RESUMEN
OBJECTIVE: To investigate the incidence of severe neonatal hyperbilirubinemia and the management on the treatment and follow-up of this disease in Jiangsu Province, China. METHODS: The neonates with severe hyperbilirubinemia who were admitted to 13 hospitals in Jiangsu Province from January to December, 2018, were enrolled as subjects. A retrospective analysis was performed on their mediacal data and follow-up data. RESULTS: In 2018, 740 neonates with severe hyperbilirubinemia were reported from the 13 hospitals in Jiangsu Province, accounting for 2.70% (740/27â386) of the total number of neonates admitted to the department of neonatology. Among these neonates, 620 (83.8%) had severe hyperbilirubinemia, 106 (14.3%) had extremely severe hyperbilirubinemia, and 14 (1.9%) had hazardous hyperbilirubinemia. Four neonates (0.5%) were diagnosed with acute bilirubin encephalopathy. A total of 484 neonates (65.4%) were readmitted due to severe hyperbilirubinemia after discharge from the delivery institution, with a median age of 7 days, among whom 214 (44.2%) were followed up for jaundice at the outpatient service before readmission, with a median age of 6 days at the first time of outpatient examination. During hospitalization, 211 neonates (28.5%) underwent cranial MRI examinations, among whom 85 (40.3%) had high T1WI signal in the bilateral basal ganglia and the globus pallidus; 238 neonates (32.2%) underwent brainstem auditory evoked potential examinations, among whom 14 (5.9%) passed only at one side and 7 (2.9%) failed at both sides. The 17 neonates with acute bilirubin encephalopathy or hazardous hyperbilirubinemia were followed up. Except one neonate was lost to follow-up, and there were no abnormal neurological symptoms in the other neonates. CONCLUSIONS: Neonates with severe hyperbilirubinemia account for a relatively high proportion of the total number of neonates in the department of neonatology. Jaundice monitoring and management after discharge from delivery institutions need to be strengthened. For neonates with severe hyperbilirubinemia, relevant examinations should be carried out more comprehensively during hospitalization and these neonates should be followed up comprehensively and systematically after discharge.
Asunto(s)
Hiperbilirrubinemia Neonatal , Bilirrubina , China , Potenciales Evocados Auditivos del Tronco Encefálico , Humanos , Recién Nacido , Estudios RetrospectivosRESUMEN
Objective: Surgical site infection (SSI) are a serious complication that can occur after open reduction and internal fixation (ORIF) of tibial fractures, leading to severe consequences. This study aimed to develop a machine learning (ML)-based predictive model to screen high-risk patients of SSI following ORIF of tibial fractures, thereby aiding in personalized prevention and treatment. Methods: Patients who underwent ORIF of tibial fractures between January 2018 and October 2022 at the Department of Emergency Trauma Surgery at Ganzhou People's Hospital were retrospectively included. The demographic characteristics, surgery-related variables and laboratory indicators of patients were collected in the inpatient electronic medical records. Ten different machine learning algorithms were employed to develop the prediction model, and the performance of the models was evaluated to select the best predictive model. Ten-fold cross validation for the training set and ROC curves for the test set were used to evaluate model performance. The decision curve and calibration curve analysis were used to verify the clinical value of the model, and the relative importance of features in the model was analyzed. Results: A total of 351 patients who underwent ORIF of tibia fractures were included in this study, among whom 51 (14.53%) had SSI and 300 (85.47%) did not. Of the patients with SSI, 15 cases were of deep infection, and 36 cases were of superficial infection. Given the initial parameters, the ET, LR and RF are the top three algorithms with excellent performance. Ten-fold cross-validation on the training set and ROC curves on the test set revealed that the ET model had the best performance, with AUC values of 0.853 and 0.866, respectively. The decision curve analysis and calibration curves also showed that the ET model had the best clinical utility. Finally, the performance of the ET model was further tested, and the relative importance of features in the model was analyzed. Conclusion: In this study, we constructed a multivariate prediction model for SSI after ORIF of tibial fracture through ML, and the strength of this study was the use of multiple indicators to establish an infection prediction model, which can better reflect the real situation of patients, and the model show great clinical prediction performance.
Asunto(s)
Infección de la Herida Quirúrgica , Fracturas de la Tibia , Humanos , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/etiología , Estudios Retrospectivos , Tibia/cirugía , Fijación Interna de Fracturas/efectos adversos , Fracturas de la Tibia/complicaciones , Fracturas de la Tibia/cirugía , Aprendizaje Automático , Factores de RiesgoRESUMEN
OBJECTIVE: To overcome the disadvantages of cisplatin, numerous platinum (Pt) complexes have been prepared. However, the anticancer activity and mechanism of Pt(II) complexed with 2-benzoylpyridine [Pt(II)- Bpy]: [PtCl2(DMSO)L] (DMSO = dimethyl sulfoxide, L = 2-benzoylpyridine) in cancer cells remain unknown. METHODS: Pt(II)-Bpy was synthesized and characterized by spectrum analysis. Its anticancer activity and underlying mechanisms were demonstrated at the cellular, molecular, and in vivo levels. RESULTS: Pt(II)-Bpy inhibited tumor cell growth, especially HepG2 human liver cancer cells, with a halfmaximal inhibitory concentration of 9.8±0.5µM, but with low toxicity in HL-7702 normal liver cells. Pt(II)- Bpy induced DNA damage, which was demonstrated through a marked increase in the expression of cleavedpoly (ADP ribose) polymerase (PARP) and gamma-H2A histone family member X and a decrease in PARP expression. The interaction of Pt(II)-Bpy with DNA at the molecular level was most likely through an intercalation mechanism, which might be evidence of DNA damage. Pt(II)-Bpy initiated cell cycle arrest at the S phase in HepG2 cells. It also caused severe loss of the mitochondrial membrane potential; a decrease in the expression of caspase-9 and caspase-3; an increase in reactive oxygen species levels; the release of cytochrome c and apoptotic protease activation factor; and the activation of caspase-9 and caspase-3 in HepG2 cells, which in turn resulted in apoptosis. Meanwhile, changes in p53 and related proteins were observed including the upregulation of p53, the phosphorylation of p53, p21, B-cell lymphoma-2-associated X protein, and NOXA; and the downregulation of B-cell lymphoma 2. Moreover, Pt(II)-Bpy displayed marked inhibitory effects on tumor growth in the HepG2 nude mouse model. CONCLUSION: Pt(II)-Bpy is a potential candidate for cancer chemotherapy.