Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Methods ; 13(10): 868-74, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27595405

RESUMEN

CRISPR-Cas9 delivery by adeno-associated virus (AAV) holds promise for gene therapy but faces critical barriers on account of its potential immunogenicity and limited payload capacity. Here, we demonstrate genome engineering in postnatal mice using AAV-split-Cas9, a multifunctional platform customizable for genome editing, transcriptional regulation, and other previously impracticable applications of AAV-CRISPR-Cas9. We identify crucial parameters that impact efficacy and clinical translation of our platform, including viral biodistribution, editing efficiencies in various organs, antigenicity, immunological reactions, and physiological outcomes. These results reveal that AAV-CRISPR-Cas9 evokes host responses with distinct cellular and molecular signatures, but unlike alternative delivery methods, does not induce extensive cellular damage in vivo. Our study provides a foundation for developing effective genome therapeutics.


Asunto(s)
Sistemas CRISPR-Cas/genética , Dependovirus/genética , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Vectores Genéticos/genética , Animales , Ensayo de Inmunoadsorción Enzimática , Edición Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Proc Natl Acad Sci U S A ; 109(27): E1848-57, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22645348

RESUMEN

Human pluripotent stem cells (hPSCs) offer the potential to generate large numbers of functional cardiomyocytes from clonal and patient-specific cell sources. Here we show that temporal modulation of Wnt signaling is both essential and sufficient for efficient cardiac induction in hPSCs under defined, growth factor-free conditions. shRNA knockdown of ß-catenin during the initial stage of hPSC differentiation fully blocked cardiomyocyte specification, whereas glycogen synthase kinase 3 inhibition at this point enhanced cardiomyocyte generation. Furthermore, sequential treatment of hPSCs with glycogen synthase kinase 3 inhibitors followed by inducible expression of ß-catenin shRNA or chemical inhibitors of Wnt signaling produced a high yield of virtually (up to 98%) pure functional human cardiomyocytes from multiple hPSC lines. The robust ability to generate functional cardiomyocytes under defined, growth factor-free conditions solely by genetic or chemically mediated manipulation of a single developmental pathway should facilitate scalable production of cardiac cells suitable for research and regenerative applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Vía de Señalización Wnt/fisiología , Diferenciación Celular/fisiología , Medios de Cultivo/farmacología , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/genética
3.
Stem Cells ; 31(3): 447-57, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23193013

RESUMEN

The study of the regulatory signaling hierarchies of human heart development is limited by a lack of model systems that can reproduce the precise developmental events that occur during human embryogenesis. The advent of human pluripotent stem cell (hPSC) technology and robust cardiac differentiation methods affords a unique opportunity to monitor the full course of cardiac induction in vitro. Here, we show that stage-specific activation of insulin signaling strongly inhibited cardiac differentiation during a monolayer-based differentiation protocol that used transforming growth factor ß superfamily ligands to generate cardiomyocytes. However, insulin did not repress cardiomyocyte differentiation in a defined protocol that used small molecule regulators of canonical Wnt signaling. By examining the context of insulin inhibition of cardiomyocyte differentiation, we determined that the inhibitory effects by insulin required Wnt/ß-catenin signaling and that the cardiomyocyte differentiation defect resulting from insulin exposure was rescued by inhibition of Wnt/ß-catenin during the cardiac mesoderm (Nkx2.5+) stage. Thus, insulin and Wnt/ß-catenin signaling pathways, as a network, coordinate to influence hPSC differentiation to cardiomyocytes, with the Wnt/ß-catenin pathway dominant to the insulin pathway. Our study contributes to the understanding of the regulatory hierarchies of human cardiomyocyte differentiation and has implications for modeling human heart development.


Asunto(s)
Insulina/farmacología , Miocardio/citología , Miocitos Cardíacos/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Humanos , Mesodermo/citología , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Cell Rep ; 27(4): 1254-1264.e7, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018138

RESUMEN

In vivo delivery of genome-modifying enzymes holds significant promise for therapeutic applications and functional genetic screening. Delivery to endogenous tissue stem cells, which provide an enduring source of cell replacement during homeostasis and regeneration, is of particular interest. Here, we use a sensitive Cre/lox fluorescent reporter system to test the efficiency of genome modification following in vivo transduction by adeno-associated viruses (AAVs) in tissue stem and progenitor cells. We combine immunophenotypic analyses with in vitro and in vivo assays of stem cell function to reveal effective targeting of skeletal muscle satellite cells, mesenchymal progenitors, hematopoietic stem cells, and dermal cell subsets using multiple AAV serotypes. Genome modification rates achieved through this system reached >60%, and modified cells retained key functional properties. This study establishes a powerful platform to genetically alter tissue progenitors within their physiological niche while preserving their native stem cell properties and regulatory interactions.


Asunto(s)
Diferenciación Celular , Dependovirus/genética , Genoma , Células Madre Hematopoyéticas/citología , Células Satélite del Músculo Esquelético/citología , Piel/citología , Animales , Movimiento Celular , Dependovirus/clasificación , Femenino , Técnicas de Transferencia de Gen , Terapia Genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Células Satélite del Músculo Esquelético/metabolismo , Piel/metabolismo
5.
Science ; 351(6271): 407-411, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26721686

RESUMEN

Frame-disrupting mutations in the DMD gene, encoding dystrophin, compromise myofiber integrity and drive muscle deterioration in Duchenne muscular dystrophy (DMD). Removing one or more exons from the mutated transcript can produce an in-frame mRNA and a truncated, but still functional, protein. In this study, we developed and tested a direct gene-editing approach to induce exon deletion and recover dystrophin expression in the mdx mouse model of DMD. Delivery by adeno-associated virus (AAV) of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonucleases coupled with paired guide RNAs flanking the mutated Dmd exon23 resulted in excision of intervening DNA and restored the Dmd reading frame in myofibers, cardiomyocytes, and muscle stem cells after local or systemic delivery. AAV-Dmd CRISPR treatment partially recovered muscle functional deficiencies and generated a pool of endogenously corrected myogenic precursors in mdx mouse muscle.


Asunto(s)
Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Células Satélite del Músculo Esquelético/metabolismo , Transducción Genética/métodos , Animales , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Dependovirus , Modelos Animales de Enfermedad , Exones , Mutación del Sistema de Lectura , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Miocardio/metabolismo , ARN Mensajero/genética , Eliminación de Secuencia
6.
PLoS One ; 8(3): e60016, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527294

RESUMEN

Human pluripotent stem cells (hPSCs) provide unprecedented opportunities to study the earliest stages of human development in vitro and have the potential to provide unlimited new sources of cells for regenerative medicine. Although previous studies have reported cytokeratin 14+/p63+ keratinocyte generation from hPSCs, the multipotent progenitors of epithelial lineages have not been described and the developmental pathways regulating epithelial commitment remain largely unknown. Here we report membrane localization of ß-catenin during retinoic acid (RA)--induced epithelial differentiation. In addition hPSC treatment with the Src family kinase inhibitor SU6656 modulated ß-catenin localization and produced an enriched population of simple epithelial cells under defined culture conditions. SU6656 strongly upregulated expression of cytokeratins 18 and 8 (K18/K8), which are expressed in simple epithelial cells, while repressing expression of the pluripotency gene Oct4. This homogeneous population of K18+K8+Oct4- simple epithelial precursor cells can further differentiate into cells expressing keratinocyte or corneal-specific markers. These enriched hPSC-derived simple epithelial cells may provide a ready source for development and toxicology cell models and may serve as a progenitor for epithelial cell transplantation applications.


Asunto(s)
Diferenciación Celular/fisiología , Células Epiteliales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Indoles/farmacología , Células Madre Pluripotentes/citología , Sulfonamidas/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Western Blotting , Cadherinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cartilla de ADN/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Queratina-18/metabolismo , Queratina-8/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tretinoina/farmacología , beta Catenina/metabolismo
7.
Nat Protoc ; 8(1): 162-75, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23257984

RESUMEN

The protocol described here efficiently directs human pluripotent stem cells (hPSCs) to functional cardiomyocytes in a completely defined, growth factor- and serum-free system by temporal modulation of regulators of canonical Wnt signaling. Appropriate temporal application of a glycogen synthase kinase 3 (GSK3) inhibitor combined with the expression of ß-catenin shRNA or a chemical Wnt inhibitor is sufficient to produce a high yield (0.8-1.3 million cardiomyocytes per cm(2)) of virtually pure (80-98%) functional cardiomyocytes in 14 d from multiple hPSC lines without cell sorting or selection. Qualitative (immunostaining) and quantitative (flow cytometry) characterization of differentiated cells is described to assess the expression of cardiac transcription factors and myofilament proteins. Flow cytometry of BrdU incorporation or Ki67 expression in conjunction with cardiac sarcomere myosin protein expression can be used to determine the proliferative capacity of hPSC-derived cardiomyocytes. Functional human cardiomyocytes differentiated via these protocols may constitute a potential cell source for heart disease modeling, drug screening and cell-based therapeutic applications.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Vía de Señalización Wnt , Citometría de Flujo , Humanos , Lentivirus/metabolismo , ARN Interferente Pequeño/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA