Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Immunol ; 265: 110293, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936523

RESUMEN

Patients with caspase-associated recruitment domain-9 (CARD9) deficiency are more likely to develop invasive fungal disease that affect CNS. However, the understanding of how Candida invades and persists in CNS is still limited. We here reported a 24-year-old woman who were previously immunocompetent and diagnosed with CNS candidiasis. A novel autosomal recessive homozygous CARD9 mutation (c.184 + 5G > T) from this patient was identified using whole genomic sequencing. Furthermore, we extensively characterized the impact of this CARD9 mutation on the host immune response in monocytes, neutrophils and CD4 + T cells, using single cell sequencing and in vitro experiments. Decreased pro-inflammatory cytokine productions of CD14 + monocyte, impaired Th17 cell differentiation, and defective neutrophil accumulation in CNS were found in this patient. In conclusion, this study proposed a novel mechanism of CNS candidiasis development. Patients with CNS candidiasis in absence of known immunodeficiencies should be analyzed for CARD9 gene mutation as the cause of invasive fungal infection predisposition.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Humanos , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/deficiencia , Femenino , Adulto Joven , Mutación , Neutrófilos/inmunología , Células Th17/inmunología , Candidiasis Mucocutánea Crónica/genética , Candidiasis Mucocutánea Crónica/inmunología , Monocitos/inmunología , Citocinas
2.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062864

RESUMEN

The dimensions of organs such as flowers, leaves, and seeds are governed by processes of cellular proliferation and expansion. In soybeans, the dimensions of these organs exhibit a strong correlation with crop yield, quality, and other phenotypic traits. Nevertheless, there exists a scarcity of research concerning the regulatory genes influencing flower size, particularly within the soybean species. In this study, 309 samples of 3 soybean types (123 cultivar, 90 landrace, and 96 wild) were re-sequenced. The microscopic phenotype of soybean flower organs was photographed using a three-eye microscope, and the phenotypic data were extracted by means of computer vision. Pearson correlation analysis was employed to assess the relationship between petal and seed phenotypes, revealing a strong correlation between the sizes of these two organs. Through GWASs, SNP loci significantly associated with flower organ size were identified. Subsequently, haplotype analysis was conducted to screen for upstream and downstream genes of these loci, thereby identifying potential candidate genes. In total, 77 significant SNPs associated with vexil petals, 562 significant SNPs associated with wing petals, and 34 significant SNPs associated with keel petals were found. Candidate genes were screened by candidate sites, and haplotype analysis was performed on the candidate genes. Finally, the present investigation yielded 25 and 10 genes of notable significance through haplotype analysis in the vexil and wing regions, respectively. Notably, Glyma.07G234200, previously documented for its high expression across various plant organs, including flowers, pods, leaves, roots, and seeds, was among these identified genes. The research contributes novel insights to soybean breeding endeavors, particularly in the exploration of genes governing organ development, the selection of field materials, and the enhancement of crop yield. It played a role in the process of material selection during the growth period and further accelerated the process of soybean breeding material selection.


Asunto(s)
Flores , Estudio de Asociación del Genoma Completo , Glycine max , Fenotipo , Polimorfismo de Nucleótido Simple , Glycine max/genética , Glycine max/anatomía & histología , Glycine max/crecimiento & desarrollo , Flores/genética , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Haplotipos , Sitios de Carácter Cuantitativo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/anatomía & histología
3.
Mycoses ; 66(1): 59-68, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36111370

RESUMEN

BACKGROUND: Cryptococcal meningitis (CM) is increasingly recognised in human immunodeficiency virus (HIV)-uninfected patients with high mortality. The efficacy and safety profiles of induction therapy with high-dose fluconazole plus flucytosine remain unclear. METHODS: HIV-uninfected CM patients who received high-dose fluconazole (800 mg/d) for initial therapy in Huashan Hospital were included in this retrospective study from January 2013 to December 2018. Efficacy and safety of initial therapy, clinical outcomes and risk factors were evaluated. RESULTS: Twenty-seven (71.1%) patients who received high-dose fluconazole with flucytosine combination therapy and 11 (28.9%) having fluconazole alone for induction therapy were included. With a median duration of 42 days (IQR, 28-86), the successful response rate of initial therapy was 76.3% (29/38), while adverse drug reactions occurred in 14 patients (36.8%). The rate of persistently positive cerebrospinal fluid (CSF) culture results was 30.6% at 2 weeks, which was significantly associated with CSF CrAg titre >1:1280 (OR 9.56; 95% CI 1.40-103.65; p = .010) and CSF culture of Cryptococcus >3.9 log10 CFU/ml (OR 19.20; 95% CI 1.60-920.54; p = .011), and decreased to 8.6% at 4 weeks. One-year mortality was 15.8% (6/38), and low serum albumin (35 g/L) was found as an independent risk factor for 1-year mortality (HR 6.31; 95% CI 1.150-34.632; p = .034). CONCLUSIONS: Induction therapy with high-dose fluconazole (800 mg/d), combined with flucytosine, effectively treated HIV-uninfected CM and was well tolerated. Long-term fluconazole treatment with continued monitoring is beneficial for patients with persistent infection.


Asunto(s)
Infecciones por VIH , Meningitis Criptocócica , Humanos , Fluconazol/efectos adversos , Flucitosina/efectos adversos , Meningitis Criptocócica/complicaciones , Quimioterapia de Inducción , Estudios Retrospectivos , Antifúngicos/efectos adversos , Quimioterapia Combinada , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , VIH
4.
Mycoses ; 66(4): 308-316, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36520582

RESUMEN

BACKGROUND: Central nervous system (CNS) aspergillosis is an uncommon but fatal disease, the diagnosis of which is still difficult. OBJECTIVES: We aim to explore the diagnositic performance of noncultural methods for CNS aspergillosis. METHODS: In this retrospective study, all pathologically confirmed rhinosinusitis patients in whom cerebrospinal fluid (CSF) galactomannan (GM) test and metagenomic next-generation sequencing (mNGS) had been performed were included. We evaluated the diagnostic performances of CSF GM optical density indexes (ODI) at different cut-off values and compared performance with mNGS in patients with and without CNS aspergillosis, as well as in patients with different manifestations of CNS aspergillosis. RESULTS: Of the 21 proven and probable cases, one had positive culture result, five had positive mNGS results and 10 had a CSF GM ODI of >0.7. Sample concordance between mNGS and GM test was poor, but best diagnostic performance was achieved by combination of GM test (ODI of >0.7) and mNGS, which generated a sensitivity of 61.9% and specificity of 82.6%. Further investigation of combination diagnostic performances in different kind of CNS aspergillosis was also conducted. Lowest sensitivity (42.9%) was identified in abscess group, while increased sensitivity (60.0%) was achieved in abscess with encephalitis groups. Combination test exhibited the best performance for encephalitis patients who had only CSF abnormalities, in whom the sensitivity and specificity were 77.8% and 82.6%, respectively. CONCLUSIONS: In conclusion, combination of these two tests might be useful for diagnosis of CNS aspergillosis associated with fungal rhinosinusitis, especially in encephalitis patients.


Asunto(s)
Aspergilosis , Encefalitis , Humanos , Estudios Retrospectivos , Absceso , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Aspergilosis/diagnóstico , Sensibilidad y Especificidad , Mananos , Sistema Nervioso Central
5.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239903

RESUMEN

Phytophthora root rot in soybeans is caused by a pathogen called Phytophthora sojae (P. sojae), which results in a significant decrease in soybean production within affected regions. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a key post-transcriptional regulatory role in eukaryotes. In this paper, the miRNAs that respond to P. sojae were analyzed from the gene level to complement the study of molecular resistance mechanisms in soybean. The study utilized high-throughput sequencing of soybean data to predict miRNAs that respond to P. sojae, analyze their specific functions, and verify regulatory relationships using qRT-PCR. The results showed that the miRNAs in soybean respond to P. sojae infection. MiRNAs can be transcribed independently, suggesting the presence of transcription factor binding sites in the promoter regions. Additionally, we performed an evolutionary analysis on conserved miRNAs that respond to P. sojae. Finally, we investigated the regulatory relationships among miRNAs, genes, and transcription factors, and identified five regulatory patterns. These findings lay the groundwork for future studies on the evolution of miRNAs responsive to P. sojae.


Asunto(s)
MicroARNs , Phytophthora , MicroARNs/genética , MicroARNs/metabolismo , Glycine max/genética , Glycine max/metabolismo , Phytophthora/genética , Biología Computacional , Análisis de Secuencia de ARN , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
6.
Molecules ; 28(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37241831

RESUMEN

Antibiotics are administered to livestock at subtherapeutic levels to promote growth, and their degradation in manure is slow. High antibiotic concentrations can inhibit bacterial activity. Livestock excretes antibiotics via feces and urine, leading to their accumulation in manure. This can result in the propagation of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). Anaerobic digestion (AD) manure treatment technologies are gaining popularity due to their ability to mitigate organic matter pollution and pathogens, and produce methane-rich biogas as renewable energy. AD is influenced by multiple factors, including temperature, pH, total solids (TS), substrate type, organic loading rate (OLR), hydraulic retention time (HRT), intermediate substrates, and pre-treatments. Temperature plays a critical role, and thermophilic AD has been found to be more effective in reducing ARGs in manure compared to mesophilic AD, as evidenced by numerous studies. This review paper investigates the fundamental principles of process parameters affecting the degradation of ARGs in anaerobic digestion. The management of waste to mitigate antibiotic resistance in microorganisms presents a significant challenge, highlighting the need for effective waste management technologies. As the prevalence of antibiotic resistance continues to rise, urgent implementation of effective treatment strategies is necessary.


Asunto(s)
Ganado , Estiércol , Animales , Estiércol/microbiología , Ganado/genética , Ganado/metabolismo , Anaerobiosis , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias/metabolismo , Genes Bacterianos
7.
Mol Plant Microbe Interact ; 33(6): 798-807, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32186464

RESUMEN

In soybean (Glycine max)-rhizobium interactions, the type III secretion system (T3SS) of rhizobium plays a key role in regulating host specificity. However, the lack of information on the role of T3SS in signaling networks limits our understanding of symbiosis. Here, we conducted an RNA sequencing analysis of three soybean chromosome segment substituted lines, one female parent and two derived lines with different chromosome-substituted segments of wild soybean and opposite nodulation patterns. By analyzing chromosome-linked differentially expressed genes in the substituted segments and quantitative trait loci (QTL)-assisted selection in the substituted-segment region, genes that may respond to type III effectors to mediate plant immunity-related signaling were identified. To narrow down the number of candidate genes, QTL assistant was used to identify the candidate region consistent with the substituted segments. Furthermore, one candidate gene, GmDRR1, was identified in the substituted segment. To investigate the role of GmDRR1 in symbiosis establishment, GmDRR1-overexpression and RNA interference soybean lines were constructed. The nodule number increased in the former compared with wild-type soybean. Additionally, the T3SS-regulated effectors appeared to interact with the GmDDR1 signaling pathway. This finding will allow the detection of T3SS-regulated effectors involved in legume-rhizobium interactions.


Asunto(s)
Genes de Plantas , Glycine max/genética , Rhizobium/fisiología , Simbiosis , Sistemas de Secreción Tipo III , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN , Transducción de Señal , Glycine max/microbiología
8.
BMC Infect Dis ; 20(1): 8, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906848

RESUMEN

BACKGROUND: There have been no systematic studies of microbiological differences before and after antibiotics treatment. The aim of this study was to evaluate the effect of prior receipt of antibiotics on the microorganism distribution. METHODS: A retrospective, observational cohort study was conducted in a 3200-bed tertiary, referral, teaching hospital in eastern China. During a 2-year period, all hospitalized patients treated with antimicrobial agents were enrolled in this study. Among 48,692 patients evaluated, the 27,792 (57.1%) who were sampled within 2 days before or after administration of the first dose of antimicrobial agents were included. Distribution of clinical specimens and the microorganism were compared between before and after antibiotic drug treatment groups. RESULTS: Compared to specimens taken after antibiotics exposure, specimens taken before antibiotics exposure had a higher proportion of blood and urine specimens and a higher culture positive rate (all P < 0.001). Higher percentages of Staphylococcus aureus (9.9% vs. 8.5%, P = 0.041), non-fermenting bacteria (27.7% vs. 19.9%, P < 0.001), and fungi (8.4% vs. 4.0%, P < 0.001) were isolated from the group after antibiotics exposure, while the percentages of Streptococcus spp. (4.8% vs. 2.7%, P < 0.001), Haemophilus influenzae (2.3% vs. 0.8%, P < 0.001), and Moraxella catarrhalis (0.7% vs. 0.1%, P < 0.001) were higher in the group before antibiotics exposure. Further analysis found significant differences of microbes derived from respiratory secretions, blood or urine samples. We found, after antibiotics exposure, the separation rate of non-fermenting bacteria was significantly increased (all P < 0.05), and the separation rate of Candida spp. was higher, with statistical significance in airway secretion and urine samples (both P < 0.05), but the separation rate of Staphylococcus aureus among the three groups was not affected by antibiotics. In addition, the isolation rate of Streptococcus spp. in blood and urine samples decreased significantly (both P < 0.05) after antibiotics exposure. Interestingly, no statistical difference was found for microbes isolated from body fluid specimens between the two groups. CONCLUSIONS: The outcome revealed that antibiotic-insensitive organisms such as non-fermentative bacteria and fungi were more frequently isolated after antibiotics exposure. However, this trend might be specimen dependent and was not obvious in body fluid specimens.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Anciano , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , China , Femenino , Hongos/clasificación , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
9.
Plant Cell Environ ; 41(9): 2109-2127, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29486529

RESUMEN

Soybean is an important crop providing edible oil and protein source. Soybean oil and protein contents are quantitatively inherited and significantly affected by environmental factors. In this study, meta-analysis was conducted based on soybean physical maps to integrate quantitative trait loci (QTLs) from multiple experiments in different environments. Meta-QTLs for seed oil, fatty acid composition, and protein were identified. Of them, 11 meta-QTLs were located on hot regions for both seed oil and protein. Next, we selected 4 chromosome segment substitution lines with different seed oil and protein contents to characterize their 3 years of phenotype selection in the field. Using strand-specific RNA-sequencing analysis, we profile the time-course transcriptome patterns of soybean seeds at early maturity, middle maturity, and dry seed stages. Pairwise comparison and K-means clustering analysis revealed 7,482 differentially expressed genes and 45 expression patterns clusters. Weighted gene coexpression network analysis uncovered 46 modules of gene expression patterns. The 2 most significant coexpression networks were visualized, and 7 hub genes were identified that were involved in soybean oil and seed storage protein accumulation processes. Our results provided a transcriptome dataset for soybean seed development, and the candidate hub genes represent a foundation for further research.


Asunto(s)
Glycine max/genética , Proteínas de Almacenamiento de Semillas/genética , Semillas/crecimiento & desarrollo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Sitios de Carácter Cuantitativo , Semillas/genética , Análisis de Secuencia de ARN , Aceite de Soja/química , Aceite de Soja/genética
10.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400148

RESUMEN

In some legume⁻rhizobium symbioses, host specificity is influenced by rhizobial nodulation outer proteins (Nops). However, the genes encoding host proteins that interact with Nops remain unknown. We generated an Ensifer fredii HH103 NopP mutant (HH103ΩNopP), and analyzed the nodule number (NN) and nodule dry weight (NDW) of 10 soybean germplasms inoculated with the wild-type E. fredii HH103 or the mutant strain. An analysis of recombinant inbred lines (RILs) revealed the quantitative trait loci (QTLs) associated with NopP interactions. A soybean genomic region containing two overlapping QTLs was analyzed in greater detail. A transcriptome analysis and qRT-PCR assay were used to identify candidate genes encoding proteins that interact with NopP. In some germplasms, NopP positively and negatively affected the NN and NDW, while NopP had different effects on NN and NDW in other germplasms. The QTL region in chromosome 12 was further analyzed. The expression patterns of candidate genes Glyma.12g031200 and Glyma.12g073000 were determined by qRT-PCR, and were confirmed to be influenced by NopP.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glycine max/genética , Glycine max/microbiología , Sinorhizobium fredii/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , Nódulos de las Raíces de las Plantas/metabolismo
11.
Sci Rep ; 14(1): 15994, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987328

RESUMEN

Mitigating pre-harvest sprouting (PHS) and post-harvest food loss (PHFL) is essential for enhancing food securrity. To reduce food loss, the use of plant derived specialized metabolites can represent a good approach to develop a more eco-friendly agriculture. Here, we have discovered that soybean seeds hidden underground during winter by Tscherskia triton and Apodemus agrarius during winter possess a higher concentration of volatile organic compounds (VOCs) compared to those remaining exposed in fields. This selection by rodents suggests that among the identified volatiles, 3-FurAldehyde (Fur) and (E)-2-Heptenal (eHep) effectively inhibit the growth of plant pathogens such as Aspergillus flavus, Alternaria alternata, Fusarium solani and Pseudomonas syringae. Additionally, compounds such as Camphene (Cam), 3-FurAldehyde, and (E)-2-Heptenal, suppress the germination of seeds in crops including soybean, rice, maize, and wheat. Importantly, some of these VOCs also prevent rice seeds from pre-harvest sprouting. Consequently, our findings offer straightforward and practical approaches to seed protection and the reduction of PHS and PHFL, indicating potential new pathways for breeding, and reducing both PHS and pesticide usage in agriculture.


Asunto(s)
Agricultura , Glycine max , Semillas , Compuestos Orgánicos Volátiles , Semillas/microbiología , Semillas/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/farmacología , Animales , Glycine max/microbiología , Glycine max/crecimiento & desarrollo , Agricultura/métodos , Germinación , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Roedores/microbiología
12.
Clin Microbiol Infect ; 30(5): 660-665, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38295989

RESUMEN

OBJECTIVES: To explore the seroprevalence of anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies in non-HIV cryptococcal meningitis (CM) and assess its predictive value for survival. METHODS: This is a retrospective study of 12 years of non-HIV CM. We detected serum anti-GM-CSF autoantibodies, and evaluated the clinical features and outcomes, together with the exploration of prognostic factors for 2-week and 1-year survival. RESULTS: A total of 584 non-HIV CM cases were included. 301 of 584 patients (51.5%) were phenotypically healthy. 264 Cryptococcus isolates were obtained from cerebrospinal fluid (CSF) culture, of which 251 were identified as C. neoformans species complex and 13 as C. gattii species complex. Thirty-seven of 455 patients (8.1%) tested positive for serum anti-GM-CSF autoantibodies. Patients with anti-GM-CSF autoantibodies were more susceptible to C. gattii species complex infection (66.7% vs. 6.3%; p < 0.001) and more likely to develop pulmonary mass lesions with a diameter >3 centimetres (42.9% vs. 6.5%; p 0.001). Of 584 patients 16 (2.7%) died within 2 weeks, 77 of 563 patients (13.7%) died at 1 year, and 93 of 486 patients (19.1%) lived with disabilities at 1 year. Univariant Cox regression analysis found that anti-GM-CSF autoantibodies were associated with lower 1-year survival (HR, 2.66; 95% CI, 1.34-5.27; p 0.005). Multivariable Cox proportional hazards modelling revealed that CSF cryptococcal antigen titres ≥1:1280 were associated with both, reduced 2-week and 1-year survival rates (HR, 5.44; 95% CI, 1.23-24.10; p 0.026 and HR, 5.09; 95% CI, 1.95-13.26; p 0.001). DISCUSSION: Presence of serum anti-GM-CSF autoantibodies is predictive of poor outcomes, regardless of host immune status and the causative Cryptococcus species complex.


Asunto(s)
Autoanticuerpos , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Meningitis Criptocócica , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Autoanticuerpos/sangre , Autoanticuerpos/líquido cefalorraquídeo , Cryptococcus gattii/inmunología , Cryptococcus neoformans/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Meningitis Criptocócica/mortalidad , Meningitis Criptocócica/inmunología , Meningitis Criptocócica/diagnóstico , Pronóstico , Estudios Retrospectivos , Estudios Seroepidemiológicos
13.
Plant Methods ; 19(1): 124, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951912

RESUMEN

The 3D crop data obtained during cultivation is of great significance to screening excellent varieties in modern breeding and improvement on crop yield. With the rapid development of deep learning, researchers have been making innovations in aspects of both data preparation and deep network design for segmenting plant organs from 3D data. Training of the deep learning network requires the input point cloud to have a fixed scale, which means all point clouds in the batch should have similar scale and contain the same number of points. A good down-sampling strategy can reduce the impact of noise and meanwhile preserve the most important 3D spatial structures. As far as we know, this work is the first comprehensive study of the relationship between multiple down-sampling strategies and the performances of popular networks for plant point clouds. Five down-sampling strategies (including FPS, RS, UVS, VFPS, and 3DEPS) are cross evaluated on five different segmentation networks (including PointNet + + , DGCNN, PlantNet, ASIS, and PSegNet). The overall experimental results show that currently there is no strict golden rule on fixing down-sampling strategy for a specific mainstream crop deep learning network, and the optimal down-sampling strategy may vary on different networks. However, some general experience for choosing an appropriate sampling method for a specific network can still be summarized from the qualitative and quantitative experiments. First, 3DEPS and UVS are easy to generate better results on semantic segmentation networks. Second, the voxel-based down-sampling strategies may be more suitable for complex dual-function networks. Third, at 4096-point resolution, 3DEPS usually has only a small margin compared with the best down-sampling strategy at most cases, which means 3DEPS may be the most stable strategy across all compared. This study not only helps to further improve the accuracy of point cloud deep learning networks for crop organ segmentation, but also gives clue to the alignment of down-sampling strategies and a specific network.

14.
Anim Biosci ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37946414

RESUMEN

Objective: Jining Grey Goat is a local Chinese goat breed that is well known for its high fertility and excellent meat quality but shows low meat production performance. Numerous studies have focused on revealing the genetic mechanism of its high fertility, but its highlighting meat quality and muscle growth mechanism still need to be studied. Methods: In this research, an integrative analysis of the genomics and transcriptomics of Jining Grey goats compared with Boer goats was performed to identify candidate genes and pathways related to the mechanisms of meat quality and muscle development. Results: Our results overlap among five genes (ABHD2, FN1, PGM2L1, PRKAG3, RAVER2) and detected a set of candidate genes associated with fatty acid metabolism (PRKAG3, HADHB, FASN, ACADM), amino acid metabolism (KMT2C, PLOD3, NSD2, SETDB1, STT3B, MAN1A2, BCKDHB, NAT8L, P4HA3) and muscle development (MSTN, PPARGC1A, ANKRD2). Several pathways have also been detected, such as the FoxO signaling pathway and Apelin signaling pathway that play roles in lipid metabolism, lysine degradation, N-glycan biosynthesis, valine, leucine and isoleucine degradation that involving with amino acid metabolism. Conclusion: The comparative genomic and transcriptomic analysis of Jining Grey Goat and Boer Goat revealed the mechanisms underlying the meat quality and meat productive performance of goats. These results provide valuable information for future breeding in goats.

15.
Bioresour Technol ; 382: 129163, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37224888

RESUMEN

Microbial inoculation was an effective way to improve product quality of composting and solve traditional composting shortage. However, the effect mechanism of microbial inoculation on compost microorganisms remains unclear. Here, Shifts in bacterial community, metabolic function and co-occurrence network during the primary and secondary fermentation stages of bio-compost inoculated with effective microorganisms (EM) agent were analyzed by high-throughput sequencing and network analysis. Microbial inoculation promoted organic carbon transformation in early stage of secondary fermentation (days 27 to 31). The beneficial biocontrol bacteria were main dominant genera at the second fermentation stage. Microbial inoculation can be good for the survival of beneficial bacteria. Inoculation with microbes promoted amino acid, carbohydrate and lipid metabolism, and inhibited energy metabolism and citrate cycle (TCA cycle). Microbial inoculation could enhance complexity of bacterial network and enhance mutual cooperation among bacteria during composting.


Asunto(s)
Compostaje , Fermentación , Bacterias/metabolismo , Suelo , Estiércol/microbiología
16.
Microbiol Spectr ; 11(3): e0026423, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37125929

RESUMEN

Chronic pulmonary aspergillosis (CPA) is a chronic and progressive fungal disease with high morbidity and mortality. Avoiding diagnostic delay and misdiagnosis are concerns for CPA patients. However, diagnostic practice is poorly evaluated, especially in resource-constrained areas where Aspergillus antibody testing tools are lacking. This study aimed to investigate the diagnostic laboratory findings in a retrospective CPA cohort and to evaluate the performance of a novel Aspergillus IgG lateral flow assay (LFA; Era Biology, Tianjin, China). During January 2016 and December 2021, suspected CPA patients were screened at the Center for Infectious Diseases at Huashan Hospital. A total of 126 CPA patients were enrolled. Aspergillus IgG was positive in 72.1% with chronic cavitary pulmonary aspergillosis, 75.0% with chronic necrotizing pulmonary aspergillosis, 41.7% with simple aspergilloma, and 30.3% with Aspergillus nodule(s). The cavitary CPA subtypes had significantly higher levels of Aspergillus IgG. Aspergillus IgG was negative in 52 patients, who were finally diagnosed by histopathology, respiratory culture, and metagenomic next-generation sequencing (mNGS). Sputum culture was positive in 39.3% (42/107) of patients and Aspergillus fumigatus was the most common species (69.0%, 29/42). For CPA cohort versus controls, the sensitivity and specificity of the LFA were 55.6% and 92.7%, respectively. In a subgroup analysis, the LFA was highly sensitive for A. fumigatus-associated chronic cavitary pulmonary aspergillosis (CCPA; 96.2%, 26/27). Given the complexity of the disease, a combination of serological and non-serological tests should be considered to avoid misdiagnosis of CPA. The novel LFA has a satisfactory performance and allows earlier screening and diagnosis of CPA patients. IMPORTANCE There are concerns on avoiding diagnostic delay and misdiagnosis for chronic pulmonary aspergillosis due to its high morbidity and mortality. A proportion of CPA patients test negative for Aspergillus IgG. An optimal diagnostic strategy for CPA requires in-depth investigation based on real-world diagnostic practice, which has been rarely discussed. We summarized the clinical and diagnostic laboratory findings of 126 CPA patients with various CPA subtypes. Aspergillus IgG was the most sensitive test for diagnosing CPA. However, it was negative in 52 patients, who were finally diagnosed by non-serological tests, including biopsy, respiratory culture, and metagenomic next-generation sequencing. We also evaluated a novel Aspergillus IgG lateral flow assay, which showed a satisfactory performance in cavitary CPA patients and was highly specific to Aspergillus fumigatus. This study gives a full picture of the diagnostic practice for CPA patients in Chinese context and calls for early diagnosis of CPA with combined approaches.


Asunto(s)
Diagnóstico Tardío , Aspergilosis Pulmonar , Humanos , Estudios Retrospectivos , Aspergilosis Pulmonar/diagnóstico , Aspergillus/genética , Inmunoglobulina G , Aspergillus fumigatus , Infección Persistente , Anticuerpos Antifúngicos , Enfermedad Crónica
17.
Sci Total Environ ; 847: 157326, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35850335

RESUMEN

Particulate organic matter (POM) is a major antibiotic sorbent of the active soil organic carbon pool. Until now, the spatial heterogeneity of POM for ciprofloxacin (CFC) sorption at the microstructure scale has not been quantified. To our knowledge, this is the first study that combines a batch sorption experiment, NanoSIMS, and a 13C isotopic tracer to expound the distribution characteristics of CFC and the dominant sorption components of POM. Four POMs separated from soils (wetland, oil waste field, and farmlands) were utilized to study the sorption mechanisms using batch experiments. POM separated from the wetland was utilized for further study at the microstructure scale. The results revealed that the POM had a great CFC sorption capacity ranging from 65.20 mg g-1 to 77.51 mg g-1. Both the kinetics and NanoSIMS results showed that the sorption mechanisms included surface distribution and intra-particle diffusion. The microstructural distribution characteristics exhibited a marginal accumulation tendency and a surface accumulation effect. A combination of the NanoSIMS with the pH and salinity results explained that CFC adsorption was dominated by the organic components of POM. Overall, the present study demonstrates that the characteristics and organic components of the POM played a decisive role in the CFC-POM interactions. This study provides the first evidence of the vector potential of CFC rereleased into the environment during the POM turnover process.


Asunto(s)
Contaminantes del Suelo , Suelo , Adsorción , Antibacterianos , Carbono/química , Ciprofloxacina , Material Particulado , Suelo/química , Contaminantes del Suelo/análisis
18.
Front Plant Sci ; 13: 906751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898230

RESUMEN

The stem-related phenotype of mature stage soybean is important in soybean material selection. How to improve on traditional manual methods and obtain the stem-related phenotype of soybean more quickly and accurately is a problem faced by producers. With the development of smart agriculture, many scientists have explored soybean phenotypes and proposed new acquisition methods, but soybean mature stem-related phenotype studies are relatively scarce. In this study, we used a deep learning method within the convolutional neural network to detect mature soybean stem nodes and identified soybean structural features through a novel directed search algorithm. We subsequently obtained the pitch number, internodal length, branch number, branching angle, plant type spatial conformation, plant height, main stem length, and new phenotype-stem curvature. After 300 epochs, we compared the recognition results of various detection algorithms to select the best. Among them, YOLOX had a maximum average accuracy (mAP) of 94.36% for soybean stem nodes and scale markers. Through comparison of the phenotypic information extracted by the directed search algorithm with the manual measurement results, we obtained the Pearson correlation coefficients, R, of plant height, pitch number, internodal length, main stem length, stem curvature, and branching angle, which were 0.9904, 0.9853, 0.9861, 0.9925, 0.9084, and 0.9391, respectively. These results show that our algorithm can be used for robust measurements and counting of soybean phenotype information, which can reduce labor intensity, improve efficiency, and accelerate soybean breeding.

19.
Front Plant Sci ; 13: 922030, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909768

RESUMEN

The soybean flower and the pod drop are important factors in soybean yield, and the use of computer vision techniques to obtain the phenotypes of flowers and pods in bulk, as well as in a quick and accurate manner, is a key aspect of the study of the soybean flower and pod drop rate (PDR). This paper compared a variety of deep learning algorithms for identifying and counting soybean flowers and pods, and found that the Faster R-CNN model had the best performance. Furthermore, the Faster R-CNN model was further improved and optimized based on the characteristics of soybean flowers and pods. The accuracy of the final model for identifying flowers and pods was increased to 94.36 and 91%, respectively. Afterward, a fusion model for soybean flower and pod recognition and counting was proposed based on the Faster R-CNN model, where the coefficient of determinationR2 between counts of soybean flowers and pods by the fusion model and manual counts reached 0.965 and 0.98, respectively. The above results show that the fusion model is a robust recognition and counting algorithm that can reduce labor intensity and improve efficiency. Its application will greatly facilitate the study of the variable patterns of soybean flowers and pods during the reproductive period. Finally, based on the fusion model, we explored the variable patterns of soybean flowers and pods during the reproductive period, the spatial distribution patterns of soybean flowers and pods, and soybean flower and pod drop patterns.

20.
Front Plant Sci ; 13: 869455, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783974

RESUMEN

Genetic populations provide the basis for genetic and genomic research, and chromosome segment substitution lines (CSSLs) are a powerful tool for the fine mapping of quantitative traits, new gene mining, and marker-assisted breeding. In this study, 213 CSSLs were obtained by self-crossing, backcrossing, and marker-assisted selection between cultivated soybean (Glycine max [L.] Merr.) variety Suinong14 (SN14) and wild soybean (Glycine soja Sieb. et Zucc.) ZYD00006. The genomes of these 213 CSSLs were resequenced and 580,524 single-nucleotide polymorphism markers were obtained, which were divided into 3,780 bin markers. The seed-pod-related traits were analyzed by quantitative trait locus (QTL) mapping using CSSLs. A total of 170 QTLs were detected, and 32 QTLs were detected stably for more than 2 years. Through epistasis analysis, 955 pairs of epistasis QTLs related to seed-pod traits were obtained. Furthermore, the hundred-seed weight QTL was finely mapped to the region of 64.4 Kb on chromosome 12, and Glyma.12G088900 was identified as a candidate gene. Taken together, a set of wild soybean CSSLs was constructed and upgraded by a resequencing technique. The seed-pod-related traits were studied by bin markers, and a candidate gene for the hundred-seed weight was finely mapped. Our results have revealed the CSSLs can be an effective tool for QTL mapping, epistatic effect analysis, and gene cloning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA