RESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive motor neuron degeneration and muscle paralysis. Recent evidence suggests the dysfunction of inhibitory signalling in ALS motor neurons. We have shown that embryonic day (E)17.5 spinal motoneurons (MNs) of the SOD1G93A mouse model of ALS exhibit an altered chloride homeostasis. At this prenatal stage, inhibition of spinal motoneurons (MNs) is mediated by depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs). Here, using an ex vivo preparation and patch clamp recording from MNs with a chloride equilibrium set below spike threshold, we report that low input resistance (Rin ) E17.5 MNs from the SOD1G93A ALS mouse model do not correctly integrate dGPSPs evoked by electrical stimulations of GABA/glycine inputs at different frequencies. Indeed, firing activity of most wild-type (WT) MNs with low Rin was inhibited by incoming dGPSPs, whereas low Rin SOD1G93A MNs were excited or exhibited a dual response (excited by low frequency dGPSPs and inhibited by high frequency dGPSPs). Simulation highlighted the importance of the GABA/glycine input density and showed that pure excitation could be obtained in SOD-like MNs by moving GABA/glycine input away from the cell body to dendrites. This was in agreement with confocal imaging showing a lack of peri-somatic inhibitory terminals in SOD1G93A MNs compared to WT littermates. Putative fast ALS-vulnerable MNs with low Rin are therefore lacking functional inhibition at the near-term prenatal stage. KEY POINTS: We analysed the integration of GABAergic/glycinergic synaptic events by embryonic spinal motoneurons (MNs) in a mouse model of the amyotrophic lateral sclerosis (ALS) neurodegenerative disease. We found that GABAergic/glycinergic synaptic events do not properly inhibit ALS MNs with low input resistance, most probably corresponding to future vulnerable MNs. We used a neuron model to highlight the importance of the GABA/glycine terminal location and density in the integration of the GABAergic/glycinergic synaptic events. Confocal imaging showed a lack of GABA/glycine terminals on the cell body of ALS MNs. The present study suggests that putative ALS vulnerable MNs with low Rin lack functional inhibition at the near-term stage.
Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Animales , Glicina/farmacología , Superóxido Dismutasa-1/genética , Médula Espinal/fisiología , Cloruros , Ratones Transgénicos , Neuronas Motoras/fisiología , Ácido gamma-Aminobutírico/farmacología , Modelos Animales de Enfermedad , Superóxido Dismutasa/genéticaRESUMEN
The development of the goat mammary gland is mainly under the control of ovarian hormones particularly estrogen and progesterone (P4). Amino acids play an essential role in mammary gland development and milk production, and sodium-coupled neutral amino acid transporter 2 (SNAT2) was reported to be expressed in the mammary gland of rats and bovine mammary epithelial cells, which may affect the synthesis of milk proteins or mammary cell proliferation by mediating prolactin, 17ß-estradiol (E2) or methionine function. However, whether SNAT2 mediates the regulatory effects of E2 and P4 on the development of the ruminant mammary gland is still unclear. In this study, we show that E2 and P4 could increase the proliferation of goat mammary epithelial cells (GMECs) and regulate SNAT2 mRNA and protein expression in a dose-dependent manner. Further investigation revealed that SNAT2 is abundantly expressed in the mammary gland during late pregnancy and early lactation, while knockdown and overexpression of SNAT2 in GMECs could inhibit or enhance E2- and P4-induced cell proliferation as well as mammalian target of rapamycin (mTOR) signaling. We also found that the accelerated proliferation induced by SNAT2 overexpression in GMECs was suppressed by the mTOR signaling pathway inhibitor rapamycin. This indicates that the regulation of GMECs proliferation mediated by SNAT2 in response to E2 and P4 is dependent on the mTOR signaling pathway. Finally, we found that the total content of the amino acids in GMECs changed after knocking-down and overexpressing SNAT2. In summary, the results demonstrate that the regulatory effects of E2 and P4 on GMECs proliferation may be mediated by the SNAT2-transported amino acid pathway. These results may offer a novel nutritional target for improving the development of the ruminant mammary gland and milk production.
Asunto(s)
Estrógenos , Cabras , Progesterona , Animales , Femenino , Embarazo , Aminoácidos/metabolismo , Proliferación Celular , Células Epiteliales/metabolismo , Estrógenos/metabolismo , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , Progesterona/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Laryngeal cancer, a common malignant respiratory tumor, is primarily treated through surgery. However, challenges such as recurrence, metastasis, and drug resistance persist. In recent years, multifunctional drug delivery systems (DDS) based on nanoparticles have shown great potential in improving drug loading and release. We developed a biocompatible core-shell nanoparticle system with a zinc-based metal-organic framework (MOF) as the core, named CP1. The shell, composed of polyethyleneimine (PEI), folic acid, and calcium carbonate, forms a composite called CaCO3-PEI-FA. This system enhances biocompatibility and increases the efficacy of biomedical applications. Encapsulating CP1 within the CaCO3-PEI-FA shell allows for the targeted delivery of the anticancer drug doxorubicin (DOX) to laryngeal cancer cells (Hep-2), resulting in the CaCO3-PEI-FA@CP1@DOX system. The CaCO3-PEI-FA composite exhibits strong fluorescence with a peak around 350 nm, confirming successful synthesis and demonstrating its potential as a bioimaging probe. Importantly, the nanoparticle system without DOX showed low toxicity to normal human skin fibroblasts (HSF). In vitro cytology experiments revealed a 38% inhibition rate of Hep-2 cells after 24 h, highlighting the nanocomposite's significant potential in inhibiting laryngeal cancer cell proliferation and inducing apoptosis, underscoring its promise in targeted laryngeal cancer therapy.
RESUMEN
Colorectal cancer (CRC) remains one of the most prevalent malignant tumors of the digestive system, yet the availability of safe and effective chemotherapeutic agents for clinical use remains limited. Camptothecin (CPT) and its derivatives, though approved for cancer treatment, have encountered significant challenges in clinical application due to their low bioavailability and high systemic toxicity. Strategic modification at the 7-position of CPT enables the development of novel CPT derivatives with high activity. In the present study, a series of compounds incorporating aminoureas, amino thioureas, and acylamino thioureas as substituents at the 7-position were screened. These compounds were subsequently evaluated for their cytotoxicity against the human gastric cancer (GC) cell line AGS and the CRC cell line HCT116. Two derivatives, XSJ05 (IC50 = 0.006 ± 0.003 µM) and XSJ07 (IC50 = 0.013 ± 0.003 µM), exhibited remarkably effective anti-CRC activity, being better than TPT. In addition, they have a better safety profile. In vitro mechanistic studies revealed that XSJ05 and XSJ07 exerted their inhibitory effects on CRC cell proliferation by suppressing the activity of topoisomerase I (Topo I). This suppression triggers DNA double-strand breaks, leads to DNA damage and subsequently causes CRC cells to arrest in the G2/M phase. Ultimately, the cells undergo apoptosis. Collectively, these findings indicate that XSJ05 and XSJ07 possess superior activity coupled with favorable safety profiles, suggesting their potential as lead compounds for the development of CRC therapeutics.
Asunto(s)
Antineoplásicos , Apoptosis , Camptotecina , Proliferación Celular , Neoplasias Colorrectales , ADN-Topoisomerasas de Tipo I , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Topoisomerasa I , Humanos , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/síntesis química , Camptotecina/farmacología , Camptotecina/química , Camptotecina/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , ADN-Topoisomerasas de Tipo I/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Estructura Molecular , Apoptosis/efectos de los fármacos , Tiourea/farmacología , Tiourea/química , Tiourea/síntesis química , Línea Celular TumoralRESUMEN
Chiral perovskite materials are being extensively studied as one of the most promising candidates for circularly polarized luminescence (CPL)-related applications. Balancing chirality and photoluminescence (PL) properties is of great importance for enhancing the value of the dissymmetry factor (glum), and a higher glum value indicates better CPL. Chiral perovskite/quantum dot (QD) composites emerge as an effective strategy for overcoming the dilemma that achieving strong chirality and PL in chiral perovskite while at the same time achieving high glum in this composite is very crucial. Here, we choose diphenyl sulfoxide (DPSO) as an additive in the precursor solution of chiral perovskite to regulate the lattice distortion. How structural variation affects the chiral optoelectronic properties of the chiral perovskite has been further investigated. We find that chiral perovskite/CdSe-ZnS QD composites with strong CPL have been achieved, and the calculated maximum |glum| of the composites increased over one order of magnitude after solvent-additive modulation (1.55 × 10-3 for R-DMF/QDs, 1.58 × 10-2 for R-NMP-DPSO/QDs, -2.63 × 10-3 for S-DMF/QDs, and -2.65 × 10-2 for S-NMP-DPSO/QDs), even at room temperature. Our findings suggest that solvent-additive modulation can effectively regulate the lattice distortion of chiral perovskite, enhancing the value of glum for chiral perovskite/CdSe-ZnS QD composites.
RESUMEN
Chimerism results from the fusion of two zygotes in a single embryo, whereas mosaicism results from mitotic errors in a single zygote. True human chimerism is rare, with fewer than 100 cases reported in the literature. Here, we report a case in which the fetus was identified as having tetragametic chimerism based on short tandem repeat - polymerase chain reaction analysis of the family observed during amniocentesis for advanced maternal age. The chimerism occurred via the fertilization of two ova by two spermatozoa, followed by the fusion of early embryos. The genotypes of the two amniotic fluid samples obtained successively by one puncture were completely different, and the sex chromosomes were XY. Karyotyping and copy number variation sequencing showed no abnormalities. The fetus was delivered at term and the phenotype of the newborn was normal.
Asunto(s)
Quimerismo , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Amniocentesis , Cariotipificación , FenotipoRESUMEN
OBJECTIVE: This study aimed to investigate the role of Interleukin-11 receptor alpha (IL11RA) in skin cutaneous melanoma (SKCM) metastasis to the liver. METHODS: Human SKCM cell lines (A375, A375-MA2, SK-MEL-28, RPMI-7951) and primary dermal fibroblasts (HDFa) were utilized to assess IL11RA expression. IL11RA siRNA was transfected into RPMI-7951 and A375-MA2 cells for Wound healing and Transwell invasion assays. Il11ra knockout (KO) mice and wild-type (WT) mice were injected with B16-F10 cells into the spleen to evaluate hepatic melanoma metastasis. Correlation between IL11RA and MMP family genes was explored using online databases, including LinkedOmics, TIMER (Tumor Immune Estimation Resource), and GEPIA (Gene Expression Profiling Interactive Analysis). RT-qPCR and Western blotting were performed for expression analysis of Mmp2 and Mmp9 in liver tissues of mice. The impact of IL11RA on the STAT3 pathway was investigated in vitro and in vivo. RESULTS: Elevated expression of IL11RA was observed in SKCM cell lines compared to normal cells. IL11RA downregulation significantly inhibited migratory and invasive capabilities of A375-MA2 and RPMI-7951 in vitro. Il11ra gene knockout in mice demonstrated a substantial reduction in hepatic melanoma metastasis. Correlation analyses revealed associations between IL11RA and MMP2/MMP8. Il11ra gene knockout significantly decreased Mmp2 expression while increasing Mmp8 in liver tissues. IL11RA correlated positively with STAT3, and its inhibition led to a suppressed STAT3 pathway in SKCM cells and mouse liver tissue. CONCLUSION: IL11RA plays a crucial role in SKCM metastasis, affecting migratory and invasive abilities. Targeting IL11RA may offer a promising avenue for therapeutic interventions in cutaneous melanoma progression.
Asunto(s)
Neoplasias Hepáticas , Melanoma , Neoplasias Cutáneas , Humanos , Animales , Ratones , Melanoma/patología , Neoplasias Cutáneas/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 8 de la Matriz/uso terapéutico , Subunidad alfa del Receptor de Interleucina-11RESUMEN
Antifungal-resistant dermatophytes (ARD) infection is a hotspot issue in clinical microbiology and the dermatology field. Trichophyton indotineae as the dominant species of dermatophyte with terbinafine-resistance or multidrug resistance, is easy to be missed detection clinically, which brings severe challenges to diagnosis and treatment. ARD infection cases have emerged in China, and it predicts a risk of transmission among human. Based on the existing medical evidence and research data, the Mycology Group of Combination of Traditional and Western Medicine Dermatology and Chinese AntifungalâResistant Dermatophytoses Expert Consensus Group organized experts to make consensus on the management of the infection. Here, the consensus formulated diagnosis and treatment recommendations, to raise attention to dermatophytes drug resistance problem, and expect to provide reference information for the clinical diagnosis, treatment, prevention and control.
Asunto(s)
Antifúngicos , Consenso , Farmacorresistencia Fúngica , Tiña , Humanos , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Arthrodermataceae/efectos de los fármacos , China , Tiña/tratamiento farmacológico , Tiña/microbiología , Tiña/diagnóstico , Trichophyton/efectos de los fármacos , Trichophyton/aislamiento & purificaciónRESUMEN
Nannochloropsis gaditana, a microalga known for its photosynthetic efficiency, serves as a cell factory, producing valuable biomolecules such as proteins, lipids, and pigments. These components make it an ideal candidate for biofuel production and pharmaceutical applications. In this study, we genetically engineered N. gaditana to overexpress the enzyme fructose-1,6-bisphosphatase (cyFBPase) using the Hsp promoter, aiming to enhance sugar metabolism and biomass accumulation. The modified algal strain, termed NgFBP, exhibited a 1.34-fold increase in cyFBPase activity under photoautotrophic conditions. This modification led to a doubling of biomass production and an increase in eicosapentaenoic acid (EPA) content in fatty acids to 20.78-23.08%. Additionally, the genetic alteration activated the pathways related to glycine, protoporphyrin, thioglucosides, pantothenic acid, CoA, and glycerophospholipids. This shift in carbon allocation towards chloroplast development significantly enhanced photosynthesis and growth. The outcomes of this study not only improve our understanding of photosynthesis and carbon allocation in N. gaditana but also suggest new biotechnological methods to optimize biomass yield and compound production in microalgae.
Asunto(s)
Biomasa , Fructosa-Bifosfatasa , Metabolómica , Microalgas , Fotosíntesis , Estramenopilos , Fructosa-Bifosfatasa/metabolismo , Fructosa-Bifosfatasa/genética , Estramenopilos/genética , Estramenopilos/metabolismo , Estramenopilos/crecimiento & desarrollo , Estramenopilos/enzimología , Microalgas/metabolismo , Microalgas/genética , Microalgas/crecimiento & desarrollo , Microalgas/enzimología , Metabolómica/métodos , Citosol/metabolismoRESUMEN
The commercialization of algal lipids and biofuels remains impractical due to the absence of lipogenic strains. As lipogenesis is regulated by a multitude of factors, the success in producing industrially suitable algal strains through conventional methods has been constrained. We present a new AP2 transcription factor, designated as NgAP2a, which, upon overexpression, leads to a significant increase in lipid storage in Nannochloropsis gaditana while maintaining the integrity of other physiological functions. These provide methodologies for enhancing petroleum output and optimizing the carbon fluxes associated with specific products. An integrated analysis of RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data has elucidated that the NgAP2a-induced up-regulation of critical genes is implicated in lipogenesis. Specifically, NgAP2a has been demonstrated to directly bind to the M1 motif situated within the promoter region of the KCS gene, thereby promoting the transcriptional activation of genes pertinent to lipid metabolism. In summary, we elucidate a plausible pathway whereby NgAP2a serves as a direct modulator of the KCS gene (Naga_100083g23), thereby influencing the expression levels of genes and molecules associated with lipid biosynthesis.
Asunto(s)
Metabolismo de los Lípidos , Estramenopilos , Metabolismo de los Lípidos/genética , Estramenopilos/genética , Estramenopilos/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Lipogénesis/genética , Regulación de la Expresión GénicaRESUMEN
AIMS/HYPOTHESIS: MicroRNAs are being sought as biomarkers for the early identification of type 2 diabetes. This study aimed to synthesise the evidence from microRNA-type 2 diabetes association studies and microRNA-regulated type 2 diabetes pathway delineation studies that met stringent quality criteria to identify and validate microRNAs of both statistical and biological significance as type 2 diabetes biomarkers. METHODS: Eligible controlled studies on microRNA expression profiling of type 2 diabetes were retrieved from PubMed, ScienceDirect and Web of Science. MicroRNA-regulated type 2 diabetes pathway delineation studies were conducted by integrating and cross-verifying the data from miRTarBase, TransmiR, miRecords, TargetScanHuman, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Retraction Watch database. Before meta-analysis, quality assessment was performed according to the corresponding reporting guidelines for evidence-based medicine. To select the most statistically significant microRNAs, we conducted extensive meta-analyses according to the latest methodology. Subgroup and sensitivity analyses were carried out to further examine the microRNA candidates for their tissue specificity and blood fraction specificity and the robustness of the evidence. Signalling pathway impact analysis of dysregulated microRNAs identified from meta-analyses was performed to select biologically significant microRNAs that were enriched in our newly built microRNA-regulated pathways. RESULTS: Of the 404 differentially expressed microRNAs identified in the 156 controlled profiling studies with a combined sample size of >15,000, only 60 were both consistently and significantly dysregulated in human type 2 diabetes. No microRNAs were both consistently and significantly dysregulated in multiple tissues according to subgroup analyses. In total, 58 microRNAs were found to be robust in sensitivity analyses. A total of 1966 pathway delineation studies were identified, including 3290 microRNA-target interactions, which were further combined with KEGG pathways, producing 225 microRNA-regulated pathways. Impact analysis found that 16 dysregulated microRNAs identified from extensive meta-analyses were statistically significantly enriched in the augmented KEGG type 2 diabetes pathway. CONCLUSIONS/INTERPRETATION: Sixteen microRNAs met the criteria for biomarker selection. In terms of both significance and relevance, the order of priority for verification of these microRNAs is as follows: miR-29a-3p, miR-221-3p, miR-126-3p, miR-26a-5p, miR-503-5p, miR-100-5p, miR-101-3p, mIR-103a-3p, miR-122-5p, miR-199a-3p, miR-30b-5p, miR-130a-3p, miR-143-3p, miR-145-5p, miR-19a-3p and miR-311-3p. REGISTRATION: PROSPERO registration number CRD42017081659.
Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Humanos , MicroARNs/metabolismo , Diabetes Mellitus Tipo 2/genética , Biomarcadores/metabolismo , Perfilación de la Expresión GénicaRESUMEN
As endocrine hormones, glucocorticoids (GCs) play a pivotal role in numerous physiological processes, including mammary growth and lactation, circulatory metabolism, and responses to external stimuli. In the dairy industry, milk production from cows or goats is important for newborns and economic benefits. However, the milk yields from ruminant animals are always affected by the extent of mammary development, mammary disease, stress, or changes in metabolism. Thus, it is necessary to clarify how GCs changes in ruminants affect ruminant mammary gland function and mammary disease. This review summarizes the findings identifying that GCs modulate mammary gland development before lactation, but the stress-induced excessive release of GCs leads to milk production loss. In addition, the manner of GCs release may change under different concentrations of metabolites or during mastitis or inflammatory challenge. Nevertheless, exogenous GCs administration to animals may alleviate the clinical symptoms of mastitis. This review demonstrates that GCs offer a fascinating contribution to both physiologic and pathogenic conditions of the mammary gland in ruminant animals. Characterizing and understanding these changes or functions of endogenous and exogenous GCs in animals will be crucial for developing more endocrine regulators and therapies for improving milk production in ruminants.
Asunto(s)
Glucocorticoides , Mastitis , Femenino , Humanos , Bovinos , Animales , Leche , Estrés Psicológico , RumiantesRESUMEN
INTRODUCTION AND HYPOTHESIS: Stress urinary incontinence (SUI) is a common health problem and influences women's quality of life significantly. In order to enhance health education according to a specific situation, it is essential to identify barriers to seeking help among elderly women with nonsevere SUI. The objectives were to investigate reasons for (not) seeking help for nonsevere SUI among women aged ≥60 years, and to analyze factors affecting help-seeking behavior. METHODS: We enrolled 368 women aged ≥60 years with nonsevere SUI from communities. They were asked to filled out sociodemographic information, International Consultation on Incontinence Questionnaire Short Form (ICIQ-SF), Incontinence Quality of Life (I-QOL), and self-constructed questiones on help-seeking behavior. Mann-Whitney U tests were used to analyze the different factors between seeking group and nonseeking group. RESULTS: Only 28 women (7.61%) had ever sought help from health professionals for SUI. The most frequent reason for seeking help was urine-soaked clothes (67.86%, 19 out of 28). The most frequent reason for not seeking help was that women thought it was normal (67.35%, 229 out of 340). Compared with the nonseeking group, the seeking group had higher total ICIQ-SF scores and lower total I-QOL scores. CONCLUSION: Among elderly women with nonsevere SUI, the rate of seeking help was low. Lack of correct perception about the SUI kept women from doctor visits. Women who were bothered by more severe SUI and lower quality of life were more likely to seek help.
RESUMEN
BACKGROUND: Standard noninvasive prenatal screening(NIPS) is an accurate and reliable method to screen for common chromosome aneuploidies, such as trisomy 21, 18 and 13. Extended NIPS has been used in clinic for not only aneuploidies but also copy number variants(CNVs). Here we aim to define the range of chromosomal abnormalities that should be able to identify by NIPS in order to be an efficient extended screening test for chromosomal abnormalities. METHODS: A prospective study was conducted, involving pregnant women without fetal sonographic structural abnormalities who underwent amniocentesis. Prenatal samples were analyzed using copy number variation sequencing(CNV-seq) to identify fetal chromosomal abnormalities. RESULTS: Of 28,469 pregnancies included 1,022 (3.59%) were identified with clinically significant fetal chromosome abnormalities, including 587 aneuploidies (2.06%) and 435 (1.53%) pathogenic (P) / likely pathogenic (LP) CNVs. P/LP CNVs were found in all chromosomes, but the distribution was not uniform. Among them, P/LP CNVs in chromosomes 16, 22, and X exhibited the highest frequencies. In addition, P/LP CNVs were most common on distal ends of the chromosomes and in low copy repeat regions. Recurrent microdeletion/microduplication syndromes (MMS) accounted for 40.69% of total P/LP CNVs. The size of most P/LP CNVs (77.47%) was < 3 Mb. CONCLUSIONS: In addition to aneuploidies, the scope of extended NIPS should include the currently known P/LP CNVs, especially the regions with recurrent MMS loci, distal ends of the chromosomes, and low copy repeat regions. To be effective detection should include CNVs of < 3 Mb. Meanwhile, sufficient preclinical validation is still needed to ensure the clinical effect of extended NIPS.
Asunto(s)
Variaciones en el Número de Copia de ADN , Feto , Embarazo , Humanos , Femenino , Estudios Prospectivos , Aberraciones Cromosómicas , Aneuploidia , ChinaRESUMEN
This study evaluated Listeria monocytogenes cross-contamination between inoculated fruits, waxing brush, and uninoculated fruits during apple wax coating and investigated the fate of L. monocytogenes on wax-coated apples introduced via different wax coating schemes. There were 1.8-1.9 log10 CFU/apple reductions of L. monocytogenes on PrimaFresh 360, PrimaFresh 606, or Shield-Brite AP-450 coated apples introduced before wax coating after 6 weeks of ambient storage (22 °C and ambient relative humidity). L. monocytogenes showed a similar trend (P > 0.05) on waxed apples under cold storage (1 °C and â¼ 90% relative humidity); there were 1.8-2.0 log10 CFU/apple reductions of L. monocytogenes during the 12 weeks of cold storage regardless of wax coating type. For cross-contamination study, a waxing brush was used to wax one inoculated apple (6.2 log10 CFU/apple); then, this brush was used to wax five uninoculated apples in a sequence. There were 3.7, 3.5, 3.3, 2.9, and 2.7 log10 CFU/apple and 3.6 log10 CFU/brush of L. monocytogenes transferred from the inoculated apple to uninoculated apple 1 to apple 5, and the waxing brush, respectively. The die-off rate of L. monocytogenes on wax-coated apples contaminated during wax coating was not significantly different from that contaminated on apples before wax coating, and 1.8-1.9 log10 CFU/apple reductions were observed during the 12 weeks of cold storage. The application of wax coatings, regardless of wax coating type, did not impact the survival of endogenous yeasts and molds on apples during ambient or cold storage. L. monocytogenes transferred onto waxing brushes during wax coating remained relatively stable during the 2-week ambient holding. Fungicide application during wax coating reduced (P < 0.05) yeast and mold counts but had a minor impact (P > 0.05) on the survival of L. monocytogenes on apples after 12 weeks of cold storage. Collectively, this study indicated that a high cross-contamination risk of L. monocytogenes during apple waxing, and L. monocytogenes on wax-coated apples introduced via different scenarios is stable during subsequent cold storage, highlighting the need for potential intervention strategies to control L. monocytogenes on wax-coated apples.
Asunto(s)
Fungicidas Industriales , Listeria monocytogenes , Malus , Ceras/farmacología , Frutas , Saccharomyces cerevisiaeRESUMEN
Fungicides are widely used to prevent fungal growth and reduce mycotoxin contamination in food, which provides the opportunity for the co-occurrence of mycotoxins and fungicide residues in food and poses a greater risk to human health. To assess the combined effects of a naturally occurring mycotoxin, citrinin (CIT), and a widely used triazole fungicide, triadimefon (TAD) on different biological processes, the comparative toxicogenomics database was used to obtain phenotypes and response genes for CIT or TAD exposure. Then individual and combined exposure models were developed with zebrafish embryos, and the interaction between CIT and TAD was analyzed using the 2 × 2 factorial design approach to observe the toxic effects. Through data mining analysis, our results showed that CIT or TAD exposure is related to different biological phenotypes, such as cell death, regulation of antioxidant systems, and thyroid hormone metabolism. Our results also showed that CIT (4-day LC50 value of 12.7 mg/L) exposure possessed higher toxicity to zebrafish embryos compared with TAD (4-day LC50 value of 29.6 mg/L). Meanwhile, individual exposure to CIT and TAD altered the expression levels of biomarkers related to oxidative stress, inflammation, apoptosis and hypothalamic-pituitary-thyroid (HPT) axis. Notably, combined exposure to CIT and TAD induced changes in the mentioned biological processes and had an interactive effect on the expression of multiple biomarkers. In conclusion, we evaluated the toxic effects of CIT and TAD in isolation and combination by in-vivo experiments, which provide a new methodological basis and reference for future risk assessment and setting of safety limits for foodborne toxicants.
Asunto(s)
Citrinina , Fungicidas Industriales , Animales , Humanos , Citrinina/toxicidad , Fungicidas Industriales/toxicidad , Pez Cebra , Toxicogenética , Biomarcadores , Triazoles/toxicidadRESUMEN
The cell cycle is the fundamental cellular process of eukaryotes. Although cell-cycle-related genes have been identified in microalgae, their cell cycle progression differs from species to species. Cell enlargement in microalgae is an essential biological trait. At the same time, there are various causes of cell enlargement, such as environmental factors, especially gene mutations. In this study, we first determined the phenotypic and biochemical characteristics of a previously obtained enlarged-cell-size mutant of Nannochloropsis oceanica, which was designated ECS. Whole-genome sequencing analysis of the insertion sites of ECS indicated that the insertion fragment is integrated inside the 5'-UTR of U/P-type cyclin CYCU;1 and significantly decreases the gene expression of this cyclin. In addition, the transcriptome showed that CYCU;1 is a highly expressed cyclin. Furthermore, cell cycle analysis and RT-qPCR of cell-cycle-related genes showed that ECS maintains a high proportion of 4C cells and a low proportion of 1C cells, and the expression level of CYCU;1 in wild-type (WT) cells is significantly increased at the end of the light phase and the beginning of the dark phase. This means that CYCU;1 is involved in cell division in the dark phase. Our results explain the reason for the larger ECS size. Mutation of CYCU;1 leads to the failure of ECS to fully complete cell division in the dark phase, resulting in an enlargement of the cell size and a decrease in cell density, which is helpful to understand the function of CYCU;1 in the Nannochloropsis cell cycle.
Asunto(s)
Ciclinas , Microalgas , Humanos , Hipertrofia , Tamaño de la Célula , Aumento de la Célula , División Celular , Regiones no Traducidas 5' , Microalgas/genéticaRESUMEN
Chemotherapy is commonly used clinically to treat colorectal cancer, but it is usually prone to drug resistance, so novel drugs need to be developed continuously to treat colorectal cancer. Neocryptolepine derivatives have attracted a lot of attention because of their good cytotoxic activity; however, cytotoxicity studies on colorectal cancer cells are scarce. In this study, the cytotoxicity of 8-methoxy-2,5-dimethyl-5H-indolo[2,3-b] quinoline (MMNC) in colorectal cells was evaluated. The results showed that MMNC inhibits the proliferation of HCT116 and Caco-2 cells, blocks the cell cycle in the G2/M phase, decreases the cell mitochondrial membrane potential and induces apoptosis. In addition, the results of western blot experiments suggest that MMNC exerts cytotoxicity by inhibiting the expression of PI3K/AKT/mTOR signaling pathway-related proteins. Based on these results, MMNC is a promising lead compound for anticancer activity in the treatment of human colorectal cancer.
Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Quinolinas , Humanos , Antineoplásicos/farmacología , Apoptosis , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
BACKGROUND: The broad application of high-resolution chromosome detection technology in prenatal diagnosis has identified copy number loss (CNL) involving autosomal dominant (AD) genes in certain fetuses. Exon sequencing of fetuses exhibiting structural anomalies yields diagnostic information in up to 20% of cases. However, there is currently no relevant literature about the genetic origin and pregnancy outcome of CNL involving AD genes in fetuses without structural abnormalities. RESULTS: This was a prospective study involving pregnant women who underwent amniocentesis for fetal copy number variation sequencing (CNVseq). Detection of parent-of-origin was suggested in cases of samples with CNL involving AD genes and the pregnancy outcome was monitored. Amniotic fluid samples from 24,844 fetuses without structural abnormalities were successfully tested via CNVseq. The results showed that 134 fetuses (0.5%) had small CNL (< 10 Mb) containing AD genes, after excluding microdeletion and microduplication syndrome and polymorphisms. By monitoring the pregnancy outcomes of the 134 fetuses, we found that 104 (77.6%) were good, 13 (9.7%) were adverse, and 17 (12.7%) pregnant women voluntarily chose to terminate pregnancy. Of the 13 fetuses with adverse pregnancy outcomes, only 2 fetuses had phenotypes consistent with those of diseases caused by AD genes involved in CNL. CONCLUSIONS: The overall prognosis for fetuses without family history or structural abnormalities but with small CNL containing AD genes detected during pregnancy is good. The genetic origin, overlap status of established haploinsufficient gene and/or region, size of the CNL, and genetic mode may affect the pathogenicity of the CNL.
Asunto(s)
Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Resultado del Embarazo , Cromosomas , Femenino , Feto , Genes Dominantes , Humanos , Embarazo , Estudios ProspectivosRESUMEN
A rod-shaped, Gram-stain-negative, aerobic and non-motile bacterium, designated strain Y4T, was isolated from an aquaculture farm in Xiamen, PR China. Strain Y4T had 94.8, 93.3 and 91.8â% 16S rRNA gene sequence similarity to Paremcibacter congregatus ZYLT, Emcibacter nanhaiensis HTCJW17T and Luteithermobacter gelatinilyticus MEBiC09520T, respectively. The genomic DNA G+C content of strain Y4T was 42.7âmol%. The average amino acid identity and percentage of conserved proteins values between strain Y4T and type strains of the family Emcibacteraceae were 57.9-58.6â% and 44.5-47.6â%, respectively. Optimal growth was observed at 28 °C, at pH 7.0 and with 2â% (w/v) NaCl. The novel strain Y4T required Ca2+, K+ and Mg2+ ions in addition to NaCl for growth. The dominant fatty acids of strain Y4T were summed feature 3 (C16â:â1 ω7c/C16â:â1 ω6c), summed feature 8 (C18â:â1 ω7c/C18â:â1 ω6c) and C14â:â0 2-OH. The polar lipid profile contained phosphatidylethanolamine, phosphatidyglycerol, three unidentified aminolipids, four unidentified aminophospholipids and two unidentified lipids. Cells contained exclusively ubiquinone Q-10. On the basis of the polyphasic analysis, strain Y4T (=MCCC 1K06278T=KCTC 82926T) is considered to represent a novel species in a novel genus of the family Emcibacteraceae, for which the name Pseudemcibacter aquimaris gen. nov., sp. nov. is proposed.