durable immunity. Consequently, T-cell-based vaccines hold promise for advancing vaccine development efforts. This review delves into the latest research advancements in T-cell-based vaccines across various platforms and discusses the associated challenges.

14.
Cell Mol Immunol ; 21(2): 119-133, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38238440

RESUMEN

The COVID-19 pandemic, which was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide health crisis due to its transmissibility. SARS-CoV-2 infection results in severe respiratory illness and can lead to significant complications in affected individuals. These complications encompass symptoms such as coughing, respiratory distress, fever, infectious shock, acute respiratory distress syndrome (ARDS), and even multiple-organ failure. Animal models serve as crucial tools for investigating pathogenic mechanisms, immune responses, immune escape mechanisms, antiviral drug development, and vaccines against SARS-CoV-2. Currently, various animal models for SARS-CoV-2 infection, such as nonhuman primates (NHPs), ferrets, hamsters, and many different mouse models, have been developed. Each model possesses distinctive features and applications. In this review, we elucidate the immune response elicited by SARS-CoV-2 infection in patients and provide an overview of the characteristics of various animal models mainly used for SARS-CoV-2 infection, as well as the corresponding immune responses and applications of these models. A comparative analysis of transcriptomic alterations in the lungs from different animal models revealed that the K18-hACE2 and mouse-adapted virus mouse models exhibited the highest similarity with the deceased COVID-19 patients. Finally, we highlighted the current gaps in related research between animal model studies and clinical investigations, underscoring lingering scientific questions that demand further clarification.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Cricetinae , Humanos , Animales , Pandemias , Vacunas contra la COVID-19 , Hurones , Modelos Animales de Enfermedad
15.
Adv Sci (Weinh) ; 11(9): e2303366, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105421

RESUMEN

To combat SARS-CoV-2 variants and MERS-CoV, as well as the potential re-emergence of SARS-CoV and spillovers of sarbecoviruses, which pose a significant threat to global public health, vaccines that can confer broad-spectrum protection against betacoronaviruses (ß-CoVs) are urgently needed. A mosaic ferritin nanoparticle vaccine is developed that co-displays the spike receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 Wild-type (WT) strain and evaluated its immunogenicity and protective efficacy in mice and nonhuman primates. A low dose of 10 µg administered at a 21-day interval induced a Th1-biased immune response in mice and elicited robust cross-reactive neutralizing antibody responses against a variety of ß-CoVs, including a series of SARS-CoV-2 variants. It is also able to effectively protect against challenges of SARS-CoV, MERS-CoV, and SARS-CoV-2 variants in not only young mice but also the more vulnerable mice through induction of long-lived immunity. Together, these results suggest that this mosaic 3-RBD nanoparticle has the potential to be developed as a pan-ß-CoV vaccine.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Nanopartículas , Vacunas Virales , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus/prevención & control , SARS-CoV-2 , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Modelos Animales
16.
Virol Sin ; 39(3): 414-421, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677713

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, encodes several accessory proteins that have been shown to play crucial roles in regulating the innate immune response. However, their expressions in infected cells and immunogenicity in infected humans and mice are still not fully understood. This study utilized various techniques such as luciferase immunoprecipitation system (LIPS), immunofluorescence â€‹assay (IFA), and western â€‹blot (WB) to detect accessory protein-specific antibodies in sera of COVID-19 patients. Specific antibodies to proteins 3a, 3b, 7b, 8 and 9c can be detected by LIPS, but only protein 3a antibody was detected by IFA or WB. Antibodies against proteins 3a and 7b were only detected in ICU patients, which may serve as a marker for predicting disease progression. Further, we investigated the expression of accessory proteins in SARS-CoV-2-infected cells and identified the expressions of proteins 3a, 6, 7a, 8, and 9b. We also analyzed their ability to induce antibodies in immunized mice and found that only proteins 3a, 6, 7a, 8, 9b and 9c were able to induce measurable antibody productions, but these antibodies lacked neutralizing activities and did not protect mice from SARS-CoV-2 infection. Our findings validate the expression of SARS-CoV-2 accessory proteins and elucidate their humoral immune response, providing a basis for protein detection assays and their role in pathogenesis.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Modelos Animales de Enfermedad , Inmunidad Humoral , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Ratones , Femenino , Ratones Endogámicos BALB C , Masculino , Persona de Mediana Edad , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Adulto , Anciano
17.
Cell Rep ; 43(1): 113653, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38175758

RESUMEN

Omicron, as the emerging variant with enhanced vaccine tolerance, has sharply disrupted most therapeutic antibodies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the subgenus Sarbecovirus, members of which share high sequence similarity. Herein, we report one sarbecovirus antibody, 5817, which has broad-spectrum neutralization capacity against SARS-CoV-2 variants of concern (VOCs) and SARS-CoV, as well as related bat and pangolin viruses. 5817 can hardly compete with six classes of receptor-binding-domain-targeted antibodies grouped by structural classifications. No obvious impairment in the potency is detected against SARS-CoV-2 Omicron and subvariants. The cryoelectron microscopy (cryo-EM) structure of neutralizing antibody 5817 in complex with Omicron spike reveals a highly conserved epitope, only existing at the receptor-binding domain (RBD) open state. Prophylactic and therapeutic administration of 5817 potently protects mice from SARS-CoV-2 Beta, Delta, Omicron, and SARS-CoV infection. This study reveals a highly conserved cryptic epitope targeted by a broad sarbecovirus neutralizing antibody, which would be beneficial to meet the potential threat of pre-emergent SARS-CoV-2 VOCs.


Asunto(s)
Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Microscopía por Crioelectrón , Anticuerpos Neutralizantes , Epítopos , Anticuerpos Antivirales
18.
Adv Sci (Weinh) ; 10(22): e2300656, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37204115

RESUMEN

RNA aptamers provide useful biological probes and therapeutic agents. New methodologies to screen RNA aptamers will be valuable by complementing the traditional Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Meanwhile, repurposing clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated systems (Cas) has expanded their utility far beyond their native nuclease function. Here, CRISmers, a CRISPR/Cas-based novel screening system for RNA aptamers based on binding to a chosen protein of interest in a cellular context, is presented. Using CRISmers, aptamers are identified specifically targeting the receptor binding domain (RBD) of the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two aptamer leads enable sensitive detection and potent neutralization of SARS-CoV-2 Delta and Omicron variants in vitro. Intranasal administration of one aptamer, further modified with 2'-fluoro pyrimidines (2'-F), 2'-O-methyl purines (2'-O), and conjugation with both cholesterol and polyethylene glycol of 40 kDa (PEG40K), achieves effective prophylactic and therapeutic antiviral activity against live Omicron BA.2 variants in vivo. The study concludes by demonstrating the robustness, consistency, and potential broad utility of CRISmers using two newly identified aptamers but switching CRISPR, selection marker, and host species.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Humanos , Aptámeros de Nucleótidos/genética , SARS-CoV-2/genética , Sistemas CRISPR-Cas/genética , COVID-19/genética
19.
Front Immunol ; 14: 1052141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251406

RESUMEN

Background: The global outbreak of COVID-19, and the limited availability of clinical treatments, forced researchers around the world to search for the pathogenesis and potential treatments. Understanding the pathogenesis of SARS-CoV-2 is crucial to respond better to the current coronavirus disease 2019 (COVID-19) pandemic. Methods: We collected sputum samples from 20 COVID-19 patients and healthy controls. Transmission electron microscopy was used to observe the morphology of SARS-CoV-2. Extracellular vesicles (EVs) were isolated from sputum and the supernatant of VeroE6 cells, and were characterized by transmission electron microscopy, nanoparticle tracking analysis and Western-Blotting. Furthermore, a proximity barcoding assay was used to investigate immune-related proteins in single EV, and the relationship between EVs and SARS-CoV-2. Result: Transmission electron microscopy images of SARS-COV-2 virus reveal EV-like vesicles around the virion, and western blot analysis of EVs extracted from the supernatant of SARS-COV-2-infected VeroE6 cells showed that they expressed SARS-COV-2 protein. These EVs have the infectivity of SARS-COV-2, and the addition can cause the infection and damage of normal VeroE6 cells. In addition, EVs derived from the sputum of patients infected with SARS-COV-2 expressed high levels of IL6 and TGF-ß, which correlated strongly with expression of the SARS-CoV-2 N protein. Among 40 EV subpopulations identified, 18 differed significantly between patients and controls. The EV subpopulation regulated by CD81 was the most likely to correlate with changes in the pulmonary microenvironment after SARS-CoV-2 infection. Single extracellular vesicles in the sputum of COVID-19 patients harbor infection-mediated alterations in host and virus-derived proteins. Conclusions: These results demonstrate that EVs derived from the sputum of patients participate in virus infection and immune responses. This study provides evidence of an association between EVs and SARS-CoV-2, providing insight into the possible pathogenesis of SARS-CoV-2 infection and the possibility of developing nanoparticle-based antiviral drugs.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Integrinas/metabolismo , Esputo , Proteómica/métodos , Vesículas Extracelulares/metabolismo , Tetraspanina 28
20.
Signal Transduct Target Ther ; 8(1): 123, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922500

RESUMEN

Persistent asymptomatic (PA) SARS-CoV-2 infections have been identified. The immune responses in these patients are unclear, and the development of effective treatments for these patients is needed. Here, we report a cohort of 23 PA cases carrying viral RNA for up to 191 days. PA cases displayed low levels of inflammatory and interferon response, weak antibody response, diminished circulating follicular helper T cells (cTfh), and inadequate specific CD4+ and CD8+ T-cell responses during infection, which is distinct from symptomatic infections and resembling impaired immune activation. Administration of a single dose of Ad5-nCoV vaccine to 10 of these PA cases elicited rapid and robust antibody responses as well as coordinated B-cell and cTfh responses, resulting in successful viral clearance. Vaccine-induced antibodies were able to neutralize various variants of concern and persisted for over 6 months, indicating long-term protection. Therefore, our study provides an insight into the immune status of PA infections and highlights vaccination as a potential treatment for prolonged SARS-CoV-2 infections.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Infecciones Asintomáticas , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA