Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 21(2): e48781, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31916354

RESUMEN

Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. TGF-ß1/Smad3 signalling plays a major pathological role in DN; however, the contribution of Smad4 has not been examined. Smad4 depletion in the kidney using anti-Smad4 locked nucleic acid halted progressive podocyte damage and glomerulosclerosis in mouse type 2 DN, suggesting a pathogenic role of Smad4 in podocytes. Smad4 is upregulated in human and mouse podocytes during DN. Conditional Smad4 deletion in podocytes protects mice from type 2 DN, independent of obesity. Mechanistically, hyperglycaemia induces Smad4 localization to mitochondria in podocytes, resulting in reduced glycolysis and oxidative phosphorylation and increased production of reactive oxygen species. This operates, in part, via direct binding of Smad4 to the glycolytic enzyme PKM2 and reducing the active tetrameric form of PKM2. In addition, Smad4 interacts with ATPIF1, causing a reduction in ATPIF1 degradation. In conclusion, we have discovered a mitochondrial mechanism by which Smad4 causes diabetic podocyte injury.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Glucólisis/genética , Riñón , Ratones , Podocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Chemistry ; 24(14): 3434-3438, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29345002

RESUMEN

A single and simple ortho-sulfonyl benzonitrile template was developed to achieve remote C-H olefination of six different classes of N-heterocycles. We demonstrate that, by varying precatalysts and conditions, the same template can be applied to the remote C-H activation of six structurally distinct heterocyclic scaffolds, and the site-selectivity can be predicted based on distance and geometry. Furthermore, this new development shows that template-directed remote C-H activation is possible through macrocyclopalladation processes with smaller ring sizes.

3.
World J Surg Oncol ; 14(1): 7, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26754140

RESUMEN

BACKGROUND: Complete mesocolic excision provides a correct anatomical plane for colon cancer surgery. However, manifestation of the surgical plane during laparoscopic complete mesocolic excision versus in computed tomography images remains to be examined. METHODS: Patients who underwent laparoscopic complete mesocolic excision for right-sided colon cancer underwent an abdominal computed tomography scan. The spatial relationship of the intraoperative surgical planes were examined, and then computed tomography reconstruction methods were applied. The resulting images were analyzed. RESULTS: In 44 right-sided colon cancer patients, the surgical plane for laparoscopic complete mesocolic excision was found to be composed of three surgical planes that were identified by computed tomography imaging with cross-sectional multiplanar reconstruction, maximum intensity projection, and volume reconstruction. For the operations performed, the mean bleeding volume was 73±32.3 ml and the mean number of harvested lymph nodes was 22±9.7. The follow-up period ranged from 6-40 months (mean 21.2), and only two patients had distant metastases. CONCLUSIONS: The laparoscopic complete mesocolic excision surgical plane for right-sided colon cancer is composed of three surgical planes. When these surgical planes were identified, laparoscopic complete mesocolic excision was a safe and effective procedure for the resection of colon cancer.


Asunto(s)
Adenocarcinoma/cirugía , Colectomía/métodos , Neoplasias del Colon/cirugía , Laparoscopía/métodos , Mesocolon/cirugía , Tomografía Computarizada por Rayos X , Adenocarcinoma/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias del Colon/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Humanos , Masculino , Mesocolon/anatomía & histología , Mesocolon/diagnóstico por imagen , Persona de Mediana Edad
4.
Int J Mol Sci ; 17(1)2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26729093

RESUMEN

Colorectal cancer (CRC) is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS) is a selective Aurora kinase A (AURKA) inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), but activation of 5' AMP-activated protein kinase (AMPK) signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT) in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells.


Asunto(s)
Adenocarcinoma/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Azepinas/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Adenocarcinoma/enzimología , Células CACO-2 , Células HT29 , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Angew Chem Int Ed Engl ; 54(8): 2497-500, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25598232

RESUMEN

2,4,6-Trimethoxypyridine is identified as an efficient ligand for promoting a Pd-catalyzed ortho-C-H amination of both benzamides and triflyl-protected benzylamines. This finding provides guidance for the development of ligands that can improve or enable Pd(II)-catalyzed Csp2-H activation reactions directed by weakly coordinating functional groups.

6.
J Am Chem Soc ; 136(30): 10807-13, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25007097

RESUMEN

meta-C-H olefination, arylation, and acetoxylation of indolines have been developed using nitrile-containing templates. The combination of a monoprotected amino acid ligand and the nitrile template attached at the indolinyl nitrogen via a sulfonamide linkage is crucial for the meta-selective C-H functionalization of electron-rich indolines that are otherwise highly reactive toward electrophilic palladation at the para-positions. A wide range of synthetically important and advanced indoline analogues are selectively functionalized at the meta-positions.

7.
Heliyon ; 10(13): e33487, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040246

RESUMEN

Background: Previous research has established carbon monoxide (CO) as a significant air pollutant contributing to coronavirus disease 2019 (COVID-19) transmission. The spatiotemporal heterogeneity in the relationship between short-duration CO exposure and COVID-19 incidence remain underexplored. Investigating such heterogeneity plays a crucial role in designing region-specific cost-effective public health policies, exploring the reasons for heterogeneity, and understanding the temporal trends in the association between CO and an emerging infectious disease such as COVID-19. Methods: The 49 states of the continental United States (U.S.) were examined in this study. Initially, we developed time-series generalized additive models (GAMs) for each state to assess the preliminary correlation between daily COVID-19 cases and short-term CO exposure from April 1, 2020, to December 31, 2021. Subsequently, the correlations were compiled utilizing Leroux-prior-based conditional autoregression (LCAR) to achieve a smoothed spatial distribution. Finally, we integrated a time-varying component into the GAM and LCAR to analyze temporal correlations and illuminate the factors contributing to spatiotemporal heterogeneity. Results: Our analysis revealed that, across the 49 states, a 10-ppb increase in CO concentration was associated with a 1.33 % (95%CI: 0.86%-1.81 %) increase in COVID-19 cases on average. Furthermore, spatial variability was noted, with weaker correlations observed in the central and southeastern regions, stronger associations in the northeastern regions, and negligible associations in the western regions. Temporally, the correlation was not significant from April 2020 to June 2021, but began to increase steadily thereafter until the end of 2021. Additionally, vaccination and temperature were determined to be potential causes contributing to the heterogeneity, indicating stronger positive associations in areas with higher vaccination rates and temperatures. Conclusion: The findings of this study underscore the importance of monitoring CO pollution in the central and northeastern US, especially in the aftermath of the pandemic.

8.
Artículo en Inglés | MEDLINE | ID: mdl-36901593

RESUMEN

Global material consumption needs to be reduced to be within its planetary boundary. Urbanization and human inequality are two profound economic-social phenomena, which have potential impacts on material consumption. This paper aims to empirically explore how urbanization and human inequality affect material consumption. For this aim, four hypotheses are proposed and the coefficient of human inequality and material footprint per capita are employed to measure comprehensive human inequality and consumption-based material consumption, respectively. Based on an unbalanced panel data set of around 170 countries from 2010 to 2017, the regression estimations demonstrate that: (1) urbanization reduces material consumption; (2) human inequality increases material consumption; (3) the interaction effect between urbanization and human inequality reduces material consumption; (4) urbanization reduces human inequality, which explains why the interaction effect works; (5) urbanization makes more sense for reducing material consumption if the extents of human inequality are larger and the positive impacts of human inequality on material consumption are weakened if the extents of urbanization are larger. It is concluded that promoting urbanization and reducing human inequality are compatible with both ecological sustainability and social fairness. This paper contributes to understanding and achieving the absolute decoupling between economic-social development and material consumption.


Asunto(s)
Cambio Social , Urbanización , Humanos , Desarrollo Económico , Dióxido de Carbono
9.
Front Immunol ; 14: 1275461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090588

RESUMEN

Background: Little is known on how metabolic reprogramming potentially prompts transition of activated and resting CD4+ memory T cells infiltration in tumor microenvironment of gastric cancer (GC). The study aimed to evaluate their interactions and develop a risk model for predicting prognosis in GC. Methods: Expression profiles were obtained from TCGA and GEO databases. An immunotherapeutic IMvigor210 cohort was also enrolled. CIBERSORT algorithm was used to evaluate the infiltration of immune cells. The ssGSEA method was performed to assess levels of 114 metabolism pathways. Prognosis and correlation analysis were conducted to identify metabolism pathways and genes correlated with activated CD4+ memory T cells ratio (AR) and prognosis. An AR-related metabolism gene (ARMG) risk model was constructed and validated in different cohorts. Flow cytometry was applied to validate the effect of all-trans retinoic acid (ATRA) on CD4+ memory T cells. Results: Since significantly inverse prognostic value and negative correlation of resting and activated CD4+ memory T cells, high AR level was associated with favorable overall survival (OS) in GC. Meanwhile, 15 metabolism pathways including retinoic acid metabolism pathway were significantly correlated with AR and prognosis. The ARMG risk model could classify GC patients with different outcomes, treatment responses, genomic and immune landscape. The prognostic value of the model was also confirmed in the additional validation, immunotherapy and pan-cancer cohorts. Functional analyses revealed that the ARMG model was positively correlated with pro-tumorigenic pathways. In vitro experiments showed that ATRA could inhibit levels of activated CD4+ memory T cells and AR. Conclusion: Our study showed that metabolic reprogramming including retinoic acid metabolism could contribute to transition of activated and resting CD4+ memory T cells, and affect prognosis of GC patients. The ARMG risk model could serve as a new tool for GC patients by accurately predicting prognosis and response to treatment.


Asunto(s)
Neoplasias Gástricas , Humanos , Células T de Memoria , Pronóstico , Linfocitos T CD4-Positivos , Tretinoina , Microambiente Tumoral
10.
Sci Total Environ ; 854: 158583, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36084774

RESUMEN

Arsenic can be specifically enriched by rice, and the health hazards caused by high arsenic rice are gradually attracting attention. This study aimed to explore the potential of microbial detoxification via gut microbiome in the treatment of sub-chronic arsenic poisoning. We first exposed mice to high-dose arsenic feed (30 mg/kg, rice arsenic composition) for 60 days to promote arsenic-induced microbes in situ in the gastrointestinal tract, then transplanted their fecal microbiota (FMT) into another batch of healthy recipient mice, and dynamically monitored the microbial colonization by 16S rRNA sequencing and ITS sequencing. The results showed that in situ arsenic-induced fecal microbiome can stably colonized and interact with indigenous microbes in the recipient mice in two weeks, and established a more stable network of gut microbiome. Then, the recipient mice continued to receive high-dose arsenic exposure for 52 days. After above sub-chronic arsenic exposure, compared with the non-FMT group, fecal arsenic excretion, liver and plasma arsenic accumulation were significantly lower (P < 0.05), and that in kidney, hair, and thighbone present no significant differences. Metabolomics of feces- plasma-brain axis were also disturbed, some up-regulated metabolites in feces, plasma, and cerebral cortex may play positive roles for the host. Therefore, microbial detoxification has potential in the treatment of sub-chronic arsenic poisoning. However, gut flora is an extremely complex community with different microorganisms have different arsenic metabolizing abilities, and various microbial metabolites. Coupled with the matrix effects, these factors will have various effects on the efflux and accumulation of arsenic. The definite effects (detoxification or non-detoxification) could be not assured based on the current study, and more systematic and rigorous studies are needed in the future.


Asunto(s)
Intoxicación por Arsénico , Arsénico , Ratones , Animales , Trasplante de Microbiota Fecal , Arsénico/toxicidad , ARN Ribosómico 16S/genética , Heces
11.
Med Sci Monit ; 18(10): BR375-82, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23018343

RESUMEN

BACKGROUND: There are only few reports about the use of bone marrow stromal stem cells (BMSCs) for the treatment of traumatic liver injury. This study aimed to study the therapeutic effect of fluorescence-labeled BMSCs administered to rats subject to traumatic liver injury. MATERIAL/METHODS: Male SD rats with a 70% resection of the liver were injected with feridex-labeled BMSCs which could be induced to functional hepatocytes in vitro. Liver function was assayed and the liver scanned by 1.5-T MRI at 12 hrs and on days 1, 3, 5, 7, and 14 post-operation. The pathological changes of liver sections were monitored. RESULTS: The serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, direct bilirubin, and total bilirubin in the transplantation group were significantly lower than the control group. The MRI showed rats of the transplantation group had an oval low signal area at 12 hr after operation; the low signal range gradually expanded and the signal intensity gradually decreased over 14 days after operation. The low signal range in the control group disappeared 12 hr after the operation. After Prussian blue staining, rats of the transplantation group contained blue granules with no significant hypertrophy or edema in hepatocytes, while the control group showed no blue granules with significant hypertrophy and edema. CONCLUSIONS: The BMSCs transplanted into the injured rat liver gradually migrate to the surrounding liver tissue and partially repair the liver surgical injury in rats. BMSCs may represent an effective therapeutic approach for acute liver injury.


Asunto(s)
Hepatectomía , Hepatopatías/terapia , Hígado/cirugía , Fenómenos Magnéticos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Coloración y Etiquetado , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Animales , Aspartato Aminotransferasas/sangre , Bilirrubina/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Separación Celular , Forma de la Célula , Dextranos/metabolismo , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Hepatocitos/patología , Hígado/patología , Hígado/fisiopatología , Hepatopatías/patología , Hepatopatías/cirugía , Pruebas de Función Hepática , Imagen por Resonancia Magnética , Nanopartículas de Magnetita , Masculino , Ratas
12.
Carbohydr Polym ; 260: 117815, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712159

RESUMEN

Chitosan is a versatile polysaccharide in different domains due to facile modification and good biodegradability. In this paper, taking advantage of such functional properties, we have developed a stabilizer agent [OCMCS-SB] produced from chitosan, and palladium was successfully immobilized on this designed stabilizer [OCMCS-SB-Pd(II)]. The obtained complex was illuminated by 13C CP-MAS NMR, FT-IR, TGA, XRD, XPS, SEM, TEM and ICP-OES analyses. Due to the interactions of primary hydroxyl groups on chitosan, Schiff base and carboxy groups, the Pd complex showed excellent reactivity (up to 99 %) and stability towards Suzuki reactions in eco-friendly medium. Subsequently, the reusability experiments for OCMCS-SB-Pd(II) formed from chitosan were examined in five consecutive cycles, which showed no appreciable decrease in activity. Furthermore, a reasonably trifunctional complex structure was proposed. The present bio-based system offers a promising approach in utilizing such biopolymers in organic transformations.


Asunto(s)
Quitosano/química , Paladio/química , Catálisis , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier
13.
Chem Commun (Camb) ; 56(19): 2889-2892, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32037434

RESUMEN

In this work, we report the first use of a salen-based hypercrosslinked polymer-supported Pd catalyst to carry out C-H halogenation. This catalyst can effectively catalyze C-H bromination and chlorination even better than its homogeneous counterpart Pd(OAc)2. It also showed excellent reusability without loss of catalytic activity for ten cycles. A broad substrate scope was explored and moderate to excellent yields were obtained.

14.
Int J Oncol ; 54(4): 1376-1386, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30968152

RESUMEN

Irinotecan (CPT­11) is a DNA topoisomerase I inhibitor which is widely used in clinical chemotherapy, particularly for colorectal cancer treatment. However, late­onset diarrhea is one of the severe side­effects of this drug and this restricts its clinical application. The present study aimed to investigate the protective effects of curcumin treatment on CPT­11­induced intestinal mucosal injury both in vitro and in vivo and to elucidate the related mechanisms involved in these effects. For this purpose, mice were intraperitoneally injected with CPT­11 (75 mg/kg) for 4 days to establish a model of late­onset diarrhea. Curcumin (100 mg/kg) was intragastrically administered 8 days before the injection of CPT­11. Injury to small intestinal tissues was examined by H&E staining. The protein expression of prolyl 4­hydroxylase subunit beta (P4HB) and peroxiredoxin 4 (PRDX4) was detected by immunohistochemistry, as well as western blot analysis. IEC­6 cell viability was detected by MTT assay. Flow cytometry was performed to examine the cell apoptotic rate, mitochondrial membrane potential and reactive oxygen species (ROS) generation. Immunofluorescence was used to observe the localization of nuclear factor (NF)­κB. The levels of cleaved caspase­3, glucose­regulated protein, 78 kDa (GRP78), P4HB, PRDX4 and CHOP were detected by western blot analysis. The results revealed that in vivo, curcumin effectively attenuated the symptoms of diarrhea and abnormal intestinal mucosa structure induced by CPT­11 in nude mice. Treatment with curcumin also increased the expression of P4HB and PRDX4 in the tissue of the small intestine. In vitro, curcumin, exhibited little cytotoxicity when used at concentrations <2.5 µg/ml for 24 h in IEC­6 cells. At this concentration, curcumin also improved cell morphology, inhibited apoptosis, maintained mitochondrial membrane potential and reduced the elevated levels of ROS induced by CPT­11 (20 µg/ml). Furthermore, curcumin abolished NF­κB signal transduction and protected the cells from CPT­11­induced apoptosis by upregulating the expression of molecular chaperones, such as GRP78, P4HB and PRDX4, and suppressing the levels of the apoptosis­related proteins, CHOP and cleaved caspase­3. On the whole, our data indicate that curcumin exerted protective effects against CPT­11­induced intestinal mucosa injury. The protective effects of curcumin are mediated by inhibiting the activation of NF­κB, and suppressing oxidative stress and endoplasmic reticulum stress.


Asunto(s)
Curcumina/farmacología , Diarrea/prevención & control , Mucosa Intestinal/efectos de los fármacos , Irinotecán/efectos adversos , Inhibidores de Topoisomerasa I/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Neoplasias Colorrectales/tratamiento farmacológico , Curcumina/uso terapéutico , Diarrea/inducido químicamente , Diarrea/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales , Humanos , Inyecciones Intraperitoneales , Mucosa Intestinal/citología , Mucosa Intestinal/patología , Irinotecán/administración & dosificación , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Inhibidores de Topoisomerasa I/administración & dosificación , Resultado del Tratamiento
15.
Oncogenesis ; 7(9): 77, 2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30275459

RESUMEN

Colorectal cancer stem cells (CSCs), characterized by self-renewal ability and high expression of proliferative genes, contribute to the chemoresistance of colorectal cancer (CRC). We aimed to identify the molecular mechanisms underlying CRC chemoresistance through comprehensive bioinformatics screenings and experimental confirmation of gene functions. We found that high expression of FGF1 intracellular binding protein (FIBP) was correlated with chemoresistance and poor prognosis in CRC patients. Therefore, the chemoresistant CRC cell line HCT116-CSC with high expression of the stem cell markers CD44 and CD133 was established for further phenotypic tests. FIBP knockdown inhibited proliferation, enhanced chemotherapy effects, and attenuated the stemness markers of CRC cells in vivo and in vitro. Through RNA-seq and gene set enrichment analysis, we identified cyclin D1 as a key downstream target in FIBP-regulated cell cycle progression and proliferation. Moreover, FIBP bound to GSK3ß, inhibited its phosphorylation at Tyr216, and activated ß-catenin/TCF/cyclin D1 signaling in HCT116-CSCs. Additional GSK3ß knockdown reversed the FIBP silencing-induced inhibition of proliferation and decreased stemness marker expression in HCT116-CSCs. Furthermore, DNA methylation profiling suggested that FIBP regulated the stemness of CRC cells via methylation activity that was dependent on GSK3ß but independent of ß-catenin signaling. Our data illuminate the potential of FIBP as a novel therapeutic target for treating chemoresistant CRC through inhibition of GSK3ß-related signaling.

16.
Yonsei Med J ; 58(4): 697-702, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28540980

RESUMEN

PURPOSE: The microRNA-34 (miR-34) family is important in tumor regulation. This study aimed to investigate the association of circulating miR-34 family proteins with clinicopathological features and their prognostic value in triple-negative breast cancer (TNBC) patients. MATERIALS AND METHODS: In this cohort study, 173 TNBC patients admitted to First People's Hospital of Shunde from May 1, 2009 to April 30, 2013 were enrolled. Meanwhile, 75 age-matched healthy women volunteers were identified as healthy controls (HCs). We examined the expression of miR-34 family (miR-34a/b/c) proteins in plasma collected from TNBC patients before any treatment was performed and from age-matched HCs using qPCR methods. RESULTS: The expressions of miR-34a/34b/34c were significantly lower in TNBC patients than in HC (p<0.001, p=0.027, p<0.001, respectively). miR-34a was correlated with tumor grade (p=0.038), lymph node positive (p=0.027), distant metastasis (p=0.004), and surgery (p=0.023); miR-34b was correlated with lymph node positivity (p=0.027); and miR-34c was correlated with tumor grade (p=0.017) and distant metastasis (p<0.001). Kaplan-Meier curve analysis displayed low expression of miR-34a as associated with worse overall survival (OS) (p=0.011), as well as miR-34c low expression (p=0.002). In addition, univariate and multivariate Cox proportional hazards regression was performed, and low expression of miR-34c (p=0.011) was found to be an independent risk factor for OS, as well as tumor grade (p=0.013), lymph node positive (p=0.050), and distant metastasis (p=0.021). CONCLUSION: In conclusion, this study demonstrated reduced miR-34a/c expression is highly associated with tumor progression and indicated worse prognosis. Also, miR-34c was an independent risk factor for OS in TNBC patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/sangre , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/sangre , Neoplasias de la Mama Triple Negativas/genética , Adulto , Anciano , Estudios de Cohortes , Análisis Factorial , Femenino , Humanos , Estimación de Kaplan-Meier , MicroARNs/metabolismo , Persona de Mediana Edad , Análisis Multivariante , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , Factores de Riesgo , Neoplasias de la Mama Triple Negativas/patología
17.
Int J Oncol ; 51(2): 515-524, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28627611

RESUMEN

Inherent and acquired chemoresistance reduce the effectiveness of irinotecan in the treatment of metastatic colorectal cancer (CRC). However, the molecular mechanisms underlying this resistance process are still unclear. Twist1 is one of the master transcription factors of epithelial-mesenchymal transition (EMT). Our previous study indicated that Twist1 is overexpressed in colon cancer tissues, and demonstrated that Twist1 plays a crucial role in the chemoresistance of CRC. In the present study, we further investigated how Twist1 contribute to acquired resistance to irinotecan in colon cancer. The irinotecan-resistant cells were established by gradual adaptation of increasing irinotecan concentrations in LoVo cells, named LoVo/CPT-11R cells. Results showed that cell viabilities to different anticancer drugs were markedly increased in LoVo/CPT-11R cells compared to LoVo cells. Moreover, LoVo/CPT-11R cells displayed EMT, CSC-like cellular morphology and relative biomarkers were also significantly increased. In addition, overexpressed Twist1 LoVo cells were established by lentivirus transfection assay, named LoVo/Twist1 cells. Results showed that the LoVo/Twist1 cells perform a distinctly decreased sensitivity to irinotecan, downregulated expression of E-cadherin, upregulated expression of cluster of differentiation 44 (CD44), and a significant enhancement of invasion and migration potential by regulation of MMP2 compared with control cells. In contrast, the inhibition of Twist1 transfected with siRNA could enhance the irinotecan sensitivity in LoVo/CPT-11R cells and downregulate the expression of vimentin and CD44. Our data provide evidence that EMT and CSC-like phenotype induced by Twist1 contribute to acquire resistance to irinotecan and enhanced migration and invasion in colon cancer.


Asunto(s)
Camptotecina/análogos & derivados , Proliferación Celular/genética , Neoplasias del Colon/tratamiento farmacológico , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/genética , Camptotecina/administración & dosificación , Camptotecina/efectos adversos , Movimiento Celular/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Irinotecán , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Nucleares/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Transfección , Proteína 1 Relacionada con Twist/antagonistas & inhibidores
18.
Oncotarget ; 8(25): 40264-40275, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28402965

RESUMEN

Although initially effective against metastatic colorectal cancer (CRC), irinotecan-based chemotherapy leads to resistance and adverse toxicity. Curcumin is well known for its anti-cancer effects in many cancers, including CRC. Here, we describe reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress as important mechanisms by which curcumin enhances irinotecan's effects on CRC cells. CRC cell lines were treated with curcumin and/or irinotecan for 24 h, and then evaluated using cell proliferation assays, cell apoptosis assays, cell cycle analysis, intracellular Ca2+ measurements, ROS measurements and immunoblotting for key ER stress-related proteins. We found that cell viability was inhibited and apoptosis was increased, accompanied by ROS generation and ER stress activation in CRC cells treated with curcumin alone or in combination with irinotecan. Blocking ROS production attenuated the expression of two markers of ER stress: binding of immunoglobulin protein (BIP) and CCAAT/enhancer-binding protein homologous protein (CHOP). Blocking CHOP expression using RNA interference also inhibited ROS generation. These results demonstrated that curcumin could enhance the effects of irinotecan on CRC cells by inhibiting cell viability and inducing cell cycle arrest and apoptosis, and that these effects may be mediated, in part, by ROS generation and activation of the ER stress pathway.


Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Camptotecina/análogos & derivados , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Curcumina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Calcio/metabolismo , Camptotecina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Humanos , Irinotecán , Interferencia de ARN , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA