Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(4): 5397-5409, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439267

RESUMEN

Active-polarization imaging holds significant promise for achieving clear underwater vision. However, only static targets were considered in previous studies, and a background region was required for image restoration. To address these issues, this study proposes an underwater dynamic polarization imaging method based on image pyramid decomposition and reconstruction. During the decomposition process, the polarized image is downsampled to generate an image pyramid. Subsequently, the spatial distribution of the polarization characteristics of the backscattered light is reconstructed by upsampling, which recovered the clear scene. The proposed method avoids dependence on the background region and is suitable for moving targets with varying polarization properties. The experimental results demonstrate effective elimination of backscattered light while sufficiently preserving the target details. In particular, for dynamic targets, processing times that fulfill practical requirements and yield superior recovery effects are simultaneously obtained.

2.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38400288

RESUMEN

Remote sensing image classification (RSIC) is designed to assign specific semantic labels to aerial images, which is significant and fundamental in many applications. In recent years, substantial work has been conducted on RSIC with the help of deep learning models. Even though these models have greatly enhanced the performance of RSIC, the issues of diversity in the same class and similarity between different classes in remote sensing images remain huge challenges for RSIC. To solve these problems, a duplex-hierarchy representation learning (DHRL) method is proposed. The proposed DHRL method aims to explore duplex-hierarchy spaces, including a common space and a label space, to learn discriminative representations for RSIC. The proposed DHRL method consists of three main steps: First, paired images are fed to a pretrained ResNet network for extracting the corresponding features. Second, the extracted features are further explored and mapped into a common space for reducing the intra-class scatter and enlarging the inter-class separation. Third, the obtained representations are used to predict the categories of the input images, and the discrimination loss in the label space is minimized to further promote the learning of discriminative representations. Meanwhile, a confusion score is computed and added to the classification loss for guiding the discriminative representation learning via backpropagation. The comprehensive experimental results show that the proposed method is superior to the existing state-of-the-art methods on two challenging remote sensing image scene datasets, demonstrating that the proposed method is significantly effective.

3.
Opt Express ; 31(5): 7212-7225, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859857

RESUMEN

Underwater active polarization imaging is a promising imaging method, however, it is ineffective in some scenarios. In this work, the influence of the particle size from isotropic (Rayleigh regime) to forward-scattering on polarization imaging is investigated by both Monte Carlo simulation and quantitative experiments. The results show the non-monotonic law of imaging contrast with the particle size of scatterers. Furthermore, through polarization-tracking program, the polarization evolution of backscattered light and target diffuse light are detailed quantitatively with Poincaré sphere. The findings indicate that the noise light's polarization and intensity scattering field change significantly with the particle size. Based on this, the influence mechanism of the particle size on underwater active polarization imaging of reflective targets is revealed for the first time. Moreover, the adapted principle of scatterer particle scale is also provided for different polarization imaging methods.

4.
Opt Express ; 31(13): 21988-22000, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381283

RESUMEN

Active polarization imaging techniques have tremendous potential for a variety of underwater applications. However, multiple polarization images as input are necessary for almost all methods, thereby limiting the range of applicable scenarios. In this paper, via taking full advantage of the polarization feature of target reflective light, the cross-polarized backscatter image is reconstructed via introducing an exponential function for the first time, only based on mapping relations of co-polarized image. Compared with rotating the polarizer, the result performs a more uniform and continuous distribution of grayscale. Furthermore, the relationship of degree of polarization (DOP) between the whole scene and backscattered light is established. This leads to an accurate estimation of backscattered noise and high-contrast restored images. Besides, single-input greatly simplifies the experimental process and upgrades efficiency. Experimental results demonstrate the advancement of the proposed method for objects with high polarization under various turbidities.

5.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): 1022-1028, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706755

RESUMEN

Efficient coupling between optical fibers and high-index-contrast silicon waveguides is essential for the development of integrated nanophotonics. Herein, a high-efficiency dual-layer grating coupler is demonstrated for vertical polarization-diversity fiber-chip coupling. The two waveguide layers are orthogonally distributed and designed for y- and x-polarized L P 01 fiber modes, respectively. Each layer consists of two 1D stacked gratings, allowing for both perfectly vertical coupling and high coupling directionality. The gratings are optimized using the particle swarm algorithm with a preset varying trend of parameters to thin out the optimization variables. The interlayer thickness is determined to ensure efficient coupling of both polarizations. The optimized results exhibit record highs of 92% (-0.38d B) and 85% (-0.72d B) 3D finite-difference time-domain simulation efficiencies for y and x polarizations, respectively. The polarization-dependent loss (PDL) is below 2 dB in a 160 nm spectral bandwidth with cross talk between the two polarizations less than -24d B. Fabrication imperfections are also investigated. Dimensional offsets of ±10n m in etching width and ±8 nm in lateral shift are tolerated for a 1 dB loss penalty. The proposed structure offers an ultimate solution for polarization diversity coupling schemes in silicon photonics with high directionality, low PDL, and a possibility to vertically couple.

6.
Opt Express ; 30(24): 43973-43986, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36523083

RESUMEN

Underwater active polarization imaging is promising due to its effect of significantly descattering. Polarization-difference is commonly used to filter out backscattered noise. However, the polarization common-mode rejection of target signal has rarely been utilized. In this paper, via taking full advantage of this feature of Stokes vectors S2 which ably avoids interference from target light, the spatial variation of the degree of polarization of backscattered light is accurately estimated, and the whole scene intensity distribution of background is reconstructed by Gaussian surface fitting based on least square. Meanwhile, the underwater image quality measure is applied as optimization feedback, through iterative computations, not only sufficiently suppresses backscattered noise but also better highlights the details of the target. Experimental results demonstrate the effectiveness of the proposed method for highly polarized target in strongly scattering water.

7.
Opt Express ; 30(22): 39479-39491, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298899

RESUMEN

The optical path difference (OPD) equations of the dual Wollaston prisms (DWP) with an adjustable air gap (AG) are derived by the wave normal tracing method, which is suitable for arbitrary incidence plane and angle. The spatial distribution of the OPD for various AG is presented. The validity of the OPD equation is verified by comparing the calculated interferograms with experimentally observed one. The performance of a novel static birefringent Fourier transform imaging spectrometer (SBFTIS) based on the DWP is investigated. The spectral resolution can be adjusted by changing the AG and the field of view can reach 10.0°, which is much larger than that predicted by our previous work. The results obtained in this article provide a theoretical basis for completely describing the optical transmission characteristic of the DWP and developing the high-performance birefringent spectral zooming imaging spectrometer.

8.
Org Biomol Chem ; 20(41): 8042-8048, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36200914

RESUMEN

A metal-free visible-light-driven cascade cyclization reaction to synthesize 3-methyl-3-acetophenone-2-oxindoles and 3-methyl-3-(methylsulfonyl)benzene-2-oxindoles in yields up to 96% and 99%, via benzoyl and phenylsulfinyl radicals with acrylamide derivatives is reported, respectively. Extensive studies, including gram-scale, radical capture and isotope experiments, were performed to indicate that the reaction may involve a radical process.


Asunto(s)
Acrilamida , Benceno , Ciclización , Oxindoles , Indoles , Metales , Acetofenonas
9.
Nanotechnology ; 34(10)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36537741

RESUMEN

Herein, we proposed a simple non-lithographic way to fabricate hierarchical Al nanopit arrays performed as deep ultraviolet (DUV, 200-300 nm) refractive index sensing. Only by adjusting the Al deposition thickness on the Al nanopit array, the hierarchical Al nanopit arrays with tunable plasmonic properties in the DUV region were obtained. The prepared hierarchical Al nanopit arrays are of very good time stability and its RI sensitivity and concentration detection limit of adenine ethanol solution reach 311 nm/RIU and5×10-6M,respectively, as the Al deposition thickness is 60 nm. Furthermore, the electric field distribution simulation results show that high RI sensing characteristic are mainly attributed to the local surface plasmon resonance. This investigation provides a facile way to develop low cost, high efficient and easily fabricated Al-based RI sensor in the DUV region.

10.
Opt Express ; 29(19): 30259-30271, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614752

RESUMEN

The appropriate broadband design of a de/multiplexer can significantly increase the channel number and consequently the transmission capacity of a wavelength division multiplexing system. Herein, we present the first ultra-broadband Bragg concave diffraction grating (CDG) on a 220-nm silicon-on-insulator, covering most of the E, S, C, L, and U telecommunication wavebands spanning from 1.425 to 1.675 µm. A wide-band-gap Bragg mirror is employed to facilitate broadband reflection, with a low diffraction order of grating for a sufficient free spectral range. Numerical simulations show that the proposed approaching blazed concave diffraction grating (AB-CDG) for the two-material case exhibits a high integration, simple fabrication process, and promising spectral performance. We fabricate the grating for design verification with a low transmission loss of -0.6 dB and a crosstalk below -33.7 dB for the eight measured wavelength channels covering the spectral range from 1.5 to 1.61 µm that is limited by the bandwidth of the grating coupler. This design can be used for broadband wavelength demultiplexing, frontier astronomical observation, and spectroscopic imaging.

11.
Opt Express ; 28(22): 33718-33730, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33115031

RESUMEN

Full polarization imaging plays an important role in remote sensing to distinguish artificial objects from the natural environment, recognizing objects in shadows and sun glint suppression. In this paper, we propose a broadband full Stokes channeled modulated polarization imaging system based on a Mach-Zehnder-grating interferometer (MZGI) with advantages such as compact size, low cost, snapshot ability, and high optical efficiency. It uses gratings to compensate for the dispersion of the carried frequency when inputting broadband light to generate interference fringes. Two detectors are assembled to the output plane to acquire the interference fringes. Each image obtained by the detectors can be individually demodulated into different Stokes parameters individually. When the two groups are combined together, the full Stokes parameters are obtained. The simulation and optical efficiency analysis demonstrate that the interference fringes can obtain the full polarization information simultaneously with high optical efficiency in broadband wavelengths.

12.
J Opt Soc Am A Opt Image Sci Vis ; 37(2): 316, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32118912

RESUMEN

This publisher's note corrects an affiliation in J. Opt. Soc. Am. A36, 1585 (2019)JOAOD60740-323210.1364/JOSAA.36.001585.

13.
Ecotoxicol Environ Saf ; 203: 110990, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888601

RESUMEN

The presence of sulfamethoxazole (SMX) in croplands has become an international concern. The environmental behavior and fate of SMX in agricultural soils are not well understood, especially when the adsorption behavior is disturbed by the dissolved organic matter (DOM) released by crop straw. As canola straw is one of the biomasses widely returned to farmlands, we characterized DOM derived from pristine and decomposed canola straw, and explored the effects and mechanisms of the DOMs on regulating SMX adsorption to purple paddy soils. The spectral analysis showed that the molecular weight, aromaticity, and hydrophobicity of canola straw-derived DOM increased as decomposition proceeded. These physicochemical properties collectively determined the effects of the DOM on SMX adsorption. The DOM derived from pristine canola straw increased SMX maximum adsorption capacity of the soils by approximately 2.6 times, but this positive effect gradually decreased to a steady state by day 90 in the straw decomposition period. Nevertheless, the SMX adsorption behavior in the soils was invariably determined by the DOM extracts. These adsorption processes of SMX were well fitted by the double-chamber kinetics model and the Langmuir and Freundlich thermodynamic models. Thermodynamic parameters indicated that SMX adsorption onto the soils was spontaneous and endothermic, and this adsorption characteristics was not significantly (p > 0.05) changed by the DOM extracts. However, the adsorption kinetics were altered by those DOMs, i.e., the fast and slow adsorption processes were both diminished. Correspondingly, co-adsorption and cumulative adsorption were identified as the main mechanisms determining SMX adsorption to the purple paddy soils in the presence of the straw-derived DOMs. These results collectively indicated that the DOMs released by straw in croplands may decrease the ecological risks of organic pollutants by inhibiting their migration processes.


Asunto(s)
Brassica/química , Contaminantes del Suelo/química , Suelo/química , Sulfametoxazol/química , Adsorción , Agricultura , Oryza/crecimiento & desarrollo , Ensilaje
14.
J Opt Soc Am A Opt Image Sci Vis ; 36(9): 1585-1590, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503855

RESUMEN

The conventional concave diffraction grating (CDG) is commonly operated as a coarse demultiplexer device due to significant increases in the chip size and cost for large dispersion. Compact dense wavelength multiplexing is proposed and demonstrated by utilizing a dual-input CDG integrated with dielectric multidirectional reflectors. This structure allows light beams incident from two different directions to be efficiently reflected and get diffracted into the respective output waveguides by a single grating, thus creating a doubled channel number and halved channel spacing while keeping the chip size constant. The dielectric multidirectional reflector is designed by one-dimensional photonic crystal theory and used as the grating tooth to provide high reflectivities over a wide angular range. Simulation results suggest that the dual-input CDG with incident angles of 1° and 6° exhibits efficiency of more than $-0.564 \,\,{\rm{dB}} $ and crosstalk less than $-21.2 \,\,{\rm{dB}} $.

15.
J Opt Soc Am A Opt Image Sci Vis ; 36(4): 641-646, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31044984

RESUMEN

A concave diffraction grating (CDG), based on circular Bragg mirrors, was constructed on the 220 nm silicon-on-insulator (SOI) platform. This continuous and smooth dielectric mirror is employed to eliminate the extra scattering loss occurring at the connection with neighboring grating teeth. A perfect match between the Bragg condition and the grating condition was derived in order to determine the geometrical parameters of the grating profile. finite-difference time-domain (FDTD) simulation shows that the reflection of the designed Bragg mirror can be up to 99.7% over a broad bandwidth of 330 nm. And the grating with circular Bragg mirrors exhibits low insertion loss in a relatively high order of M=5 with some unwanted diffraction orders suppressed, thus creating a large dispersion while keeping compact structure.

16.
Ecotoxicol Environ Saf ; 169: 737-746, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30502524

RESUMEN

The objectives of this study were to investigate the adsorption and transfer behaviors of phenanthrene (PHE) and bisphenol A (BPA) in purple paddy soils amended with dissolved organic matter (DOM) derived from rice and canola straw in the West Sichuan Plain of China. In the pristine soil, PHE was preferentially adsorbed on both pristine clayey (L) and sandy (T) paddy soils than BPA, indicating that the retention/adsorption by soils is closely dependent on the chemical properties of organic pollutants (OPs). The noticeably higher adsorption of PHE and BPA on smaller size fraction of the soils (L2 and T2) were observed, possibly due to their higher surface areas and higher content in organic matters with higher aromaticity and hydrophobicity in this soil fraction. The DOMs derived from rice (RDOM) and canola (CDOM) straws possessed remarkable differences in E2/E3 and SUV254 measurements, which reflected that their chemical composition might be different. When CDOM was introduced in the studied soil T1, adsorption of BPA was doubled, but the augment in adsorption was much less impressive with RDOM, showing the nature of derived DOM played an important role. The study also demonstrated that in the fine fraction of clayey soil (L2), the retention of a same OP (PHE) was remarkably dropped when CDOM or RDOM was introduced, whereas in a sandy soil of the same size fraction (T2), the phenomenon was the opposite, suggesting a potential risk that, in certain types of soil, the introduction of straw derived DOMs may enhance the mobility of some OPs. The humification time of straw seems not to affect the adsorptions of OPs in most studied systems. Adsorption kinetics of PHE and BPA in the adsorption systems with derived DOMs were well fitted to the two-step first-order model with radj2 values of 0.994-0.998. Results of this study will provide further comprehensive fundamental data for risk assessment and control of organic pollutants (OPs) in farmland ecosystems.


Asunto(s)
Compuestos de Bencidrilo/análisis , Oryza/química , Fenantrenos/análisis , Fenoles/análisis , Contaminantes del Suelo/análisis , Suelo/química , Adsorción , China
17.
Opt Express ; 26(11): 14700-14709, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29877406

RESUMEN

In the recent past, optical spectroscopy and imaging methods for biomedical diagnosis and target enhancing have been widely researched. The challenge to improve the performance of these methods is to know the sensitive depth of the backwards detected light well. Former research mainly employed a Monte Carlo method to run simulations to statistically describe the light sensitive depth. An experimental method for investigating the sensitive depth was developed and is presented here. An absorption plate was employed to remove all the light that may have travelled deeper than the plate, leaving only the light which cannot reach the plate. By measuring the received backwards light intensity and the depth between the probe and the plate, the light intensity distribution along the depth dimension can be achieved. The depth with the maximum light intensity was recorded as the sensitive depth. The experimental results showed that the maximum light intensity was nearly the same in a short depth range. It could be deduced that the sensitive depth was a range, rather than a single depth. This sensitive depth range as well as its central depth increased consistently with the increasing source-detection distance. Relationships between sensitive depth and optical properties were also investigated. It also showed that the reduced scattering coefficient affects the central sensitive depth and the range of the sensitive depth more than the absorption coefficient, so they cannot be simply added as reduced distinct coefficients to describe the sensitive depth. This study provides an efficient method for investigation of sensitive depth. It may facilitate the development of spectroscopy and imaging techniques for biomedical diagnosis and underwater imaging.

18.
Cell Physiol Biochem ; 42(2): 537-550, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28578322

RESUMEN

AIMS: Marijuana is a widely used illicit drug and its consumption during pregnancy has been associated with adverse reproductive outcomes. The purpose of this study was to determine the effects of chronic intake of Δ9-tetrahydrocannabinol (THC), the major component of marijuana, on trophoblast function, placental development, and birth outcomes. METHODS: The pathological characteristics and distribution of cannabinoid receptors in placenta were observed by immunohistochemical (IHC) staining. Cell migration in response to THC was measured by transwell assays. The levels of cannabinoid receptors and Signal Transducer and Activator of Transcription 3 (STAT3) were detected by western blot. RESULTS: We found the placenta expressed two main cannabinoid receptors, suggesting that THC induced biological responses in placental cells. Supporting this hypothesis, we observed dramatic alterations of placental morphology in marijuana users. Using THC and inhibitors of cannabinoid receptors, we demonstrated that THC impaired trophoblast cell migration and invasion partly via cannabinoid receptors. Additionally, pregnant mice injected with THC showed adverse reproductive events including reduced number of fetuses, lower maternal and placental weights. Mechanistically, STAT3 signaling pathway was involved in the THC-induced suppression of trophoblast cell motility and pregnancy outcomes. CONCLUSION: Our study indicates that the STAT3 signaling pathway plays a critical role in THC-induced trophoblast dysfunction.


Asunto(s)
Cannabis/efectos adversos , Dronabinol/efectos adversos , Abuso de Marihuana/genética , Factor de Transcripción STAT3/genética , Adulto , Animales , Tasa de Natalidad , Cannabinoides/efectos adversos , Femenino , Humanos , Abuso de Marihuana/patología , Ratones , Placenta/efectos de los fármacos , Placenta/patología , Embarazo , Receptores de Cannabinoides/biosíntesis , Receptores de Cannabinoides/genética , Factor de Transcripción STAT3/biosíntesis , Transducción de Señal/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Trofoblastos/patología
19.
J Opt Soc Am A Opt Image Sci Vis ; 34(2): 259-263, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28157852

RESUMEN

An expression of the degree of polarization (DOP) based on the geometrical optics polarimetric bidirectional reflectance distribution function model is presented. In this expression, the DOP is related to the surface roughness and decreases at different reflection angles because diffuse reflection is taken into consideration. A shadowing/masking function introduced into the specular reflection expression makes the DOP values decrease as the angle of incidence or observation approaches grazing. Different kinds of materials were measured to validate the accuracy of this DOP expression. The measured results suggest that the errors of the DOP are reduced significantly, and the polarized reflection characteristics can be described more reasonably and accurately.

20.
Opt Express ; 23(17): 22788-99, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26368247

RESUMEN

The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA