Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 604(7904): 72-79, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388196

RESUMEN

Covalent organic frameworks (COFs) are distinguished from other organic polymers by their crystallinity1-3, but it remains challenging to obtain robust, highly crystalline COFs because the framework-forming reactions are poorly reversible4,5. More reversible chemistry can improve crystallinity6-9, but this typically yields COFs with poor physicochemical stability and limited application scope5. Here we report a general and scalable protocol to prepare robust, highly crystalline imine COFs, based on an unexpected framework reconstruction. In contrast to standard approaches in which monomers are initially randomly aligned, our method involves the pre-organization of monomers using a reversible and removable covalent tether, followed by confined polymerization. This reconstruction route produces reconstructed COFs with greatly enhanced crystallinity and much higher porosity by means of a simple vacuum-free synthetic procedure. The increased crystallinity in the reconstructed COFs improves charge carrier transport, leading to sacrificial photocatalytic hydrogen evolution rates of up to 27.98 mmol h-1 g-1. This nanoconfinement-assisted reconstruction strategy is a step towards programming function in organic materials through atomistic structural control.

2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38555472

RESUMEN

Predicting interactions between microbes and hosts plays critical roles in microbiome population genetics and microbial ecology and evolution. How to systematically characterize the sophisticated mechanisms and signal interplay between microbes and hosts is a significant challenge for global health risks. Identifying microbe-host interactions (MHIs) can not only provide helpful insights into their fundamental regulatory mechanisms, but also facilitate the development of targeted therapies for microbial infections. In recent years, computational methods have become an appealing alternative due to the high risk and cost of wet-lab experiments. Therefore, in this study, we utilized rich microbial metagenomic information to construct a novel heterogeneous microbial network (HMN)-based model named KGVHI to predict candidate microbes for target hosts. Specifically, KGVHI first built a HMN by integrating human proteins, viruses and pathogenic bacteria with their biological attributes. Then KGVHI adopted a knowledge graph embedding strategy to capture the global topological structure information of the whole network. A natural language processing algorithm is used to extract the local biological attribute information from the nodes in HMN. Finally, we combined the local and global information and fed it into a blended deep neural network (DNN) for training and prediction. Compared to state-of-the-art methods, the comprehensive experimental results show that our model can obtain excellent results on the corresponding three MHI datasets. Furthermore, we also conducted two pathogenic bacteria case studies to further indicate that KGVHI has excellent predictive capabilities for potential MHI pairs.


Asunto(s)
Aprendizaje Profundo , Humanos , Reconocimiento de Normas Patrones Automatizadas , Redes Neurales de la Computación , Algoritmos , Bacterias
3.
Chem Rev ; 123(22): 12313-12370, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37942891

RESUMEN

Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.

4.
Mol Cell Proteomics ; 22(4): 100524, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870568

RESUMEN

The heterogeneity of idiopathic pulmonary fibrosis (IPF) limits its diagnosis and treatment. The association between the pathophysiological features and the serum protein signatures of IPF currently remains unclear. The present study analyzed the specific proteins and patterns associated with the clinical parameters of IPF based on a serum proteomic dataset by data-independent acquisition using MS. Differentiated proteins in sera distinguished patients with IPF into three subgroups in signal pathways and overall survival. Aging-associated signatures by weighted gene correlation network analysis coincidently provided clear and direct evidence that aging is a critical risk factor for IPF rather than a single biomarker. Expression of LDHA and CCT6A, which was associated with glucose metabolic reprogramming, was correlated with high serum lactic acid content in patients with IPF. Cross-model analysis and machine learning showed that a combinatorial biomarker accurately distinguished patients with IPF from healthy individuals with an area under the curve of 0.848 (95% CI = 0.684-0.941) and validated from another cohort and ELISA assay. This serum proteomic profile provides rigorous evidence that enables an understanding of the heterogeneity of IPF and protein alterations that could help in its diagnosis and treatment decisions.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteómica , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Proteínas Sanguíneas , Biomarcadores , Chaperonina con TCP-1
5.
J Am Chem Soc ; 146(25): 16963-16970, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38691630

RESUMEN

Despite the significant achievements in dearomatization and C-H functionalization of arenes, the arene ring-opening remains a largely unmet challenge and is underdeveloped due to the high bond dissociation energy and strong resonance stabilization energy inherent in aromatic compounds. Herein, we demonstrate a novel carbene assisted strategy for arene ring-opening. The understanding of the mechanism by our DFT calculations will stimulate wide application of bulk arene chemicals for the synthesis of value-added polyconjugated chain molecules. Various aryl azide derivatives now can be directly converted into valuable polyconjugated enynes, avoiding traditional synthesis including multistep unsaturated precursors, poor selectivity control, and subsequent transition-metal catalyzed cross-coupling reactions. The simple conditions required were demonstrated in the late-stage modification of complex molecules and fused ring compounds. This chemistry expands the horizons of carbene chemistry and provides a novel pathway for arene ring-opening.

6.
J Am Chem Soc ; 146(29): 20107-20115, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38842422

RESUMEN

Photocatalytic covalent organic frameworks (COFs) are typically constructed with rigid aromatic linkers for crystallinity and extended π-conjugation. However, the essential hydrophobicity of the aromatic backbone can limit their performances in water-based photocatalytic reactions. Here, we for the first time report the synthesis of hydrophilic COFs with aliphatic linkers [tartaric acid dihydrazide (TAH) and butanedioic acid dihydrazide] that can function as efficient photocatalysts for H2O2 and H2 evolution. In these hydrophilic aliphatic linkers, the specific multiple hydrogen bonding networks not only enhance crystallization but also ensure an ideal compatibility of crystallinity, hydrophilicity, and light harvesting. The resulting aliphatic linker COFs adopt an unusual ABC stacking, giving rise to approximately 0.6 nm nanopores with an improved interaction with water guests. Remarkably, both aliphatic linker-based COFs show strong visible light absorption, along with a narrow optical band gap of ∼1.9 eV. The H2O2 evolution rate for TAH-COF reaches up to 6003 µmol h-1 g-1, in the absence of sacrificial agents, surpassing the performance of all previously reported COF-based photocatalysts. Theoretical calculations reveal that the TAH linker can enhance the indirect two-electron oxygen reduction reaction for H2O2 production by improving the O2 adsorption and stabilizing the *OOH intermediate. This study opens a new avenue for constructing semiconducting COFs using nonaromatic linkers.

7.
Respir Res ; 25(1): 100, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402153

RESUMEN

BACKGROUND: Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. Recently, increasing evidence supports activated inflammation and gasdermin D (GSDMD)-mediated pyroptosis in macrophage are closely associated with ALI. Basic helix-loop-helix family member e40 (Bhlhe40) is a transcription factor that is comprehensively involved in inflammation. However, there is little experimental evidence connecting Bhlhe40 and GSDMD-driven pyroptosis. The study sought to verify the hypothesis that Bhlhe40 is required for GSDMD-mediated pyroptosis in lipopolysaccharide (LPS)-induced inflammatory injury. METHOD: We performed studies using Bhlhe40-knockout (Bhlhe40 -/-) mice, small interfering RNA (siRNA) targeting Bhlhe40 and pyroptosis inhibitor disulfiram to investigate the potential roles of Bhlhe40 on LPS-induced ALI and the underlying mechanisms. RESULTS: Bhlhe40 was highly expressed in total lung tissues and macrophages of LPS-induced mice. Bhlhe40-/- mice showed alleviative lung pathological injury and inflammatory response upon LPS stimulation. Meanwhile, we found that Bhlhe40 deficiency significantly suppressed GSDMD-mediated pyroptosis in macrophage in vivo and in vitro. By further mechanistic analysis, we demonstrated that Bhlhe40 deficiency inhibited GSDMD-mediated pyroptosis and subsequent ALI by repressing canonical (caspase-1-mediated) and non-canonical (caspase-11-mediated) signaling pathways in vivo and in vitro. CONCLUSION: These results indicate Bhlhe40 is required for LPS-induced ALI. Bhlhe40 deficiency can inhibit GSDMD-mediated pyroptosis and therefore alleviate ALI. Targeting Bhlhe40 may be a potential therapeutic strategy for LPS-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Animales , Ratones , Lipopolisacáridos/toxicidad , Piroptosis , Macrófagos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/prevención & control , Lesión Pulmonar Aguda/metabolismo , Caspasas/efectos adversos , Inflamación , ARN Interferente Pequeño , Proteínas de Homeodominio/efectos adversos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
8.
Mol Pharm ; 21(1): 346-357, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015620

RESUMEN

To overcome the limitations of traditional platinum (Pt)-based drugs and further improve the targeting ability and therapeutic efficacy in vivo, we proposed to design a human serum albumin (HSA)-Pt agent complex nanoparticle (NP) for cancer treatment by multimodal action against the tumor microenvironment. We not only synthesized a series of Pt(II) di-2-pyridone thiosemicarbazone compounds and obtained a Pt(II) agent [Pt(Dp44mT)Cl] with significant anticancer activity but also successfully constructed a novel HSA-Pt(Dp44mT) complex nanoparticle delivery system. The structure of the HSA-Pt(Dp44mT) complex revealed that Pt(Dp44mT)Cl binds to the IIA subdomain of HSA and coordinates with His-242. The HSA-His242-Pt-Dp44mT NPs had an obvious effect on the inhibition of tumor growth, which was superior to that of Dp44mT and Pt(Dp44mT)Cl, and they had almost no toxicity. In addition, the HSA-His242-Pt-Dp44mT NPs were found to kill cancer cells by inducing apoptosis, autophagy, and inhibiting angiogenesis.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Albúmina Sérica Humana/química , Platino (Metal) , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/química , Línea Celular Tumoral
9.
BMC Pulm Med ; 24(1): 11, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167022

RESUMEN

BACKGROUND: Pneumocystis jirovecii pneumonia (PCP) could be fatal to patients without human immunodeficiency virus (HIV) infection. Current diagnostic methods are either invasive or inaccurate. We aimed to establish an accurate and non-invasive radiomics-based way to identify the risk of PCP infection in non-HIV patients with computed tomography (CT) manifestation of pneumonia. METHODS: This is a retrospective study including non-HIV patients hospitalized for suspected PCP from January 2010 to December 2022 in one hospital. The patients were randomized in a 7:3 ratio into training and validation cohorts. Computed tomography (CT)-based radiomics features were extracted automatically and used to construct a radiomics model. A diagnostic model with traditional clinical and CT features was also built. The area under the curve (AUC) were calculated and used to evaluate the diagnostic performance of the models. The combination of the radiomics features and serum ß-D-glucan levels was also evaluated for PCP diagnosis. RESULTS: A total of 140 patients (PCP: N = 61, non-PCP: N = 79) were randomized into training (N = 97) and validation (N = 43) cohorts. The radiomics model consisting of nine radiomic features performed significantly better (AUC = 0.954; 95% CI: 0.898-1.000) than the traditional model consisting of serum ß-D-glucan levels (AUC = 0.752; 95% CI: 0.597-0.908) in identifying PCP (P = 0.002). The combination of radiomics features and serum ß-D-glucan levels showed an accuracy of 95.8% for identifying PCP infection (positive predictive value: 95.7%, negative predictive value: 95.8%). CONCLUSIONS: Radiomics showed good diagnostic performance in differentiating PCP from other types of pneumonia in non-HIV patients. A combined diagnostic method including radiomics and serum ß-D-glucan has the potential to provide an accurate and non-invasive way to identify the risk of PCP infection in non-HIV patients with CT manifestation of pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05701631).


Asunto(s)
Infecciones por VIH , Pneumocystis carinii , Neumonía por Pneumocystis , beta-Glucanos , Humanos , Neumonía por Pneumocystis/diagnóstico por imagen , Estudios Retrospectivos , Radiómica , Infecciones por VIH/complicaciones , Glucanos , Tomografía
10.
Eur J Public Health ; 34(4): 760-765, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38607985

RESUMEN

BACKGROUND: Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exhibits multi-organ damage with diverse complications, the correlation between age, gender, medical history and clinical manifestations of novel coronavirus disease 2019 (COVID-19) patients was investigated. METHODS: 1640 patients who were infected with SARS-CoV-2 and hospitalized at the First Affiliated Hospital of Ningbo University from 22 December 2022 to 1 March 2023 were categorized and analysed. Normal distribution test and variance homogeneity test were performed. Based on the test results, one-way analysis of variance, Pearson's chi-squared test and logistic regression analysis were conducted in the study. RESULTS: According to the ANOVA, there was a significant difference in the age distribution (P = .001) between different clinical presentations, while gender did not (P = .06). And regression analysis showed that age, hypertension, atherosclerosis and cancer were significant hazard factors for the development of predominant clinical manifestations in patients hospitalized with novel COVID-19. Additionally, infection with SARS-CoV-2 has the potential to exacerbate the burden on specific diseased or related organs. CONCLUSION: The elderly who are infected with SARS-CoV-2 ought to be treated with emphasis not only on antiviral therapy but also on individualized treatment that takes their medical history and comorbidities into account.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Masculino , Femenino , China/epidemiología , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Anciano , Adulto Joven , Anciano de 80 o más Años , Adolescente , Factores de Edad , Factores de Riesgo , Hospitalización/estadística & datos numéricos , Niño
11.
BMC Oral Health ; 24(1): 179, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311720

RESUMEN

OBJECTIVE: To clarify whether the 3D printing model has auxiliary functions in toto extraction of donor tooth in autotransplantation cases. METHODS: Two hundred and sixty patients who would have operation of ATT were divided into two groups. In group 1, determination of the tooth extraction in toto was predicted only according to the clinical and imaging examination. In group 2, the prediction was performed according to the clinical and imaging examination as well as the 3D model of donor tooth pre-extraction. A prespctive clinical study was designed on intra-group comparison between the predicted and actual donor teeth situation when extraction in cases of ATT. The consistent rate for the predicted results and the actual results were compared with the two groups. RESULTS: A remarkable difference was observed between the predicted results and the actual results of tooth positions and root numbers in group without model (p < 0,05). The consistency rate of the model group (94.62%) was significantly higher than that of non 3D model group (86.15%) (p = 0.034). CONCLUSION: The 3D printing model for the donor tooth is helpful for dentists to predict the accuracy of toto extraction of donor teeth in autotransplantation cases.


Asunto(s)
Compuestos de Quinolinio , Cirugía Asistida por Computador , Tiazoles , Diente , Humanos , Trasplante Autólogo/métodos , Cirugía Asistida por Computador/métodos , Extracción Dental , Impresión Tridimensional
12.
J Environ Sci (China) ; 140: 270-278, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331507

RESUMEN

The CO2 catalytic hydrogenation represents a promising approach for gas-phase CO2 utilization in a direct manner. Due to its excellent hydrogenation ability, nickel has been widely studied and has shown good activities in CO2 hydrogenation reactions, in addition to its high availability and low price. However, Ni-based catalysts are prone to sintering under elevated temperatures, leading to unstable catalytic performance. In the present study, various characterization techniques were employed to study the structural evolution of Ni/SiO2 during CO2 hydrogenation. An anti-sintering phenomenon is observed for both 9% Ni/SiO2 and 1% Ni/SiO2 during CO2 hydrogenation at 400°C. Results revealed that Ni species were re-dispersed into smaller-sized nanoparticles and formed Ni0 active species. While interestingly, this anti-sintering phenomenon leads to distinct outcomes for two catalysts, with a gradual increase in both reactivity and CH4 selectivity for 9% Ni/SiO2 presumably due to the formation of abundant surface Ni° from redispersion, while an apparent decreasing trend of CH4 selectivity for 1% Ni/SiO2 sample, presumably due to the formation of ultra-small nanoparticles that diffuse and partially filled the mesoporous pores of the silica support over time. Finally, the redispersion phenomenon was found relevant to the H2 gas in the reaction environment and enhanced as the H2 concentration increased. This finding is believed to provide in-depth insights into the structural evolution of Ni-based catalysts and product selectivity control in CO2 hydrogenation reactions.


Asunto(s)
Dióxido de Carbono , Níquel , Hidrogenación , Dióxido de Silicio , Catálisis
13.
Angew Chem Int Ed Engl ; : e202411846, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295439

RESUMEN

To develop next-generation metal-based drugs and dual-drug combination therapy for cancer, we proposed to develop a copper (Cu) complex that exerts anticancer function by integrating chemotherapy, immunotherapy and catalyzes a click reaction for the in situ synthesis of a chemotherapeutic agent, thereby achieving targeted dual-agent combination therapy. We designed and synthesized a tetranuclear Cu(I) complex (Cu4) with remarkable cytotoxicity and notable catalytic ability for the in situ synthesis of a chemotherapeutic agent via Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition (CuAAC). We also constructed an apoferritin (AFt)-Cu4 nanoparticles (NPs) delivery system. AFt-Cu4 NPs not only showed an enhanced performance of tumor growth inhibition, but also improved the targeting ability and reduced the systemic toxicity of Cu4 in vivo. Importantly, the anticancer effect was enhanced by combining the AFt-Cu4 NPs with the resveratrol analogue obtained from the CuAAC reaction in situ. Finally, we revealed the anticancer mechanism of the Cu4/AFt-Cu4 NPs, which involves both cuproptosis and cuproptosis-induced systemic immune response.

14.
J Am Chem Soc ; 145(16): 8751-8756, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36943737

RESUMEN

This study describes an instantaneously gas-induced dynamic transition of an industrial Cu/ZnO/Al2O3 catalyst. Cu/ZnO clusters become "alive" and lead to a promotion in reaction rate by almost one magnitude, in response to the variation of the reactant components. The promotional changes are functions of either CO2-to-CO or H2O-to-H2 ratio which determines the oxygen chemical potential thus drives Cu/ZnO clusters to undergo reconstruction and allows the maximum formation of Cu-Zn2+ sites for CH3OH synthesis.

15.
Small ; : e2307859, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072811

RESUMEN

Metallic substrates, widely studied in the context of monolithic catalysts, offer inherent advantages in heterogeneous catalysis due to their exceptional thermal conductivity and mechanical properties. However, synthesizing stable monolithic catalysts with metallic substrates in a well-controlled manner remains a significant challenge. Here, this work introduces a simple, cost-efficient method to fabricate robust Cu mesh-supported thermo-catalysts using a modified cycling chronopotentiometry approach, where the Cu mesh serves as a donor of Cu ions. In this method, the Cu mesh surface generates two distinct layers of CuO and Cu2 O. In this context, CuO acts as the active phase, accounting for the high CO oxidation activity of Cu mesh catalysts with T90 ≈ 120 °C. Additionally, these catalysts exhibit considerable potential in electrocatalysis, showcasing significant research and application value.

16.
Epidemiol Infect ; 151: e81, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37142552

RESUMEN

This study aims to understand the epidemiological characteristics of SARS-CoV-2 infection in the paediatric population during the outbreak of the Omicron variant in Shanghai. We retrospectively analysed the population-based epidemiological characteristics and clinical outcome of SARS-CoV-2 Omicron variant infection in children in Minhang District, Shanghai, based on the citywide surveillance system during the outbreak period in 2022 (March to May). During this time, a total of 63,969 cases of SARS-CoV-2 infection were notified in Minhang District, out of which 4,652 (7.3%) were children and adolescents <18 years. The incidence rate of SARS-CoV-2 infections in children was 153 per 10,000. Of all paediatric cases, 50% reported to be clinically symptomatic within 1-3 days after PCR confirmation by parents or themselves, with 36.3% and 18.9% of paediatric cases reporting fever and cough. Also, 58.4% of paediatric cases had received at least one dose of the COVID-19 vaccine and 52.1% had received two doses of the COVID-19 vaccination. Our findings are informative for the implementation of appropriate measures to protect children from the threat of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Adolescente , Niño , Humanos , China/epidemiología , COVID-19/epidemiología , Vacunas contra la COVID-19 , Brotes de Enfermedades , Estudios Retrospectivos , SARS-CoV-2 , Masculino , Femenino , Recién Nacido , Lactante , Preescolar
17.
Phys Chem Chem Phys ; 25(45): 31257-31269, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37955269

RESUMEN

Armchair X-N4 nanoribbons (X-AN4NRs) and zigzag X-N4 nanoribbons (X-ZN4NRs) were calculated using first-principles calculations. Ferromagnets (FM) were found to be the most stable among the initial magnetic structures. Furthermore, nanoribbons were found to be thermodynamically stable through molecular dynamics simulations. It can be found that when the temperature and total energy of X-AN4NRs and X-ZN4NRs change with time, they have a small oscillation range, which confirms the dynamic stability of X-AN4NRs and X-ZN4NRs under realistic experimental conditions. Subsequently, the magnetic moment analysis of the X-AN4NRs and X-ZN4NRs revealed that the magnetic moment of the X-AN4NRs is significantly smaller than that of X-ZN4NRs. The band structure and density of states (DOS) of the X-AN4NRs and X-ZN4NRs were also computed, which indicate different properties for different transition metal nanoribbons. The results suggest that different edge structures and transition metals can influence the electronic structure of the nanoribbons. Moreover, based on the band structure and DOS, it was found that Mn-AN4NRs and Fe-ZN4NRs exhibit half-metallic properties. They can generate 100% polarized currents at the Fermi level, providing valuable information for developing spintronic devices. Our study has a positive value for regulating the properties of the nanoribbons by metal atom substitution.

18.
Phys Chem Chem Phys ; 25(2): 1153-1160, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36519563

RESUMEN

The electronic structure of g-C3N4/C2N-h2D nanoribbons was investigated by first-principles calculations. As a splice structure, we first computed the three magnetic coupled states of g-C3N4/C2N-h2D nanoribbons. After self-consistent calculations, both the antiferromagnetic and paramagnetic coupling states become ferromagnetic coupling states. It was proved that the ferromagnetic coupling state is the most stable state. Thermodynamic stability was subsequently verified based on the ferromagnetic coupling state. It had a steady electron spin polarization, with a magnetic moment of 1 µB for each primitive cell. It changed from a direct band-gap semiconductor to an indirect band-gap semiconductor and exhibited the properties of a narrow band gap semiconductor through the analysis of the energy band and charge density. To transform the electronic structure, we adsorbed different transition metals in g-C3N4/C2N-h2D nanoribbons. We investigated the electronic structure of g-C3N4/C2N-h2D nanoribbons adsorbed by different transition metals. It was shown that the electronic structure of g-C3N4/C2N-h2D nanoribbons could be regulated by the adsorption of different transition metal atoms. Moreover, the adsorption of Fe and Ni can generate a 100% polarized current in the Fermi surface, which will provide more application potential for spintronics devices.

19.
Bioorg Chem ; 133: 106409, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36753963

RESUMEN

Histone demethylation is a key post-translational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Lysine specific demethylase 6A (KDM6A, also known as UTX) is an Fe2+- and α-ketoglutarate- dependent oxidase which belongs to KDM6 Jumonji histone demethylase subfamily, and it can remove mono-, di- and tri-methyl groups from methylated lysine 27 of histone H3 (H3K27me1/2/3). Mounting studies indicate that KDM6A is responsible for driving multiple human diseases, particularly cancers and pharmacological inhibition of KDM6A is an effective strategy to treat varieties of KDM6A-amplified cancers in cellulo and in vivo. Although there are several reviews on the roles of KDM6 subfamily in cancer development and therapy, all of them only simply introduce the roles of KDM6A in cancer without systematically summarizing the specific mechanisms of KDM6A in tumorigenesis, which greatly limits the advances on the understanding of roles KDM6A in varieties of cancers, discovering targeting selective KDM6A inhibitors, and exploring the adaptive profiles of KDM6A antagonists. Herein, we present the structure and functions of KDM6A, simply outline the functions of KDM6A in homeostasis and non-cancer diseases, summarize the role of KDM6A and its distinct target genes/ligand proteins in development of varieties of cancers, systematically classify KDM6A inhibitors, sum up the difficulties encountered in the research of KDM6A and the discovery of related drugs, and provide the corresponding solutions, which will contribute to understanding the roles of KDM6A in carcinogenesis and advancing the progression of KDM6A as a drug target in cancer therapy.


Asunto(s)
Histona Demetilasas , Neoplasias , Humanos , Carcinogénesis/metabolismo , Histona Demetilasas/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética
20.
Angew Chem Int Ed Engl ; 62(4): e202212278, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36287199

RESUMEN

Strong metal-support interactions (SMSI) represent a classic yet fast-growing area in catalysis research. The SMSI phenomenon results in the encapsulation and stabilization of metal nanoparticles (NPs) with the support material that significantly impacts the catalytic performance through regulation of the interfacial interactions. Engineering SMSI provides a promising approach to steer catalytic performance in various chemical processes, which serves as an effective tool to tackle energy and environmental challenges. Our Minireview covers characterization, theory, catalytic activity, dependence on the catalytic structure and inducing environment of SMSI phenomena. By providing an overview and outlook on the cutting-edge techniques in this multidisciplinary research field, we not only want to provide insights into the further exploitation of SMSI in catalysis, but we also hope to inspire rational designs and characterization in the broad field of material science and physical chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA