Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Idioma
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4755-4767, 2024 Sep.
Artículo en Zh | MEDLINE | ID: mdl-39307810

RESUMEN

This study aimed to elucidate the mechanism of Huachansu Injection(HCSI) against colorectal cancer(CRC) using network pharmacology, molecular docking technology, and cellular experimental. This research group initially used LC-MS/MS to detect the content of 16 bufadienolides in HCSI. Ten bufadienolide components were selected based on a content threshold of greater than 10 ng·mL~(-1). Their potential targets were further predicted using the SwissTargetPrediction database. CRC-related targets were obtained through GeneCards, OMIM, TTD, and PharmGKB databases. The intersection targets of HCSI in the treatment of CRC were obtained through Venny. The "active component-target-disease" network and target protein-protein interaction(PPI) network were constructed via Cytoscape software. Core targets were screened based on the degree values. Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed on these key targets. Molecular docking was conducted using AutoDock software on major bufadienolide active components and key targets. Different concentrations of HCSI, psi-bufarenogin(BUF), and bufotalin(BFT) were tested for their effects on cell viability, migration, and apoptosis rates in CRC HCT116 cells. Western blot was conducted to detect the expression of proteins related to the PI3K/Akt/mTOR signaling pathway in HCT116 cells. Eight main active components of HCSI, including arenobufagin, BUF, and BFT, as well as 20 key targets of HCSI in combating CRC, such as EGFR, IL6, and mTOR, were identified. Based on KEGG pathway enrichment and molecular docking results, the PI3K/Akt/mTOR signaling pathway was selected for further verification. Cellular experimental demonstrated that HCSI, BUF, and BFT significantly inhibited the proliferation and migration abilities of HCT116 cells, induced apoptosis in these cells, and downregulated the expression of PI3K/Akt/mTOR pathway-related proteins. This result suggests that HCSI, BUF, and BFT may exert their anti-CRC effects by regulating the PI3K/Akt/mTOR signaling pathway through targets such as mTOR and PIK3CA. This study provides theoretical evidence for exploring the active ingredients and mechanism of HCSI against CRC.


Asunto(s)
Bufanólidos , Neoplasias Colorrectales , Simulación del Acoplamiento Molecular , Farmacología en Red , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Bufanólidos/farmacología , Bufanólidos/química , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Venenos de Anfibios/química , Venenos de Anfibios/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Movimiento Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Células HCT116 , Línea Celular Tumoral
2.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2222-2232, 2023 Apr.
Artículo en Zh | MEDLINE | ID: mdl-37282910

RESUMEN

The present study aimed to explore the main active components and underlying mechanisms of Marsdenia tenacissima in the treatment of ovarian cancer(OC) through network pharmacology, molecular docking, and in vitro cell experiments. The active components of M. tenacissima were obtained from the literature search, and their potential targets were obtained from SwissTargetPrediction. The OC-related targets were retrieved from Therapeutic Target Database(TTD), Online Mendelian Inheritance in Man(OMIM), GeneCards, and PharmGKB. The common targets of the drug and the disease were screened out by Venn diagram. Cytoscape was used to construct an "active component-target-disease" network, and the core components were screened out according to the node degree. The protein-protein interaction(PPI) network of the common targets was constructed by STRING and Cytoscape, and the core targets were screened out according to the node degree. GO and KEGG enrichment analyses of potential therapeutic targets were carried out with DAVID database. Molecular docking was used to determine the binding activity of some active components to key targets by AutoDock. Finally, the anti-OC activity of M. tenacissima extract was verified based on SKOV3 cells in vitro. The PI3K/AKT signaling pathway was selected for in vitro experimental verification according to the results of GO function and KEGG pathway analyses. Network pharmacology results showed that 39 active components, such as kaempferol, 11α-O-benzoyl-12ß-O-acetyltenacigenin B, and drevogenin Q, were screened out, involving 25 core targets such as AKT1, VEGFA, and EGFR, and the PI3K-AKT signaling pathway was the main pathway of target protein enrichment. The results of molecular docking also showed that the top ten core components showed good binding affinity to the top ten core targets. The results of in vitro experiments showed that M. tenacissima extract could significantly inhibit the proliferation of OC cells, induce apoptosis of OC cells through the mitochondrial pathway, and down-regulate the expression of proteins related to the PI3K/AKT signaling pathway. This study shows that M. tenacissima has the characteristics of multi-component, multi-target, and multi-pathway synergistic effect in the treatment of OC, which provides a theoretical basis for in-depth research on the material basis, mechanism, and clinical application.


Asunto(s)
Medicamentos Herbarios Chinos , Marsdenia , Neoplasias Ováricas , Humanos , Femenino , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Bases de Datos Genéticas , Extractos Vegetales , Medicamentos Herbarios Chinos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA