Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(11): e2112679119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35275793

RESUMEN

SignificanceMany crystallization processes occurring in nature produce highly ordered hierarchical architectures. Their formation cannot be explained using classical models of monomer-by-monomer growth. One of the possible pathways involves crystallization through the attachment of oriented nanocrystals. Thus, it requires detailed understanding of the mechanism of particle dynamics that leads to their precise crystallographic alignment along specific faces. In this study, we discover a particle-morphology-independent oriented attachment mechanism for hematite nanocrystals. Independent of crystal morphology, particles always align along the [001] direction driven by aligning interactions between (001) faces and repulsive interactions between other pairs of hematite faces. These results highlight that strong face specificity along one crystallographic direction can render oriented attachment to be independent of initial particle morphology.

2.
J Am Chem Soc ; 146(1): 79-83, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38014906

RESUMEN

Investigating the process of crystalline transformation in metal-organic frameworks (MOFs) has significant implications in advancing our understanding of the growth mechanisms and design of innovative materials. This study achieves a theoretically impossible transformation direction from three-dimensional (3D) zeolitic imidazolate nanocubes (ZIF) to two-dimensional (2D) ZIF nanoframes through the Marangoni effect in droplets. This transformation challenges the established belief that only a transition from 2D ZIF-L to 3D ZIF-67 is possible, which neglects the reverse process. Finite element analysis indicates that the conversion from 3D ZIF to 2D ZIF is feasible when uniform mass distribution and heat transport are guaranteed under Marangoni flow. This research not only demonstrates an alternative pathway for MOF crystalline transformation but also provides a fresh perspective on the construction of MOF nanoframes.

3.
J Am Chem Soc ; 146(11): 7752-7762, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38447176

RESUMEN

Electrochemical nitrogen reduction reaction (eNRR) offers a sustainable route for ammonia synthesis; however, current electrocatalysts are limited in achieving optimal performance within narrow potential windows. Herein, inspired by the heliotropism of sunflowers, we present a biomimetic design of Ru-VOH electrocatalyst, featuring a dynamic Ru-O-V pyramid electron bridge for eNRR within a wide potential range. In situ spectroscopy and theoretical investigations unravel the fact that the electrons are donated from Ru to V at lower overpotentials and retrieved at higher overpotentials, maintaining a delicate balance between N2 activation and proton hydrogenation. Moreover, N2 adsorption and activation were found to be enhanced by the Ru-O-V moiety. The catalyst showcases an outstanding Faradaic efficiency of 51.48% at -0.2 V (vs RHE) with an NH3 yield rate exceeding 115 µg h-1 mg-1 across the range of -0.2 to -0.4 V (vs RHE), along with impressive durability of over 100 cycles. This dynamic M-O-V pyramid electron bridge is also applicable to other metals (M = Pt, Rh, and Pd).

4.
Small ; : e2401221, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593294

RESUMEN

Nitrogen doping has been recognized as an important strategy to enhance the oxygen reduction reaction (ORR) activity of carbon-encapsulated transition metal catalysts (TM@C). However, previous reports on nitrogen doping have tended to result in a random distribution of nitrogen atoms, which leads to disordered electrostatic potential differences on the surface of carbon layers, limiting further control over the materials' electronic structure. Herein, a gradient nitrogen doping strategy to prepare nitrogen-deficient graphene and nitrogen-rich carbon nanotubes encapsulated cobalt nanoparticles catalysts (Co@CNTs@NG) is proposed. The unique gradient nitrogen doping leads to a gradual increase in the electrostatic potential of the carbon layer from the nitrogen-rich region to the nitrogen-deficient region, facilitating the directed electron transfer within these layers and ultimately optimizing the charge distribution of the material. Therefore, this strategy effectively regulates the density of state and work function of the material, further optimizing the adsorption of oxygen-containing intermediates and enhancing ORR activity. Theoretical and experimental results show that under controlled gradient nitrogen doping, Co@CNTs@NG exhibits significantly ORR performance (Eonset = 0.96 V, E1/2 = 0.86 V). At the same time, Co@CNTs@NG also displays excellent performance as a cathode material for Zn-air batteries, with peak power density of 132.65 mA cm-2 and open-circuit voltage (OCV) of 1.51 V. This work provides an effective gradient nitrogen doping strategy to optimize the ORR performance.

5.
Chemistry ; 30(24): e202304287, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38380560

RESUMEN

Aqueous zinc ion batteries have been extensively researched due to their distinctive advantages such as low cost and high safety. Vanadium oxides are important cathode materials, however, poor cycle life caused by vanadium dissolution limits their application. Recent studies show that the lattice NH4 + in vanadium oxides can act as a pillar to enhance structural stability and play a crucial role in improving its cycling stability. Nevertheless, there is still a lack of research on the effect of the lattice NH4 + content on structural evolution and electrochemical performance. Herein, we synthesize vanadium oxides with different contents of lattice NH4 + by a one-step hydrothermal reaction. The vanadium oxides with lattice NH4 + exhibit high initial capacity, as well as good cycling stability and rate performance compared to bare vanadium oxide. Combined with electrochemical analyses, ex-situ structural characterizations, and in-situ X-ray diffraction tests, we reveal that the lattice NH4 + content plays a positive role in vanadium oxides' structural stability and cation diffusion kinetics. This work presents a direction for designing high-performance vanadium cathodes for aqueous zinc ion batteries.

6.
Plant Dis ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381964

RESUMEN

Flue-cured tobacco (Nicotiana tabacum L.) is a significant cash crop globally. In August 2022, necrotic lesions on stem associated with root rot and wilting were observed on flue-cured tobacco (Cv. Yunyan 87) in fields located in Banxin village (27.95N,109.60E) of Fenghuang county in Xiangxi Autonomous Prefecture, Hunan Province, China. The affected and damaged area of tobacco is approximately 10 hectares, with adisease incidence of 60%. Lots of small black speckling within the lower stem of the affected plant, vascular tissue changed to black, dry rot, and looked like charcoal breezes. Small pieces were cut from healthy and diseased tissues, surface sterilized with 5% NaClO for 3 min and 75% ethanol for 1 min, rinsed with sterile distilled water and air-drying, incubated on oat medium incubated at 28℃ for five days. These isolates grew fast and produced typical black microsclerotia. The morphological were septate hyphae and microsclerotia. The microsclerotia were black and regularly round, with a 42.5 - 92.9 µm diameter. These morphological features were consistent with Macrophomina phaseolina (Smith and Wyllie 1999). The internal transcribed spacer (ITS) rDNA and translation elongation factor 1-α (TEF1-α) genes of three representative isolates were amplified and sequenced using the primers ITS1/ITS4 and EF1-728F/EF2R (Machado et al. 2019). Our resulting sequences (GenBank accessions OR435093, OR435101, OR435102 for ITS; OR891780, OR891781 and OR891782 for EF1-α) showed 99-100% similarity with M. phaseolina by NCBI blast. Phylogenetic analysis was conducted using MEGA-X software with the NJ method. The combined sequences grouped with isolates to M. phaseolina with 100% bootstrap support. The strain XF22 has been sent to the China General Microbiological Culture Collection Center (CGMCC3.25349). Pathogenicity tests were conducted by inoculating potted plants (six plants per isolate, three times) from 45 day-old tobacco seedlings cv. Yunyan 87. Stems were randomly gently scratched with sterile needles, and a 5 mm agar disc with mycelium of the pathogen was attached to the surface of each wound, with a sterilized agar disc as control. Inoculated seedlings were incubated in growth chambers at 26℃ and 60% RH with a 12 h photoperiod/day. After ten days, symptoms that brown or black lesions on the inoculated lesions were dotted with numerous black, hard microsclerotia similar to those naturally occurring on the diseased plants, but not on the control plants. The same pathogen was re-isolated consistently, fulfilling Koch's postulates. Based on morphological, molecular, and pathogenicity test results, these isolates were identified as M. phaseolina. Charcoal rot of tobacco, caused by M. phaseolina was previously found in Guangxi in 1989 (Zhu et al. 2002), while this is the first report of M. phaseolina causing charcoal rot on flue-cured tobacco in Hunan, China. We speculate that the planting area is influenced by the preceding crop sesame. The soil carries M. phaseolina, which can cause stem rot of sesame, leading to the occurrence of tobacco charcoal rot. Our results indicated that charcoal rot caused by M. phaseolina is a new threat to flue-cured tobacco production and lue-cured tobacco might be acting as a reservoir and spreading this pathogen to other economically crops in China.

7.
Angew Chem Int Ed Engl ; 63(4): e202315947, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38059770

RESUMEN

Osmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade-off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom-scale confinement (DAC) to design ion-permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC-Ti0.87 O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC-Ti0.87 O2 membranes achieved an ultrahigh power density of 17.8 W m-2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m-2 with a 500-fold salinity gradient, far exceeding all the reported macroscopic-scale membranes. This work highlights the potential of the construction of DAC ion-permselective channels for two-dimensional materials in high-performance nanofluidic energy systems.

8.
J Am Chem Soc ; 144(5): 2208-2217, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35099956

RESUMEN

Iridium (Ir)-based electrocatalysts are widely explored as benchmarks for acidic oxygen evolution reactions (OERs). However, further enhancing their catalytic activity remains challenging due to the difficulty in identifying active species and unfavorable architectures. In this work, we synthesized ultrathin Ir-IrOx/C nanosheets with ordered interlayer space for enhanced OER by a nanoconfined self-assembly strategy, employing block copolymer formed stable end-merged lamellar micelles. The interlayer distance of the prepared Ir-IrOx/C nanosheets was well controlled at ∼20 nm and Ir-IrOx nanoparticles (∼2 nm) were uniformly distributed within the nanosheets. Importantly, the fabricated Ir-IrOx/C electrocatalysts display one of the lowest overpotential (η) of 198 mV at 10 mA cm-2geo during OER in an acid medium, benefiting from their features of mixed-valence states, rich electrophilic oxygen species (O(II-δ)-), and favorable mesostructured architectures. Both experimental and computational results reveal that the mixed valence and O(II-δ)- moieties of the 2D mesoporous Ir-IrOx/C catalysts with a shortened Ir-O(II-δ)- bond (1.91 Å) is the key active species for the enhancement of OER by balancing the adsorption free energy of oxygen-containing intermediates. This strategy thus opens an avenue for designing high performance 2D ordered mesoporous electrocatalysts through a nanoconfined self-assembly strategy for water oxidation and beyond.

9.
Small ; 18(11): e2106358, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35001481

RESUMEN

A small-scale standalone device of nitrogen (N2 ) splitting holds great promise for producing ammonia (NH3 ) in a decentralized manner as the compensation or replacement of centralized Haber-Bosch process. However, the design of such a device has been impeded by sluggish kinetics of its half reactions, i.e., cathodic N2 reduction reaction (NRR) and anodic oxygen evolution reaction (OER). Here, it is predicted from density function theory that high-entropy oxides (HEOs) are potential catalysts for promoting NRR and OER, and subsequently develop a facile procedure to synthesize HEOs in the morphology of sea urchin-shaped hollow nanospheres assembled from ultrathin nanosheets. The excellent electrocatalytic activities of HEOs for both NRR (NH3 yield rate: 47.58 µg h-1 mg-1 and Faradaic efficiency (FE): 10.74%) and OER (215 mV @10 mA cm-2 ) are demonstrated. Consequently, a prototype device of N2 electrolysis driven by commercial batteries is constructed, which can operate smoothly and deliver remarkable NH3 yield rate (41.11 µg h-1 mg-1 ) and FE (14.14%). Further mechanism study has attributed the excellent catalytic performances of HEOs to their unique electronic structures originated from multi-metal synergistic effects and entropy increase effects. The work will provide new clues for designing versatile catalysts and devices for large-scale industrialization.


Asunto(s)
Amoníaco , Nitrógeno , Catálisis , Electrólisis , Entropía , Nitrógeno/química
10.
Small ; 18(13): e2107364, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35143716

RESUMEN

It is highly desired but still remains challenging to design a primary explosive-based nanoparticle-encapsulated conductive skeleton for the development of powerful yet safe energetic films employed in miniaturized explosive systems. Herein, a proof-of-concept electrochemical preparation of metal-organic frameworks (MOFs) derived porous carbon embedding copper-based azide (Cu(N3 )2 or CuN3 , CA) nanoparticles on copper substrate is described. A Cu-based MOF, i.e., Cu-BTC is fabricated based on anodized Cu(OH)2 nanorods, as a template, to achieve CA/C film through pyrolysis and electrochemical azidation. Such a CA/C film, which is woven by numerous ultrafine nanofibers, favorably demonstrates excellent energy release (945-2090 J g-1 ), tunable electrostatic sensitivity (0.22-1.39 mJ), and considerable initiation ability. The performance is superior to most reported primary explosives, since the CA nanoparticles contribute to high brisance and the protection of the porous carbon network. Notably, the growth mechanism of the CA/C film is further disclosed by detailed experimental investigation and density functional theory (DFT) calculation. This work will offer new insight to design and develop a CA-based primary explosive film for applications in advanced explosive systems.

11.
Small ; 18(8): e2104202, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34877766

RESUMEN

Colloidal lithography provides a rapid and low-cost approach to construct 2D periodic surface nanostructures. However, an impressive demonstration to prepare large-area colloidal template is still missing. Here, a high-efficient and flexible technique is proposed to fabricate self-assembly monolayers consisting of orderly-packed polystyrene spheres at air/water interface via ultrasonic spray. This "non-contact" technique exhibits great advantages in terms of scalability and adaptability due to its renitent interface dynamic balance. More importantly, this technique is not only competent for self-assembly of single-sized polystyrene spheres, but also for binary polystyrene spheres, completely reversing the current hard situation of preparing large-area self-assembly monolayers. As a representative application, hexagonal-packed silver-coated silicon nanorods array (Si-NRs@Ag) is developed as an ultrasensitive surface-enhanced Raman scattering (SERS) substrate with very low limit-of-detection for selective detection of explosive 2,4,6-trinitrotoluene down to femtomolar (10-14 m) range. The periodicity and orderliness of the array allow hot spots to be designed and constructed in a homogeneous fashion, resulting in an incomparable uniformity and reproducibility of Raman signals. All these excellent properties come from the Si-NRs@Ag substrate based on the ordered structure, open surface, and wide-range electric field, providing a robust, consistent, and tunable platform for molecule trapping and SERS sensing for a wide range of organic molecules.


Asunto(s)
Nanosferas , Nanoestructuras , Nanoestructuras/química , Reproducibilidad de los Resultados , Plata/química , Espectrometría Raman/métodos
12.
Inorg Chem ; 61(48): 19379-19387, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36394920

RESUMEN

The development of green primary explosives has become a "holy grail" of energetic materials research. Cu-based 5-nitrotetrazolate is considered one of the most promising candidates due to its excellent blasting power and environmentally benign nature. However, synthesizing Cu-based 5-nitrotetrazolate controllably and securely remains highly challenging. Herein, room-temperature anodization of metallic Cu and a Cu(I)-imidazole nanowire array on copper substrates in a sodium 5-nitrotetrazolate electrolyte leads to in situ electrosynthesis of Cu(I) 5-nitrotetrazolate (DBX-1, CuNT) and its analogue, Cu(II) 5-nitrotetrazolate [Cu(NT)2], respectively. Both obtained CuNT and Cu(NT)2 films demonstrate remarkable energy output and good laser-induced ignition performance. The thermal stability (Tp = 291 °C) and electrostatic safety (E50 = 2.54 mJ) of CuNT proved to be superior to those of Cu(NT)2 (Tp = 257 °C, and E50 = 0.57 mJ). Remarkably, this study provides an exciting new method for the rational design and development of Cu-based 5-nitrotetrazolate as a primary explosive for advanced initiating applications.

13.
Sensors (Basel) ; 22(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502063

RESUMEN

SLAM (Simultaneous Localization and Mapping) is mainly composed of five parts: sensor data reading, front-end visual odometry, back-end optimization, loopback detection, and map building. And when visual SLAM is estimated by visual odometry only, cumulative drift will inevitably occur. Loopback detection is used in classical visual SLAM, and if loopback is not detected during operation, it is not possible to correct the positional trajectory using loopback. Therefore, to address the cumulative drift problem of visual SLAM, this paper adds Indoor Positioning System (IPS) to the back-end optimization of visual SLAM, and uses the two-label orientation method to estimate the heading angle of the mobile robot as the pose information, and outputs the pose information with position and heading angle. It is also added to the optimization as an absolute constraint. Global constraints are provided for the optimization of the positional trajectory. We conducted experiments on the AUTOLABOR mobile robot, and the experimental results show that the localization accuracy of the SLAM back-end optimization algorithm with fused IPS can be maintained between 0.02 m and 0.03 m, which meets the requirements of indoor localization, and there is no cumulative drift problem when there is no loopback detection, which solves the problem of cumulative drift of the visual SLAM system to some extent.


Asunto(s)
Dispositivos Ópticos , Algoritmos
14.
Comput Commun ; 196: 141-147, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217364

RESUMEN

As COVID-19 continues to spread, people are unable to move freely when their residence region is temporarily lockdown, supplies cannot normally enter into such zones, leading to the shortage of supplies in these areas. Thus to ensure the delivery of supplies while reducing contact, the unmanned aerial vehicle (UAV) deliveries have become a common way. In order to efficiently use UAV resources and reduce energy loss in data transmission while performing the tasks, clustering is often used for achieving the above objectives, where the selected cluster heads centrally plan tasks so that reduce the communication times. However, problems such as unreasonable clustering, high energy consumption of cluster heads, and high mortality of cluster heads, directly lead the low cooperation efficiency and short life cycle of UAVs. Considering the nodes often died earlier through the k-means algorithm and ant colony algorithm, and highly dependent on the base station, these factors affect the working cycle and coordination efficiency of the UAVs. Facing the issues above, the cluster head selection algorithm of UAV based on game (CHSA) is proposed, where the mixed game model is adopted to select cluster heads for each region after regional division, and selecting the representative node to perform the cluster head selection algorithm, which help to reduce the energy consumption of each round of communication between nodes. Moreover, the key properties of the CHSA algorithm are proved, and the comparison experiment are conducted to prove the CHSA algorithm can effectively reduce energy consumption and prolong the network life cycle.

15.
Anal Chem ; 93(2): 1068-1075, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33284581

RESUMEN

Understanding the structure and composition of aluminate complexes in extremely alkaline systems such as Bayer liquors has received enormous attention due to their fundamental and industrial importance. However, obtaining direct molecular information of the underlying ion-ion interactions using traditional approaches such as NMR spectroscopy or Raman spectroscopy is challenging due to the weakness of these interactions and/or their complex overlapping spectral signatures. Here, we exploit in situ liquid secondary-ion mass spectrometry (SIMS) as a new approach and show how it enables new insights. In contrast with traditional techniques, using SIMS we succeeded in acquiring information on dominant ion clusters in these alkaline systems. In Na+/K+ mixed alkaline aluminate solutions, we clearly observe preferential formation of Na+-anion clusters over K+-anion clusters. Evaluation of these clusters by density functional theory (DFT) calculations shows that these structures are stable and that their relative bond energies are consistent with their observed SIMS signal intensity differences. This demonstrates a key advantage of in situ liquid SIMS for overcoming ambiguities obscuring important information in these systems on constituent molecular clusters defined by relatively weak ion-pair competition and ion-solvent interactions.

16.
Acc Chem Res ; 53(10): 2443-2455, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33003700

RESUMEN

Flexible and wearable electronics have recently sparked intense interest in both academia and industry because they can greatly revolutionize human lives by impacting every aspect of our daily routine. Therefore, developing compatible energy storage devices has become one of the most important research frontiers in this field. Particularly, the development of flexible electrodes is of great significance when considering their essential role in the performance of these devices. Although there is no doubt that transition metal oxide nanomaterials are suitable for providing electrochemical energy storage, individual oxides generally cannot be developed into freestanding electrodes because of their intrinsically low mechanical strength.Two-dimensional sheets with genuine unilamellar thickness are perfect units for the assembly of freestanding and mechanically flexible devices, as they have the advantages of low thickness and good flexibility. Therefore, the development of metal oxide materials into a two-dimensional sheet morphology analogous to graphene is expected to solve the above-mentioned problems. In this Account, we summarize the recent progress on two-dimensional molecular sheets of transition metal oxides for wearable energy storage applications. We start with our understanding of the principle of producing two-dimensional metal oxides from their bulk-layered counterparts. The unique layered structure of the precursors inspired the exploration of their interlayer chemistry, which helps us to understand the processes of swelling and delamination. Rational methods for tuning the chemical composition, size/thickness, and surface chemistry of the obtained nanosheets and how physicochemical properties of the nanosheets can be modulated are then briefly introduced. Subsequently, the orientational alignment of the anisotropic sheets and the origins of their liquid-crystalline characteristics are discussed, which are of vital importance for their subsequent macroscopic assembly. Finally, macroscopic electrodes with geometric diversity ranging from one-dimensional macroscopic fibers to two-dimensional films/papers and three-dimensional monolithic foams are summarized. The intrinsically low mechanical stiffness of metal oxide sheets can be effectively overcome by wisely designing the assembly mode and sheet interfaces to obtain decent mechanical properties integrated with superior electrochemical performance, thereby providing critical advantages for the fabrication of wearable energy storage devices.We expect that this Account will stimulate further efforts toward fundamental research on interface engineering in metal oxide sheet assembly and facilitate wide applications of their designed assemblies in future new-concept energy conversion devices and beyond. In the foreseeable future, we believe that there will be a big explosion in the application of transition metal oxide sheets in flexible electronics.

17.
Mikrochim Acta ; 188(1): 18, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33404778

RESUMEN

A new method based on coordination polymer nanoparticles (CPNs) derived from nucleotides and Tb3+ ions (GMP/Tb) for the selective and sensitive determination of aqueous 2,4,6-trinitrophenol (TNP) (picric acid) is established. The fluorescence of GMP/Tb nanoparticles is effectively quenched by TNP via photo-induced charge transfer (PCT), thus achieving its selectivity toward TNP over other nitroaromatic explosives. The decreased fluorescence of GMP/Tb shows a good linear relationship to the concentrations of TNP ranging from 5.0 to 40.0 µM, and the limit of detection is 26.0 nM (5.96 ppb). The proposed GMP/Tb probe also achieves satisfactory results in real samples. The obtained recoveries of this method in river water samples are in the range 93.15-106.10%. The relative standard deviation (RSD) are 0.57 to 1.01% based on three repeated determinations. This fabricated detector provides a feasible path for determination of ppb-level TNP in natural water samples, which can help humans to avoid TNP-contaminated drinking water. Graphical abstract.

18.
J Am Chem Soc ; 142(33): 14357-14364, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32787252

RESUMEN

The development of anhydrous proton-conducting materials is critical for the fabrication of high-temperature (>100 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) and remains a significant challenge. Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials with tailor-made nanochannels and hold great potential for ion and molecule transport, but their poor chemical stability poses great challenges in this respect. In this contribution, we present a bottom-up self-assembly strategy to construct perfluoroalkyl-functionalized hydrazone-linked 2D COFs and systematically investigate the effect of different lengths of fluorine chains on their acid stability and proton conductivity. Compared with their nonfluorous parent COFs, fluorinated COFs possess structural ultrastability toward strong acids as a result of enhanced hydrophobicity (water contact angle of 144°). Furthermore, the superhydrophobic 1D nanochannels can serve as robust hosts to accommodate large amounts of phosphonic acid for fast and long-term proton conduction under anhydrous conditions and a wide temperature range. The anhydrous proton conductivity of fluorinated COFs is 4.2 × 10-2 S cm-1 at 140 °C after H3PO4 doping, which is 4 orders of magnitude higher than their nonfluorous counterparts and among the highest values of doped porous organic frameworks so far. Solid-state NMR studies revealed that H3PO4 forms hydrogen-boding networks with the frameworks and perfluoroalkyl chains of COFs, and most of the H3PO4 molecules are highly dynamic and mobile while the frameworks are rigid, which affords rapid proton transport. This work paves the way for the realization of the target properties of COFs through predesign and functionalization of the pore surface and highlights the great potential of COF nanochannels as a rigid platform for fast ion transportation.

19.
J Am Chem Soc ; 142(51): 21279-21284, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33295765

RESUMEN

We propose a dynamic covalent chemistry (DCC)-induced linker exchange strategy for the structural transformation between covalent organic frameworks (COFs) and cages for the first time. Studies have shown that the COF-to-cage and cage-to-COF transformations were realized by using borate bonds and imine bonds, respectively, as linkages. Self-sorting experiments suggested that borate cages and imine COFs are thermodynamic minimum compounds. This research builds a bridge between discrete and polymeric organic scaffolds and broadens the knowledge of chemistry and materials for porous materials science.

20.
Small ; 16(8): e1907043, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32003933

RESUMEN

Conjugated coordination polymers (CPs) with designable and predictable structures have drawn tremendous attention in recent years. However, the poor electrical conductivity and low structural stability seriously restrict their practical applications in electronic devices. Herein, the rational design and synthesis of a hierarchically structured 2D bimetallic CoNi-hexaaminobenzene CPs derived from Co(OH)2 are reported as an efficient oxygen evolution reaction (OER) self-supported electrode. The as-obtained electrode possesses high electrochemical surface area and intrinsic activity, exhibiting high electrochemical catalytic activity, favorable reaction kinetics performance, and strong durability compared with those of the powder catalysts. As a result, the electrode delivers low overpotential of 219 mV @ 10 mA cm-2 and Tafel slope of 42 mV dec-1 as well as 91.3% retention of current density after 24 h of reaction time. The results of density functional theory computations reveal that the synergistic effect of Co and Ni plays an important role in OER. This work not only presents a strategy to fabricate advanced self-supported electrodes with abundant and dense active sites, but also promotes the development of conjugated CPs for electrocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA