Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(21): e202304149, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38189550

RESUMEN

Aqueous Zn-metal batteries (AZMBs) hold a promise as the next-generation energy storage devices due to their low cost and high specific energy. However, the actual energy density falls far below the requirements of commercial AZMBs due to the use of excessive Zn as anode and the associated issues including dendritic growth and side reactions. Reducing the N/P ratio (negative capacity/positive capacity) is an effective approach to achieve high energy density. A significant amount of research has been devoted to increasing the cathode loading and specific capacity or tuning the Zn anode utilization to achieve low N/P ratio batteries. Nevertheless, there is currently a lack of comprehensive overview regarding how to enhance the utilization of the Zn anode to balance the cycle life and energy density of AZMBs. In this review, we summarize the challenges faced in achieving high-utilization Zn anodes and elaborate on the modifying strategies for the Zn anode to lower the N/P ratio. The current research status and future prospects for the practical application of high-performance AZMBs are proposed at the end of the review.

2.
Small ; 19(30): e2300420, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37046177

RESUMEN

Constructing all-solid-state lithium-sulfur batteries (ASSLSBs) cathodes with efficient charge transport and mechanical flexibility is challenging but critical for the practical applications of ASSLSBs. Herein, a multiscale structural engineering of sulfur/carbon composites is reported, where ultrasmall sulfur nanocrystals are homogeneously anchored on the two sides of graphene layers with strong SC bonds (denoted as S@EG) in chunky expanded graphite particles via vapor deposition method. After mixing with Li9.54 Si1.74 P1.44 S11.7 Cl0.3 (LSPSCL) solid electrolytes (SEs), the fabricated S@EG-LSPSCL cathode with interconnected "Bacon and cheese sandwich" feature can simultaneously enhance electrochemical reactivity, charge transport, and chemomechanical stability due to the synergistic atomic, nanoscopic and microscopic structural engineering. The assembled InLi/LSPSCL/S@EG-LSPSCL ASSLSBs demonstrate ultralong cycling stability over 2400 cycles with 100% capacity retention at 1 C, and a record-high areal capacity of 14.0 mAh cm-2 at a record-breaking sulfur loading of 8.9 mg cm-2 at room temperature as well as high capacities with capacity retentions of ≈100% after 600 cycles at 0 and 60 °C. Multiscale structural engineered sulfur/carbon cathode has great potential to enable high-performance ASSLSBs for energy storage applications.

3.
Chemistry ; 29(18): e202203356, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36504417

RESUMEN

Low energy loss is a prerequisite for organic solar cells to achieve high photovoltaic efficiency. Electron-vibration coupling (i. e., intramolecular reorganization energy) plays a crucial role in the photoelectrical conversion and energy loss processes. In this Concept article, we summarize our recent theoretical advances on revealing the energy loss mechanisms at the molecular level of A-D-A electron acceptors. We underline the importance of electron-vibration couplings on reducing the energy loss and describe the effective molecular design strategies towards low energy loss through decreasing the electron-vibration couplings.

4.
Cell Commun Signal ; 21(1): 71, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041601

RESUMEN

Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is currently the standard first-line therapy for EGFR-mutated advanced non-small cell lung cancer (NSCLC). The life quality and survival of this subgroup of patients were constantly improving owing to the continuous iteration and optimization of EGFR-TKI. Osimertinib, an oral, third-generation, irreversible EGFR-TKI, was initially approved for the treatment of NSCLC patients carrying EGFR T790M mutations, and has currently become the dominant first-line targeted therapy for most EGFR mutant lung cancer. Unfortunately, resistance to osimertinib inevitably develops during the treatment and therefore limits its long-term effectiveness. For both fundamental and clinical researchers, it stands for a major challenge to reveal the mechanism, and a dire need to develop novel therapeutics to overcome the resistance. In this article, we focus on the acquired resistance to osimertinib caused by EGFR mutations which account for approximately 1/3 of all reported resistance mechanisms. We also review the proposed therapeutic strategies for each type of mutation conferring resistance to osimertinib and give an outlook to the development of the next generation EGFR inhibitors. Video Abstract.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
Org Biomol Chem ; 21(47): 9392-9397, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37981814

RESUMEN

An iodine-promoted domino reaction of arylamines/benzylamines, dialkyl but-2-ynedioates and 3-hydroxy-3-(indol-3-yl)indolin-2-ones showed very interesting molecular diversity. The reaction in acetonitrile at 65 °C in the presence of 30% mmol I2 resulted in spiro[indoline-3,1'-pyrido[4,3-b]indoles] in satisfactory yields. When anilines without para-substituents were used in the reaction, a direct substitution of the hydroxyl group to 2-(phenylamino)maleate at the para-position of aniline gave chain products in good yields. Additionally, similar reactions with benzylamines not only gave spiro[indoline-3,1'-pyrido[4,3-b]indoles], but also afforded spiro[indoline-3,1'-pyrano[4,3-b]indol]-2-ones in lower yields. A plausible domino annulation mechanism was rationally proposed for the formation of different kinds of polycyclic compounds.

6.
Acta Biochim Biophys Sin (Shanghai) ; 55(4): 661-671, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37154586

RESUMEN

Despite substantial advances that have been made in understanding the etiology of hepatocellular carcinoma (HCC), the early-stage diagnosis and treatment of advanced-stage HCC remain a major challenge. RNF8, an E3 ligase important for the DNA damage response, has been proven to facilitate the progression of breast and lung cancer, but its role in HCC remains unclear. In this study, we find that the expression of RNF8 is up-regulated in HCC tissues and positively correlated with poor prognosis of HCC. Furthermore, silencing RNF8 by siRNAs attenuates the migration of HCC cells and inhibits epithelial-mesenchymal transition (EMT) by regulating the expressions of proteins including N-cadherin, ß-catenin, snail, and ZO-1. Moreover, Kaplan‒Meier survival analysis shows that high RNF8 expression predicts poor survival benefits from sorafenib. Finally, cell viability assay demonstrates that RNF8 depletion enhances the sensitivity of HCC cells to sorafenib and lenvatinib treatment. We hypothesize that the inhibitory role of RNF8 in EMT and its enhancing effects on anti-cancer drugs orchestrate the protective effects of RNF8 deficiency in HCC, which indicates its potential in clinical application.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Transición Epitelial-Mesenquimal/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ADN/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Ecotoxicol Environ Saf ; 267: 115651, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37913581

RESUMEN

While existing research has illuminated the environmental dangers and neurotoxic effects of MC-LR exposure, the molecular underpinnings of brain damage from environmentally-relevant MC-LR exposure remain elusive. Employing a comprehensive approach involving RNA sequencing, histopathological examination, and biochemical analyses, we discovered genes differentially expressed and enriched in the ferroptosis pathway. This finding was associated with mitochondrial structural impairment and downregulation of Gpx4 and Slc7a11 in mice brains subjected to low-dose MC-LR over 180 days. Mirroring these findings, we noted reduced cell viability and GSH/GSSH ratio, along with an increased ROS level, in HT-22, BV-2, and bEnd.3 cells following MC-LR exposure. Intriguingly, MC-LR also amplified phospho-Erk levels in both in vivo and in vitro settings, and the effects were mitigated by treatment with PD98059, an Erk inhibitor. Taken together, our findings implicate the activation of the Erk/MAPK signaling pathway in MC-LR-induced ferroptosis, shedding valuable light on the neurotoxic mechanisms of MC-LR. These insights could guide future strategies to prevent MC-induced neurodegenerative diseases.


Asunto(s)
Células Endoteliales , Ferroptosis , Ratones , Animales , Encéfalo , Transducción de Señal
8.
Small ; 18(31): e2202941, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35808959

RESUMEN

Organic photodetectors that can sensitively convert near-infrared (NIR) circularly polarized light (CPL) into modulable electrical signals have promising applications in spectroscopy, imaging, and communications. However, the preparation of chiral NIR organic photodetectors with simultaneously high dissymmetry factor, responsivity, detectivity, and response speed is challenging. Here, direct CPL detectors based on the bulk heterojunctions (BHJs) of chiral BTP-4Cl non-fullerene acceptor with dilute achiral PM6 donor are constructed, which successfully address these issues. The chiral acceptor-enriched BHJs with a donor/acceptor ratio of 1/10 achieve an optimal trade-off between chiroptical properties and optoelectronic performance. The supramolecular chirality from the acceptor aggregates provides the BHJs with a true absorption dissymmetry factor (gabs ) of ±0.02 at 830 nm, the highest value among NIR-sensitive detectors, which endows the photodetector with a photocurrent dissymmetry factor (gsc ) of ±0.03. Impressively, the photodetector demonstrates an external quantum efficiency as high as 60%, a responsivity of 0.4 A W-1 , a detectivity of 3 × 1011 Jones (based on noise current), and a fast response speed on the microsecond scale with the -3 dB bandwidth over 7000 Hz in the NIR region. This study exhibits a promising strategy for building high-performing direct NIR CPL detectors by introducing supramolecular chirality into BHJs.

9.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077252

RESUMEN

Prime editing (PE), as a "search-and-replace" genome editing technology, has shown the attractive potential of versatile genome editing ability, which is, in principle, currently superior to other well-established genome-editing technologies in the all-in-one operation scope. However, essential technological solutions of PE technology, such as the improvement of genome editing efficiency, the inhibition of potential off-targets and intended edits accounting for unexpected side-effects, and the development of effective delivery systems, are necessary to broaden its application. Since the advent of PE, many optimizations have been performed on PE systems to improve their performance, resulting in bright prospects for application in many fields. This review briefly discusses the development of PE technology, including its functional principle, noteworthy barriers restraining its application, current efforts in technical optimization, and its application directions and potential risks. This review may provide a concise and informative insight into the burgeoning field of PE, highlight the exciting prospects for this powerful tool, and provide clues for questions that may propel the field forward.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Edición Génica/métodos
10.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35742854

RESUMEN

The pivotal roles of miRNAs in carcinogenesis, metastasis, and prognosis have been demonstrated recently in various cancers. This study intended to investigate the specific roles of hsa-miR-654-5p in lung cancer, which is, in general, rarely discussed. A series of closed-loop bioinformatic functional analyses were integrated with in vitro experimental validation to explore the overall biological functions and pan-cancer regulation pattern of miR-654-5p. We found that miR-654-5p abundance was significantly elevated in LUAD tissues and correlated with patients' survival. A total of 275 potential targets of miR-654-5p were then identified and the miR-654-5p-RNF8 regulation axis was validated in vitro as a proof of concept. Furthermore, we revealed the tumor-suppressing roles of miR-654-5p and demonstrated that miR-654-5p inhibited the lung cancer cell epithelial-mesenchymal transition (EMT) process, cell proliferation, and migration using target-based, abundance-based, and ssGSEA-based bioinformatic methods and in vitro validation. Following the construction of a protein-protein interaction network, 11 highly interconnected hub genes were identified and a five-genes risk scoring model was developed to assess their potential prognostic ability. Our study does not only provide a basic miRNA-mRNA-phenotypes reference map for understanding the function of miR-654-5p in different cancers but also reveals the tumor-suppressing roles and prognostic values of miR-654-5p.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , Ubiquitina-Proteína Ligasas/genética
11.
Small ; 17(20): e2006574, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33825322

RESUMEN

There is very limited repertoire of organic ambipolar semiconductors to date. Electron donor-acceptor alternative stacking is a unique and important binary motif for 1D mixed-stack cocrystals, opening up possibilities for the development of organic ambipolar semiconductors. Herein, four 1D mixed-stack cocrystals using N,N'-bis(perfluorobutyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDICNF) as the acceptor and anthracene, pyrene, perylene, and meso-diphenyl tetrathia[22]annulene[2,1,2,1] (DPTTA) as the donors are achieved in a stoichiometric ratio (D:A = 1:1) through solution or vapor processed methods. Their packing structures, energy levels, charge transfer interactions, coassembling behaviors, and molecular orientations are systematically investigated by single-crystal X-ray analysis, absorption spectra, fluorescence quenching, Job's curve plot, and polarized photoluminescence measurements with the help of theoretical calculations. The donor-acceptor alternative stacking direction coincides with the long axis for all the four cocrystals. The field-effect transistors based on Pyrene-PDICNF show the electron mobility up to 0.19 cm2 V-1 s-1 , which is the highest value among perylene diimide-based cocrystals. Moreover, DPTTA-PDICNF cocrystals possess well-balanced electron and hole mobility with 1.7 × 10-2 and 2.0 × 10-2  cm2 V-1 s-1 respectively due to both hole and electron strong superexchange interactions, shedding light on the design of 1D mixed-stack cocrystals with excellent ambipolar transport behaviors.

12.
Microb Cell Fact ; 20(1): 101, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001115

RESUMEN

BACKGROUND: Pinene is a monoterpene, that is used in the manufacture of fragrances, insecticide, fine chemicals, and renewable fuels. Production of pinene by metabolic-engineered microorganisms is a sustainable method. Purple non-sulfur photosynthetic bacteria belong to photosynthetic chassis that are widely used to synthesize natural chemicals. To date, researches on the synthesis of pinene by purple non-sulfur photosynthetic bacteria has not been reported, leaving the potential of purple non-sulfur photosynthetic bacteria synthesizing pinene unexplored. RESULTS: Rhodobacter sphaeroides strain was applied as a model and engineered to express the fusion protein of heterologous geranyl diphosphate synthase (GPPS) and pinene synthase (PS), hence achieving pinene production. The reaction condition of pinene production was optimized and 97.51 µg/L of pinene was yielded. Then, genes of 1-deoxy-D-xylulose 5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase and isopentenyl diphosphate isomerase were overexpressed, and the ribosome binding site of GPPS-PS mRNA was optimized, improving pinene titer to 539.84 µg/L. CONCLUSIONS: In this paper, through heterologous expression of GPPS-PS, pinene was successfully produced in R. sphaeroides, and pinene production was greatly improved by optimizing the expression of key enzymes. This is the first report on pinene produce by purple non-sulfur photosynthetic bacteria, which expands the availability of photosynthetic chassis for pinene production.


Asunto(s)
Vías Biosintéticas/genética , Ingeniería Metabólica/métodos , Monoterpenos/análisis , Monoterpenos/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Fotosíntesis
13.
Angew Chem Int Ed Engl ; 60(28): 15348-15353, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33942945

RESUMEN

Organic solar cells (OSCs) with nonfullerene acceptors (NFAs) exhibit efficient charge generation under small interfacial energy offsets, leading to over 18 % efficiency for the single-junction devices based on the state-of-the-art NFA of Y6. Herein, to reveal the underlying charge generation mechanisms, we have investigated the exciton binding energy (Eb ) in Y6 by a joint theoretical and experimental study. The results show that owing to strong charge polarization effects, Y6 has remarkable small Eb of -0.11-0.15 eV, which is even lower than perovskites in many cases. Moreover, it is peculiar that the photoluminescence is enhanced with temperature, and the energy barrier for separating excitons into charges is evidently lower than the thermal energy according to the temperature dependence of photoluminescence, manifesting direct photogeneration of charge carriers enabled by weak Eb in Y6. Thus, charge generation in NFA-based OSCs shows little dependence on interfacial driving forces.

14.
Biotechnol Bioeng ; 117(7): 2279-2294, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32175589

RESUMEN

Beyond their widespread application as genome-editing and regulatory tools, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems also play a critical role in nucleic acid detection due to their high sensitivity and specificity. Recently developed Cas family effectors have opened the door to the development of new strategies for detecting different types of nucleic acids for a variety of purposes. Precise and efficient nucleic acid detection using CRISPR-Cas systems has the potential to advance both basic and applied biological research. In this review, we summarize the CRISPR-Cas systems used for the recognition and detection of specific nucleic acids for different purposes, including the detection of genomic DNA, nongenomic DNA, RNA, and pathogenic microbe genomes. Current challenges and further applications of CRISPR-based detection methods will be discussed according to the most recent developments.


Asunto(s)
Sistemas CRISPR-Cas , ADN/genética , ARN/genética , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/análisis , Humanos , Polimorfismo de Nucleótido Simple , ARN/análisis
15.
Protein Expr Purif ; 155: 130-135, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30508587

RESUMEN

To optimize the expression conditions for human lactoferrin production, we have constructed the transgenic chlorella with human lactoferrin named as GTD8A1-HLF, the original chlorella was separated from Gurbantunggut Desert in Xinjiang China. To further improve the production of human lactoferrin, a sequential methodology was used to optimize human lactoferrin production by GTD8A1-HLF. First, a screening trial using a Plackett-Burman design was done, and variables with statistically significant effects on human lactoferrin bio-production were identified. These were further optimized by central composite design experiments and response surface methodology. Finally, we found that the maximum human lactoferrin production (52.70 mg/L) was achieved under the following optimized conditions: Initial pH 5.0, NaNO3 concentration of 0.600 mol/L, FeSO4 concentration of 0.006 mol/L, and a CuSO4 concentration of 0.002 mol/L, with the other medium components constituting the basal culture medium BBM. The yield of HLF protein under optimized culture conditions was approximately 4-fold higher than that obtained by using the basal culture medium BBM. The findings are significant for the potential industrial use of GTD8A1-HLF.


Asunto(s)
Chlorella/genética , Lactoferrina/genética , Algoritmos , Biotecnología/métodos , Técnicas de Cultivo de Célula/métodos , Chlorella/crecimiento & desarrollo , Medios de Cultivo/análisis , Humanos , Lactoferrina/análisis , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proyectos de Investigación
16.
Acta Biochim Biophys Sin (Shanghai) ; 51(8): 791-798, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31294443

RESUMEN

MicroRNAs (miRNAs) are a class of endogenous noncoding genes that regulate gene expression at the posttranscriptional level. In recent decades, miRNAs have been reported to play important roles in tumor growth and metastasis, while some reported functions of a specific miRNA in tumorigenesis are contradictory. In this study, we reevaluated the role of miR-214, which has been reported to serve as an oncogene or anti-oncogene in breast cancer metastasis. We found that miR-214 inhibited breast cancer via targeting RNF8, a newly identified regulator that could promote epithelial-mesenchymal transition (EMT). Specifically, the survival rate of breast cancer patients was positively correlated with miR-214 levels and negatively correlated with RNF8 expression. The overexpression of miR-214 inhibited cell proliferation and invasion of breast cancer, while suppression of miR-214 by chemically modified antagomir enhanced the proliferation and invasion of breast cancer cells. Furthermore, miR-214 could modulate the EMT process via downregulating RNF8. To our knowledge, this is the first report that reveals the role of the miR-214-RNF8 axis in EMT, and our results demonstrate a novel mechanism for miR-214 acting as a tumor suppressor through the regulation of EMT.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Femenino , Células HEK293 , Humanos , Células MCF-7 , Invasividad Neoplásica , Metástasis de la Neoplasia
17.
J Am Chem Soc ; 140(4): 1549-1556, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29318881

RESUMEN

Ternary blending strategy has been used to design and fabricate efficient organic solar cells by enhancing the short-circuit current density and the fill factor. In this manuscript, we report all-small-molecule ternary solar cells consisting of two compatible small molecules DR3TBDTT (M1) and DR3TBDTT-E (M2) as donors and PC71BM as acceptor. A transformation from an alloy-like model to a cascade model are first realized by designing a novel molecule M2. It is observed that after thermal and solvent vapor annealing M2 shifts from the mixed region to donor-acceptor (D-A) interfaces which ameliorates the charge transfer and recombination processes. The optimal ternary solar cells with 10% M2 exhibited a power conversion efficiency of 8.48% in the alloy-like model and 10.26% in the cascade model. The proposed working mechanisms are fully characterized and further supported by the density functional theory and atomistic molecular dynamics simulations. This provides an important strategy to design high-performance ternary solar cells which contains one molecule not only is compatible with the main donor molecule but also performs a preference to appear at the D-A interfaces hence builds cascade energy levels.

18.
Microb Cell Fact ; 17(1): 120, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30064437

RESUMEN

For years, microbes have been widely applied as chassis in the construction of synthetic metabolic pathways. However, the lack of in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. In recent years, multiple methods have been applied to the construction of small metabolic clusters by spatial organization of heterologous metabolic enzymes. These methods mainly focused on using engineered molecules to bring the enzymes into close proximity via different interaction mechanisms among proteins and nucleotides and have been applied in various heterologous pathways with different degrees of success while facing numerous challenges. In this paper, we mainly reviewed some of those notable advances in designing and creating approaches to achieve spatial organization using different intermolecular interactions. Current challenges and future aspects in the further application of such approaches are also discussed in this paper.


Asunto(s)
Ingeniería Metabólica/métodos , Redes y Vías Metabólicas
19.
Phys Chem Chem Phys ; 20(38): 24570-24576, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30226231

RESUMEN

The ternary blending strategy has been a widely used method to achieve high performance in organic photovoltaics. However, the impact of the third component on the donor-acceptor interface geometries is still unclear, especially with regard to the microscopic structures in the mixed regions. In this study, we have investigated the donor-acceptor molecular packing structures in the mixed region as well as the exciton dissociation and charge recombination properties in all-small-molecule ternary solar cells based on the new DR3TBDTT:DR3TBDTT-E:PC71BM system by means of molecular dynamics simulations combined with electronic-structure calculations. The simulated results reveal that the incorporation of 10% DR3TBDTT-E in the ternary blend can lead to a decrease in the probability of finding PC71BM close to the central electron-donating benzodithiophene moiety, and thus this can reduce the binding energy of the lowest charge-transfer state and the electronic coupling of charge recombination. However, with a further increase of the doping ratio, PC71BM aggregation becomes weak, which is harmful to electron transport. Therefore, superior performance can be only obtained with a proper amount of the third component for ternary blend solar cells.

20.
BMC Vet Res ; 14(1): 109, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29580234

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), which is currently insufficiently controlled. From a previous small-scale screen we identified an effective DNA-based short antisense oligonucleotide (AS-ON) targeting viral NSP9, which could inhibit PRRSV replication in both Marc-145 cells and pulmonary alveolar macrophages (PAMs). The objective of this study was to explore the strategy of incorporating locked nucleic acids (LNAs) to achieve better inhibition of PRRSV replication in vitro. METHODS: The effective DNA-based AS-ON (YN8) was modified with LNAs at both ends as gap-mer (LNA-YN8-A) or as mix-mer (LNA-YN8-B). Marc-145 cells or PAMs were infected with PRRSV and subsequently transfected. RESULTS: Compared with the DNA-based YN8 control, the two AS-ONs modified with LNAs were found to be significantly more effective in decreasing the cytopathic effect (CPE) induced by PRRSV and thus in maintaining cell viability. LNA modifications conferred longer lifetimes to the AS-ON in the cell culture model. Viral ORF7 levels were more significantly reduced at both RNA and protein levels as shown by quantitative PCR, western blot and indirect immunofluorescence staining. Moreover, transfection with LNA modified AS-ON reduced the PRRSV titer by 10-fold compared with the YN8 control. CONCLUSION: Taken together, incorporation of LNA into AS-ON technology holds higher therapeutic promise for PRRS control.


Asunto(s)
Ácidos Nucleicos/química , Oligonucleótidos Antisentido/farmacología , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Western Blotting/veterinaria , Línea Celular , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente Indirecta/veterinaria , Técnicas In Vitro , Riñón/citología , Riñón/virología , Macrófagos Alveolares/virología , Ácidos Nucleicos/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA