RESUMEN
Seed germination represents a major developmental switch in plants that is vital to agriculture, but how this process is controlled at the chromatin level remains obscure. Here we demonstrate that successful germination in Arabidopsis thaliana requires a chromatin mechanism that progressively silences 9-CIS-EPOXYCAROTENOID DIOXYGENASE 6 (NCED6), which encodes a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, through the cooperative action of the RNA-binding protein RZ-1 and the polycomb repressive complex 2 (PRC2). Simultaneous inactivation of RZ-1 and PRC2 blocked germination and synergistically derepressed NCEDs and hundreds of genes. At NCED6, in part by promoting H3 deacetylation and suppressing H3K4me3, RZ-1 facilitates transcriptional silencing and also an H3K27me3 accumulation process that occurs during seed germination and early seedling growth. Genome-wide analysis revealed that RZ-1 is preferentially required for transcriptional silencing of many PRC2 targets early during seed germination, when H3K27me3 is not yet established. We propose RZ-1 confers a novel silencing mechanism to compensate for and synergize with PRC2. Our work highlights the progressive chromatin silencing of ABA biosynthesis genes via the RNA-binding protein RZ-1 and PRC2 acting in synergy, a process that is vital for seed germination.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Regulación de la Expresión Génica de las Plantas/genética , Germinación/genética , Histonas/genética , Histonas/metabolismo , SemillasRESUMEN
BACKGROUND: High-altitude de-acclimatization (HADA) significantly impacts physiological functions when individuals acclimatize to high altitudes return to lower altitudes. This study investigates HADA's effects on renal function and structure in rats, focusing on oxidative and endoplasmic reticulum stress as potential mechanisms of renal injury. OBJECTIVE: To elucidate the pathophysiological mechanisms of renal damage in HADA and evaluate the efficacy of antioxidants Vitamin C (Vit C) and tauroursodeoxycholic acid (TUDCA) in mitigating these effects. METHODS: 88 male Sprague-Dawley rats were randomly divided into a control group, a high-altitude (HA) group, a high-altitude de-acclimatization (HADA) group, and a treatment group. The control group was housed in a sea level environment (500 m), while the HA, HADA, and treatment groups were placed in a simulated high-altitude chamber (5000 m) for 90 days. After this period, the HA group completed the modeling phase; the HADA group was further subdivided into four subgroups, each continuing to be housed in a sea level environment for 3, 7, 14, and 30 days, respectively. The treatment group was split into the Vit C group, the TUDCA group, and two placebo groups, receiving medication for 3 consecutive days, once daily upon return to the sea level. The Vit C group received 100 mg/kg Vit C solution via intravenous injection, the TUDCA group received 250 mg/kg TUDCA solution via intraperitoneal injection, and the placebo groups received an equivalent volume of saline similarly. Serum, urine, and kidney tissues were collected immediately after the modeling phase. Renal function and oxidative stress levels were assessed using biochemical and ELISA methods. Renal histopathology was observed with H&E, Masson's trichrome, PAS, and PASM staining. Transmission electron microscopy was used to examine the ultrastructure of glomeruli and filtration barrier. TUNEL staining assessed cortical apoptosis in the kidneys. Metabolomics was employed for differential metabolite screening and pathway enrichment analysis. RESULTS: Compared to the control and HA groups, the HADA 3-day group (HADA-3D) exhibited elevated renal function indicators, significant pathological damage, observable ultrastructural alterations including endoplasmic reticulum expansion and apoptosis. TUNEL-positive cells significantly increased, indicating heightened oxidative stress levels. Various differential metabolites were enriched in pathways related to oxidative and endoplasmic reticulum stress. Early intervention with Vit C and TUDCA markedly alleviated renal injury in HADA rats, significantly reducing the number of apoptotic cells, mitigating endoplasmic reticulum stress, and substantially lowering oxidative stress levels. CONCLUSION: This study elucidates the pivotal roles of oxidative and endoplasmic reticulum stress in the early-stage renal injury in rats undergoing HADA. Early intervention with the Vit C and TUDCA significantly mitigates renal damage caused by HADA. These findings provide insights into the pathophysiological mechanisms of HADA and suggest potential therapeutic strategies for its future management.
Asunto(s)
Altitud , Riñón , Ácido Tauroquenodesoxicólico , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Riñón/patología , Apoptosis , Estrés Oxidativo , Estrés del Retículo EndoplásmicoRESUMEN
Chromatin immunoprecipitation and sequencing (vs ChIP-seq) is an essential tool for epigenetic and molecular genetic studies. Although being routinely used, ChIP-seq is expensive, requires grams of plant materials, and is challenging for samples that enrich fatty acids such as seeds. Here, we developed an Ultrasensitive Plant ChIP-seq (UP-ChIP) method based on native ChIP-seq combined with Tn5 tagmentation-based library construction strategy. UP-ChIP is generally applicable for profiling both histone modification and Pol II in a wide range of plant samples, such as a single Arabidopsis seedling, a few Arabidopsis seeds, and sorted nuclei. Compared with conventional ChIP-seq, UP-ChIP is much less labor intensive and only consumes 1 µg of antibody and 10 µl of Protein-A/G conjugated beads for each IP and can work effectively with the amount of starting material down to a few milligrams. By performing UP-ChIP in various conditions and genotypes, we showed that UP-ChIP is highly reliable, sensitive, and quantitative for studying histone modifications. Detailed UP-ChIP protocol is provided. We recommend UP-ChIP as an alternative to traditional ChIP-seq for profiling histone modifications and Pol II, offering the advantages of reduced labor intensity, decreased costs, and low-sample input.
Asunto(s)
Arabidopsis , Secuenciación de Inmunoprecipitación de Cromatina , Histonas , ARN Polimerasa II , Arabidopsis/genética , Histonas/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , ARN Polimerasa II/metabolismo , Análisis Costo-Beneficio , Inmunoprecipitación de Cromatina/métodosRESUMEN
The regulatory roles of RNA splicing in plant immunity are emerging but still largely obscure. We reported previously that Phytophthora pathogen effector Avr3c targets a soybean protein SKRP (serine/lysine/arginine-rich protein) to impair soybean basal immunity by regulating host pre-mRNA alternative splicing, while the biochemical nature of SKRP remains unknown. Here, by using Arabidopsis as a model, we studied the mechanism of SKRP in regulating pre-mRNA splicing and plant immunity. AtSKRP confers impaired plant immunity against Phytophthora capsici and associates with spliceosome component PRP8 and splicing factor SR45, which positively and negatively regulate plant immunity, respectively. Enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq) showed AtSKRP is a novel RNA-binding protein that targets exon 3' end of unspliced RNA. Such position-specific binding of SKRP is associated with its activity in suppressing intron retention, including at positive immune regulatory genes UBP25 and RAR1. In addition, we found AtSKRP self-interact and forms oligomer, and these properties are associated with its function in plant immunity. Overall, our findings reveal that the immune repressor SKRP is a spliceosome-associated protein that targets exon 3' end to regulate pre-mRNA splicing in Arabidopsis.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme del ARN/genética , Exones/genética , Inmunidad de la Planta/genética , Empalme Alternativo/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismoRESUMEN
The timing of flowering is vital for plant reproductive success and is therefore tightly regulated by endogenous and exogenous cues. In summer annual Arabidopsis (Arabidopsis thaliana) accessions, like Columbia-0, rapid flowering is promoted by repression of the floral repressor FLOWERING LOCUS C (FLC). This is through the activity of the autonomous pathway, a group of proteins with diverse functions including RNA 3'-end processing factors, spliceosome components, a transcription elongation factor, and chromatin modifiers. These factors function at the FLC locus linking alternative processing of an antisense long noncoding RNA, called COOLAIR, with delivery of a repressive chromatin environment that affects the transcriptional output. The transcriptional output feeds back to influence the chromatin environment, reinforcing and stabilizing that state. This review summarizes our current knowledge of the autonomous pathway and compares it with similar cotranscriptional mechanisms in other organisms.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/metabolismo , Proteínas de Dominio MADS/metabolismo , ARN no Traducido/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Silenciador del Gen/fisiología , Proteínas de Dominio MADS/genéticaRESUMEN
Vernalization, the promotion of flowering by cold, involves Polycomb-mediated epigenetic silencing of FLOWERING LOCUS C (FLC). Cold progressively promotes cell-autonomous switching to a silenced state. Here, we used live-cell imaging of FLC-lacO to monitor changes in nuclear organization during vernalization. FLC-lacO alleles physically cluster during the cold and generally remain so after plants are returned to warm. Clustering is dependent on the Polycomb trans-factors necessary for establishment of the FLC silenced state but not on LIKE HETEROCHROMATIN PROTEIN 1, which functions to maintain silencing. These data support the view that physical clustering may be a common feature of Polycomb-mediated epigenetic switching mechanisms.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen/fisiología , Proteínas de Dominio MADS/genética , Familia de Multigenes/genética , Proteínas del Grupo Polycomb/metabolismo , Alelos , Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Cromosómicas no Histona/genética , Frío , Proteínas de Unión al ADN , Proteínas Nucleares/genética , Raíces de Plantas/metabolismo , TransgenesRESUMEN
Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here, we report the functions of two proteins containing RNA recognition motifs, RZ-1B and RZ-1C, in Arabidopsis thaliana. RZ-1B and RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C termini. RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA binding activity of RZ-1C with SR proteins through overexpression of the C terminus of RZ-1C conferred defective phenotypes similar to those observed in rz-1b rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of RZ-1B and RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that RZ-1C directly targeted FLOWERING LOCUS C (FLC), promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Precursores del ARN/metabolismo , Empalme del ARN/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Núcleo Celular/metabolismo , Cromatina/metabolismo , Genes de Plantas , Pleiotropía Genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas con Motivos de Reconocimiento de ARN/química , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Nicotiana/citología , Transcripción Genética , Transcriptoma/genéticaRESUMEN
BACKGROUND: In Arabidopsis, RNA Polymerase II (Pol II) often pauses within a few hundred base pairs downstream of the polyadenylation site, reflecting efficient transcriptional termination, but how such pausing is regulated remains largely elusive. RESULT: Here, we analyze Pol II dynamics at 3' ends by combining comprehensive experiments with mathematical modelling. We generate high-resolution serine 2 phosphorylated (Ser2P) Pol II positioning data specifically enriched at 3' ends and define a 3' end pause index (3'PI). The position but not the extent of the 3' end pause correlates with the termination window size. The 3'PI is not decreased but even mildly increased in the termination deficient mutant xrn3, indicating 3' end pause is a regulatory step early during the termination and before XRN3-mediated RNA decay that releases Pol II. Unexpectedly, 3'PI is closely associated with gene exon numbers and co-transcriptional splicing efficiency. Multiple exons genes often display stronger 3' end pauses and more efficient on-chromatin splicing than genes with fewer exons. Chemical inhibition of splicing strongly reduces the 3'PI and disrupts its correlation with exon numbers but does not globally impact 3' end readthrough levels. These results are further confirmed by fitting Pol II positioning data with a mathematical model, which enables the estimation of parameters that define Pol II dynamics. CONCLUSION: Our work highlights that the number of exons via co-transcriptional splicing is a major determinant of Pol II pausing levels at the 3' end of genes in plants.
Asunto(s)
Arabidopsis , Arabidopsis/genética , Cromatina , Exones , PoliadenilaciónRESUMEN
Epigenetic reprogramming in the germline contributes to the erasure of epigenetic inheritance across generations in mammals but remains poorly characterized in plants. Here we profiled histone modifications throughout Arabidopsis male germline development. We find that the sperm cell has widespread apparent chromatin bivalency, which is established by the acquisition of H3K27me3 or H3K4me3 at pre-existing H3K4me3 or H3K27me3 regions, respectively. These bivalent domains are associated with a distinct transcriptional status. Somatic H3K27me3 is generally reduced in sperm, while dramatic loss of H3K27me3 is observed at only ~700 developmental genes. The incorporation of the histone variant H3.10 facilitates the establishment of sperm chromatin identity without a strong impact on resetting of somatic H3K27me3. Vegetative nuclei harbor thousands of specific H3K27me3 domains at repressed genes, while pollination-related genes are highly expressed and marked by gene body H3K4me3. Our work highlights putative chromatin bivalency and restricted resetting of H3K27me3 at developmental regulators as key features in plant pluripotent sperm.
Asunto(s)
Arabidopsis , Cromatina , Masculino , Animales , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Epigénesis Genética , Semillas , Polen/metabolismo , Mamíferos/genéticaRESUMEN
BACKGROUND: Chromatin-bound RNAs are the primary product of transcription that undergo on-chromatin processing such as capping, splicing, and polyadenylation. These processing steps then determine the fate of RNAs. Albeit its vital importance, a simple and robust method for isolating different fractions of chromatin-bound RNAs is missing in plants. RESULT: Here, we describe our updated method and the associated step-by-step protocol for chromatin-bound RNAs isolation in A. thaliana. The chromatin-bound RNAs isolation is based on the 1 M UREA wash that removes the majority of non-chromatin-associated proteins from the nucleus, as previously developed in mammalian cells. On-demand, the isolated chromatin-bound RNAs can be either used directly for gene-specific analysis or subject to further rRNA removal and also the optional polyadenylated RNA removal, followed by high-throughput sequencing. Detailed protocols for these procedures are also provided. Comparison of sequencing results of chromatin-bound RNAs with and without polyadenylated RNA removal revealed that a small fraction of CB-RNAs is polyadenylated but not yet fully spliced, representing RNA-processing intermediate on-chromatin. CONCLUSION: This optimized chromatin-bound RNAs purification method is simple and robust and can be used to study transcription and its-coupled RNA processing in plants.
RESUMEN
Polycomb (PcG) silencing is crucial for development, but how targets are specified remains incompletely understood. The cold-induced Polycomb Repressive Complex 2 (PRC2) silencing of Arabidopsis thaliana FLOWERING LOCUS C (FLC) provides an excellent system to elucidate PcG regulation. Association of the DNA binding protein VAL1 to FLC PcG nucleation regionis an important step. VAL1 co-immunoprecipitates APOPTOSIS AND SPLICING ASSOCIATED PROTEIN (ASAP) complex and PRC1. Here, we show that ASAP and PRC1 are necessary for co-transcriptional repression and chromatin regulation at FLC. ASAP mutants affect FLC transcription in warm conditions, but the rate of FLC silencing in the cold is unaffected. PRC1-mediated H2Aub accumulation increases at the FLC nucleation region during cold, but unlike the PRC2-delivered H3K27me3, does not spread across the locus. H2Aub thus involved in the transition to epigenetic silencing at FLC, facilitating H3K27me3 accumulation and long-term epigenetic memory. Overall, our work highlights the importance of VAL1 as an assembly platform co-ordinating activities necessary for epigenetic silencing at FLC.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Histonas/genética , Histonas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/metabolismoRESUMEN
Precursor mRNA (pre-mRNA) splicing is essential for gene expression in most eukaryotic organisms. Previous studies from mammals, Drosophila, and yeast show that the majority of splicing events occurs co-transcriptionally. In plants, however, the features of co-transcriptional splicing (CTS) and its regulation still remain largely unknown. Here, we used chromatin-bound RNA sequencing to study CTS in Arabidopsis thaliana. We found that CTS is widespread in Arabidopsis seedlings, with a large proportion of alternative splicing events determined co-transcriptionally. CTS efficiency correlated with gene expression level, the chromatin landscape and, most surprisingly, the number of introns and exons of individual genes, but is independent of gene length. In combination with enhanced crosslinking and immunoprecipitation sequencing analysis, we further showed that the hnRNP-like proteins RZ-1B and RZ-1C promote efficient CTS globally through direct binding, frequently to exonic sequences. Notably, this general effect of RZ-1B/1C on splicing promotion is mainly observed at the chromatin level, not at the mRNA level. RZ-1C promotes CTS of multiple-exon genes in association with its binding to regions both proximal and distal to the regulated introns. We propose that RZ-1C promotes efficient CTS of genes with multiple exons through cooperative interactions with many exons, introns, and splicing factors. Our work thus reveals important features of CTS in plants and provides methodologies for the investigation of CTS and RNA-binding proteins in plants.
Asunto(s)
Arabidopsis/genética , Empalme del ARN , Empalme Alternativo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Exones , Código de Histonas , Intrones , Modelos Genéticos , Motivos de Nucleótidos , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Plantones/genética , Análisis de Secuencia de ARN , Transcripción GenéticaRESUMEN
Changes in nuclear organization are considered an important complement to trans-acting factors, histone modifications and non-coding RNAs in robust and stable epigenetic silencing. However, how these multiple layers interconnect mechanistically to reinforce each other's activity is still unclear. A system providing long timescales facilitating analysis of these interconnections is vernalization. This involves the Polycomb-mediated epigenetic silencing of flowering locus C (FLC) that occurs as Arabidopsis plants are exposed to prolonged cold. Analysis of changes in nuclear organization during vernalization has revealed that disruption of a gene loop and physical clustering of FLC loci are part of the vernalization mechanism. These events occur at different times and thus contribute to distinct aspects of the silencing mechanism. The physical clustering of FLC loci is tightly correlated with the accumulation of specific Polycomb complexes/H3K27me3 at a localized intragenic site during the cold. Since the quantitative nature of vernalization is a reflection of a bistable cell autonomous switch in an increasing number of cells, this correlation suggests a tight connection between the switching mechanism and changes in nuclear organization. This integrated picture is likely to be informative for many epigenetic mechanisms.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Núcleo Celular/fisiología , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Dominio MADS/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Epigénesis Genética , Flores/genética , Flores/metabolismo , Proteínas de Dominio MADS/metabolismoRESUMEN
Water is the most abundant molecule in almost all living organisms. Aquaporins are channel proteins that play critical roles in controlling the water content of cells. Here, we report the identification of an AP2/EREBP family transcription factor in Arabidopsis thaliana, TRANSLUCENT GREEN (TG), whose overexpression in transgenic plants gave enhanced drought tolerance and vitrified leaves. TG protein is localized in the nucleus, binds DRE and GCC elements in vitro, and acts as a transcriptional activator in yeast cells. Microarray analysis revealed a total of 330 genes regulated by TG, among which five genes encode aquaporins. A transient expression assay showed that TG directly binds to the promoters of three aquaporin genes, such as AtTIP1;1, AtTIP2;3, and AtPIP2;2, indicating that TG directly regulates the expression of these genes. Moreover, overexpression of AtTIP1;1 resulted in vitrified phenotypes in transgenic Arabidopsis plants, similar to those observed in TG overexpression lines. Water injection into wild-type leaves recapitulated the vitrified leaf phenotypes, which was reversed by cutting off the water supply from vascular bundles. Taken together, our data support that TG controls water balance in Arabidopsis through directly activating the expression of aquaporin genes.
Asunto(s)
Acuaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Acuaporinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genéticaRESUMEN
As a cell cycle regulator, the Myb-related CDC5 protein was reported to be essential for the G2 phase of the cell cycle in yeast and animals, but little is known about its function in plants. Here we report the functional characterization of the CDC5 gene in Arabidopsis thaliana. Arabidopsis CDC5 (AtCDC5) is mainly expressed in tissues with high cell division activity, and is expressed throughout the entire process of embryo formation. The AtCDC5 loss-of-function mutant is embryonic lethal. In order to investigate the function of AtCDC5 in vivo, we generated AtCDC5-RNAi plants in which the expression of AtCDC5 was reduced by RNA interference. We found that the G2 to M (G2/M) phase transition was affected in the AtCDC5-RNAi plants, and that endoreduplication was increased. Additionally, the maintenance of shoot apical meristem (SAM) function was disturbed in the AtCDC5-RNAi plants, in which both the WUSCHEL (WUS)-CLAVATA (CLV) and the SHOOT MERISTEMLESS (STM) pathways were impaired. In situ hybridization analysis showed that the expression of STM was greatly reduced in the shoot apical cells of the AtCDC5-RNAi plants. Moreover, cyclinB1 or Histone4 was found to be expressed in some of these cells when the transcript of STM was undetectable. These results suggest that AtCDC5 is essential for the G2/M phase transition and may regulate the function of SAM by controlling the expression of STM and WUS.