RESUMEN
CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB's association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy.
Asunto(s)
Proteína BRCA2 , ADN Helicasas , Enzimas Reparadoras del ADN , Replicación del ADN , Proteínas de Unión a Poli-ADP-Ribosa , Proteína de Replicación A , ADN Helicasas/metabolismo , ADN Helicasas/genética , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Unión Proteica , Línea Celular Tumoral , Reparación del ADNRESUMEN
Cockayne syndrome group B (CSB) protein has been implicated in the repair of a variety of DNA lesions that induce replication stress. However, little is known about its role at stalled replication forks. Here, we report that CSB is recruited to stalled forks in a manner dependent upon its T1031 phosphorylation by CDK. While dispensable for MRE11 association with stalled forks in wild-type cells, CSB is required for further accumulation of MRE11 at stalled forks in BRCA1/2-deficient cells. CSB promotes MRE11-mediated fork degradation in BRCA1/2-deficient cells. CSB possesses an intrinsic ATP-dependent fork reversal activity in vitro, which is activated upon removal of its N-terminal region that is known to autoinhibit CSB's ATPase domain. CSB functions similarly to fork reversal factors SMARCAL1, ZRANB3 and HLTF to regulate slowdown in fork progression upon exposure to replication stress, indicative of a role of CSB in fork reversal in vivo. Furthermore, CSB not only acts epistatically with MRE11 to facilitate fork restart but also promotes RAD52-mediated break-induced replication repair of double-strand breaks arising from cleavage of stalled forks by MUS81 in BRCA1/2-deficient cells. Loss of CSB exacerbates chemosensitivity in BRCA1/2-deficient cells, underscoring an important role of CSB in the treatment of cancer lacking functional BRCA1/2.
Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN , ADN/genética , Proteína Homóloga de MRE11/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteína BRCA1/deficiencia , Proteína BRCA1/metabolismo , Proteína BRCA2/deficiencia , Proteína BRCA2/metabolismo , Línea Celular , Línea Celular Tumoral , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN/genética , Células HCT116 , Células HEK293 , Humanos , Proteína Homóloga de MRE11/metabolismo , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Interferencia de ARNRESUMEN
Topoisomerase inhibitor camptothecin (CPT) induces fork stalling and is highly toxic to proliferating cells. However, how cells respond to CPT-induced fork stalling has not been fully characterized. Here, we report that Cockayne syndrome group B (CSB) protein inhibits PRIMPOL-dependent fork repriming in response to a low dose of CPT. At a high concentration of CPT, CSB is required to promote the restart of DNA replication through MUS81-RAD52-POLD3-dependent break-induced replication (BIR). In the absence of CSB, resumption of DNA synthesis at a high concentration of CPT can occur through POLQ-LIG3-, LIG4-, or PRIMPOL-dependent pathways, which are inhibited, respectively, by RAD51, BRCA1, and BRCA2 proteins. POLQ and LIG3 are core components of alternative end joining (Alt-EJ), whereas LIG4 is a core component of nonhomologous end joining (NHEJ). These results suggest that CSB regulates fork restart pathway choice following high-dosage CPT-induced fork stalling, promoting BIR but inhibiting Alt-EJ, NHEJ, and fork repriming. We find that loss of CSB and BRCA2 is a toxic combination to genomic stability and cell survival at a high concentration of CPT, which is likely due to accumulation of ssDNA gaps, underscoring an important role of CSB in regulating the therapy response in cancers lacking functional BRCA2.
Asunto(s)
Reparación del ADN , Replicación del ADN , Reparación del ADN por Unión de Extremidades , Camptotecina/farmacologíaRESUMEN
The study identified the blood-entering components of Sijunzi Decoction after gavage administration in rats by UPLC-Q-TOF-MS/MS, and investigated the mechanism of Sijunzi Decoction in treating Alzheimer's disease by virtue of network pharmacology, molecular docking, and experimental verification. The blood-entering components of Sijunzi Decoction were identified based on the mass spectra and data from literature and databases. The potential targets of the above-mentioned blood-entering components in the treatment of Alzheimer's disease were searched against PharmMapper, OMIM, DisGeNET, GeneCards, and TTD. Next, STRING was employed to establish a protein-protein interaction(PPI) network. DAVID was used to perform the Gene Ontology(GO) annotation and the Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. Cytoscape 3.9.0 was used to carry out visual analysis. AutoDock Vina and PyMOL were used for molecular docking of the blood-entering components with the potential targets. Finally, the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway enriched by the KEGG analysis was selected for validation by animal experiments. The results showed that 17 blood-entering components were detected in the serum samples after administration. Among them, poricoic acid B, liquiritigenin, atractylenolide â ¡, atractylenolide â ¢, ginsenoside Rb_1, and glycyrrhizic acid were the key components of Sijunzi Decoction in treating Alzheimer's disease. HSP90AA1, PPARA, SRC, AR, and ESR1 were the main targets for Sijunzi Decoction to treat Alzheimer's disease. Molecular docking showed that the components bound well with the targets. Therefore, we hypothesized that the mechanism of Sijunzi Decoction in treating Alzheimer's disease may be associated with the PI3K/Akt, cancer treatment, and mitogen-activated protein kinase(MAPK) signaling pathways. The results of animal experiments showed that Sijunzi Decoction significantly attenuated the neuronal damage in the hippocampal dentate gyrus area, increased the neurons, and raised the ratios of p-Akt/Akt and p-PI3K/PI3K in the hippocampus of mice. In conclusion, Sijunzi Decoction may treat Alzheimer's disease by activating the PI3K/Akt signaling pathway. The findings of this study provide a reference for further studies about the mechanism of action and clinical application of Sijunzi Decoction.
Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Animales , Ratones , Ratas , Proteínas Proto-Oncogénicas c-akt , Farmacología en Red , Enfermedad de Alzheimer/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/genética , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/farmacologíaRESUMEN
The study investigated the effects of different processed products of Polygonati Rhizoma(black bean-processed Polygonati Rhizoma, BBPR; stewed Polygonati Rhizoma, SPR) on the urinary metabolites in a rat model of Alzheimer's disease(AD). Sixty SPF-grade male SD rats were randomized into a control group, a model group, a donepezil group, a BBPR group, and a SPR group, with twelve rats in each group. Other groups except the control group were administrated with D-galactose injection(100 mg·kg~(-1)) once a day for seven weeks. The control group was administrated with an equal volume of normal saline once a day for seven consecutive weeks. After three weeks of D-galactose injection, bilateral hippocampal Aß_(25-35) injections were performed for modeling. The rats were administrated with corresponding drugs(10 mL·kg~(-1)) by gavage since week 2, and the rats in the model and control group with an equal volume of double distilled water once a day for 35 continuous days. The memory behaviour and pathological changes in the hippocampal tissue were observed. The untargeted metabolites in the urine were detected by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q/TOF-MS). Principal component analysis(PCA) and orthogonal partial least square-discriminant analysis(OPLS-DA) were employed to characterize and screen differential metabolites and potential biomarkers, for which the metabolic pathway enrichment analysis was conducted. The results indicated that BBPR and SPR increased the new object recognition index, shortened the escape latency, and increased the times of crossing the platform of AD rats in the Morris water maze test. The results of hematoxylin-eosin(HE) staining showed that the cells in the hippocampal tissue of the drug administration groups were closely arranged. Moreover, the drugs reduced the content of interleukin-6(IL-6, P<0.01) and tumor necrosis factor-α(TNF-α) in the hippocampal tissue, which were more obvious in the BBPR group(P<0.05). After screening, 15 potential biomarkers were identified, involving two metabolic pathways: dicoumarol pathway and piroxicam pathway. BBPR and SPR may alleviate AD by regulating the metabolism of dicoumarol and piroxicam.
Asunto(s)
Enfermedad de Alzheimer , Ratas , Masculino , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Cromatografía Líquida de Alta Presión/métodos , Ratas Sprague-Dawley , Dicumarol , Galactosa , Piroxicam , Metabolómica/métodos , Biomarcadores/orinaRESUMEN
This paper aimed to study the effect of Erjing Pills on the improvement of neuroinflammation of rats with Alzheimer's di-sease(AD) induced by the combination of D-galactose and Aß_(25-35) and its mechanism. SD rats were randomly divided into a sham group, a model control group, a positive drug group(donepezil, 1 mg·kg~(-1)), an Erjing Pills high-dose group(9.0 g·kg~(-1)), and an Erjing Pills low-dose group(4.5 g·kg~(-1)), with 14 rats each group. To establish the rat model of AD, Erjing Pills were intragastrically administrated to rats for 5 weeks after 2 weeks of D-galactose injection. D-galactose was intraperitoneally injected into rats for 3 weeks, and then Aß_(25-35) was injected into the bilateral hippocampus. The new object recognition test was used to evaluate the learning and memory ability of rats after 4 weeks of intragastric administration. Tissues were acquired 24 h after the last administration. The immunofluorescence method was used to detect the activation of microglia in the brain tissue of rats. The positive expressions of Aß_(1-42) and phosphory protein Tau~(404)(p-Tau~(404)) in the CA1 area of the hippocampus were detected by immunohistochemistry. The levels of inflammatory factors interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) in the brain tissue were determined by enzyme-linked immunosorbent assay(ELISA). Toll-like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)/nucleotide-binding oligomerization domain-like receptors 3(NLRP3) pathway-associated proteins in the brain tissue were determined by Western blot. The results showed that as compared with the sham group, the new object recognition index of rats in the model control group decreased significantly, the deposition of Aß_(1-42) and p-Tau~(404) positive protein in the hippocampus increased significantly, and the levels of microglia activation increased significantly in the dentate gyrus. The levels of IL-1ß, TNF-α, and IL-6 in the hippocampus of the model control group increased significantly, and the expression levels of TLR4, p-NF-κB p65/NF-κB p65, p-IκBα/IκBα, and NLRP3 proteins in the hippocampus increased significantly. Compared with the model control group, the Erjing Pill groups enhanced the new object recognition index of rats, decreased the deposition of Aß_(1-42) and the expression of p-Tau~(404) positive protein in the hippocampus, inhibited the activation of microglia in the dentate gyrus, reduced the levels of inflammatory factors IL-1ß, TNF-α, and IL-6 in the hippocampus, and down-regulated the expression levels of TLR4, p-NF-κB P65/NF-κB P65, p-IκBα/IκBα, and NLRP3 proteins in the hippocampus. In conclusion, Erjing Pills can improve the learning and memory ability of the rat model of AD presumably by improving the activation of microglia, reducing the expression levels of neuroinflammatory factors IL-1ß, TNF-α, and IL-6, inhibiting the TLR4/NF-κB/NLRP3 neuroinflammation pathway, and decreasing hippocampal deposition of Aß and expression of p-Tau, thereby restoring the hippocampal morphological structure.
Asunto(s)
FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratas , Ratas Sprague-Dawley , Inhibidor NF-kappaB alfa , Galactosa , Interleucina-6 , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4 , Factor de Necrosis Tumoral alfaRESUMEN
Elevated replication stress is evident at telomeres of about 10-15% of cancer cells, which maintain their telomeres via a homologous recombination (HR)-based mechanism, referred to as alternative lengthening of telomeres (ALT). How ALT cells resolve replication stress to support their growth remains incompletely characterized. Here, we report that CSB (also known as ERCC6) promotes recruitment of HR repair proteins (MRN, BRCA1, BLM and RPA32) and POLD3 to ALT telomeres, a process that requires the ATPase activity of CSB and is controlled by ATM- and CDK2-dependent phosphorylation. Loss of CSB stimulates telomeric recruitment of MUS81 and SLX4, components of the structure-specific MUS81-EME1-SLX1-SLX4 (MUS-SLX) endonuclease complex, suggesting that CSB restricts MUS-SLX-mediated processing of stalled forks at ALT telomeres. Loss of CSB coupled with depletion of SMARCAL1, a chromatin remodeler implicated in catalyzing regression of stalled forks, synergistically promotes not only telomeric recruitment of MUS81 but also the formation of fragile telomeres, the latter of which is reported to arise from fork stalling. These results altogether suggest that CSB-mediated HR repair and SMARCAL1-mediated fork regression cooperate to prevent stalled forks from being processed into fragile telomeres in ALT cells.
Asunto(s)
Homeostasis del Telómero , Telómero , Reparación del ADN , Endonucleasas/metabolismo , Recombinación Homóloga , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genéticaRESUMEN
A variety of endogenous and exogenous insults are capable of impeding replication fork progression, leading to replication stress. Several SNF2 fork remodelers have been shown to play critical roles in resolving this replication stress, utilizing different pathways dependent upon the nature of the DNA lesion, location on the DNA, and the stage of the cell cycle, to complete DNA replication in a manner preserving genetic integrity. Under certain conditions, however, the attempted repair may lead to additional genetic instability. Cockayne syndrome group B (CSB) protein, a SNF2 chromatin remodeler best known for its role in transcription-coupled nucleotide excision repair, has recently been shown to catalyze fork reversal, a pathway that can provide stability of stalled forks and allow resumption of DNA synthesis without chromosome breakage. Prolonged stalling of replication forks may collapse to give rise to DNA double-strand breaks, which are preferentially repaired by homology-directed recombination. CSB plays a role in repairing collapsed forks by promoting break-induced replication in S phase and early mitosis. In this review, we discuss roles of CSB in regulating the sources of replication stress, replication stress response, as well as the implications of CSB for cancer therapy.
Asunto(s)
Síndrome de Cockayne , Neoplasias , Cromatina , Síndrome de Cockayne/genética , ADN/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Neoplasias/genética , Neoplasias/terapiaRESUMEN
The present study explored the effect and mechanism of repeatedly steamed and sundried Rehmanniae Radix Praeparata(RRP) in delaying brain aging in ovariectomized mice. After ovariectomy, the mice were randomly divided into a model group, an estradiol valerate group(0.3 mg·kg~(-1)), and low-(1.0 g·kg~(-1)), medium-(2.0 g·kg~(-1)), and high-dose(4.0 g·kg~(-1)) RRP groups, and a sham operation group was also set up, with 15 mice in each group. One week after the operation, intragastric administration was carried out for 15 consecutive weeks. The step-down test and Morris water maze test were used to detect the behavioral changes of mice. HE staining and Nissl staining were used to observe the morphological changes of mouse brain tissues. Immunohistochemistry was used to detect the expression of Aß and ER_ß in mouse brain tissues. The serum estrogen levels and cholinesterase and cholinesterase transferase levels in brain tissues of mice were detected by assay kits. The extracted hippocampal protein was detected by the Nano-ESI-LC-MS system, identified by the Protein Discovery, and analyzed quantitatively and qualitatively by the SIEVE. The PANTHER Classification System was used for GO analysis and KEGG pathway enrichment analysis of the differential proteins. Compared with the sham operation group, the model group showed decreased learning and memory ability, shortened step-down latency(P<0.05), prolonged escape latency(P<0.05), reduced platform crossings and residence time in the target quadrant, scattered nerve cells in the hippocampus with enlarged intercellular space, increased expression of Aß-positive cells(P<0.05), declining expression of ER_ß-positive cells and estrogen level(P<0.05), and weakened cholinergic function(P<0.05). Compared with the model group, the RRP groups showed improved learning and memory ability, prolonged step-down latency(P<0.05), increased estrogen level(P<0.05), neatly arranged nerve cells in the hippocampus with complete morphology, declining Aß-positive cells, and elevated expression of ER_ß-positive cells. A total of 146 differential proteins were screened out by proteomics, and KEGG pathway enrichment yielded 75 signaling pathways. The number of proteins involved in the dopaminergic synapse signaling pathway was the largest, with 13 proteins involved. In summary, RRP can delay brain aging presumedly by increasing the level of estrogen, mediating the dopaminergic synapse signaling pathway, and improving cholinergic function.
Asunto(s)
Hipocampo , Proteómica , Envejecimiento , Animales , Femenino , Hipocampo/metabolismo , Aprendizaje , Ratones , Extractos Vegetales , RehmanniaRESUMEN
CSB, a member of the SWI2/SNF2 superfamily, has been implicated in evicting histones to promote the DSB pathway choice towards homologous recombination (HR) repair. However, how CSB promotes HR repair remains poorly characterized. Here we demonstrate that CSB interacts with both MRE11/RAD50/NBS1 (MRN) and BRCA1 in a cell cycle regulated manner, with the former requiring its WHD and occurring predominantly in early S phase. CSB interacts with the BRCT domain of BRCA1 and this interaction is regulated by CDK-dependent phosphorylation of CSB on S1276. The CSB-BRCA1 interaction, which peaks in late S/G2 phase, is responsible for mediating the interaction of CSB with the BRCA1-C complex consisting of BRCA1, MRN and CtIP. While dispensable for histone eviction at DSBs, CSB phosphorylation on S1276 is necessary to promote efficient MRN- and CtIP-mediated DNA end resection, thereby restricting NHEJ and enforcing the DSB repair pathway choice to HR. CSB phosphorylation on S1276 is also necessary to support cell survival in response to DNA damage-inducing agents. These results altogether suggest that CSB interacts with BRCA1 to promote DNA end resection for HR repair and that although prerequisite, CSB-mediated histone eviction alone is insufficient to promote the pathway choice towards HR.
Asunto(s)
Proteína BRCA1/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Fase G2 , Complejos Multiproteicos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Fase S , Proteína BRCA1/química , Camptotecina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN Helicasas/química , Reparación del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/química , Fase G2/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/química , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Fase S/efectos de los fármacos , Proteínas de Unión a Telómeros/metabolismoRESUMEN
Cockayne syndrome group B protein (CSB), a member of the SWI/SNF superfamily, resides in an elongating RNA polymerase II (RNAPII) complex and regulates transcription elongation. CSB contains a C-terminal winged helix domain (WHD) that binds to ubiquitin and plays an important role in DNA repair. However, little is known about the role of the CSB-WHD in transcription regulation. Here, we report that CSB is dependent upon its WHD to regulate RNAPII abundance at promoter proximal pause (PPP) sites of several actively transcribed genes, a key step in the regulation of transcription elongation. We show that two ubiquitin binding-defective mutations in the CSB-WHD, which impair CSB's ability to promote cell survival in response to treatment with cisplatin, have little impact on its ability to stimulate RNAPII occupancy at PPP sites. In addition, we demonstrate that two cancer-associated CSB mutations, which are located on the opposite side of the CSB-WHD away from its ubiquitin-binding pocket, impair CSB's ability to promote RNAPII occupancy at PPP sites. Taken together, these results suggest that CSB promotes RNAPII association with PPP sites in a manner requiring the CSB-WHD but independent of its ubiquitin-binding activity. These results further imply that CSB-mediated RNAPII occupancy at PPP sites is mechanistically separable from CSB-mediated repair of cisplatin-induced DNA damage.
Asunto(s)
ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Regulación de la Expresión Génica , Mutación , Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Polimerasa II/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Cisplatino/efectos adversos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , ADN Helicasas/química , Enzimas Reparadoras del ADN/química , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/química , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/metabolismo , Ubiquitina/metabolismoRESUMEN
TRF2 (TERF2) binds to telomeric repeats and is critical for telomere integrity. Evidence suggests that it also localizes to non-telomeric DNA damage sites. However, this recruitment appears to be precarious and functionally controversial. We find that TRF2 recruitment to damage sites occurs by a two-step mechanism: the initial rapid recruitment (phase I), and stable and prolonged association with damage sites (phase II). Phase I is poly(ADP-ribose) polymerase (PARP)-dependent and requires the N-terminal basic domain. The phase II recruitment requires the C-terminal MYB/SANT domain and the iDDR region in the hinge domain, which is mediated by the MRE11 complex and is stimulated by TERT. PARP-dependent recruitment of intrinsically disordered proteins contributes to transient displacement of TRF2 that separates two phases. TRF2 binds to I-PpoI-induced DNA double-strand break sites, which is enhanced by the presence of complex damage and is dependent on PARP and the MRE11 complex. TRF2 depletion affects non-sister chromatid homologous recombination repair, but not homologous recombination between sister chromatids or non-homologous end-joining pathways. Our results demonstrate a unique recruitment mechanism and function of TRF2 at non-telomeric DNA damage sites.
Asunto(s)
Cromátides/metabolismo , Daño del ADN , Reparación del ADN por Recombinación , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Línea Celular Tumoral , Cromátides/genética , Activación Enzimática , Células HeLa , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Telomerasa/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismoRESUMEN
BACKGROUND: Tea (Camellia sinensis (L.) O. Kuntze) is a hyper-accumulator of fluoride (F). To understand F uptake and distribution in living plants, we visually evaluated the real-time transport of F absorbed by roots and leaves using a positron-emitting (18 F) fluoride tracer and a positron-emitting tracer imaging system. RESULTS: F arrived at an aerial plant part about 1.5 h after absorption by roots, suggesting that tea roots had a retention effect on F, and then was transported upward mainly via the xylem and little via the phloem along the tea stem, but no F was observed in the leaves within the initial 8 h. F absorbed via a cut petiole (leaf 4) was mainly transported downward along the stem within the initial 2 h. Although F was first detected in the top and ipsilateral leaves, it was not detected in tea roots by the end of the monitoring. During the monitoring time, F principally accumulated in the node. CONCLUSION: F uptake by the petiole of excised leaf and root system was realized in different ways. The nodes indicated that they may play pivotal roles in the transport of F in tea plants. © 2020 Society of Chemical Industry.
Asunto(s)
Camellia sinensis/metabolismo , Fluoruros/metabolismo , Transporte Biológico , Camellia sinensis/química , Fluoruros/análisis , Floema/química , Floema/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Xilema/química , Xilema/metabolismoRESUMEN
Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs the recruitment of BRCA1, RPA and Rad51 proteins to damaged chromatin but promotes the formation of 53BP1-Rif1 damage foci in S and G2 cells. Depletion of 53BP1 rescues the formation of BRCA1 damage foci in CSB-knockout cells. In addition, knockout of CSB impairs the ATM- and Chk2-mediated DNA damage responses, promoting a premature entry into mitosis. Furthermore, we show that CSB accumulates at sites of DNA double-strand breaks (DSBs) in a transcription-dependent manner. The kinetics of DSB-induced chromatin association of CSB is distinct from that of its UV-induced chromatin association. These results reveal novel, important functions of CSB in regulating the DNA DSB repair pathway choice as well as G2/M checkpoint activation.
Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/fisiología , Línea Celular , Células Cultivadas , Daño del ADN/genética , Humanos , Cinética , Modelos Biológicos , Proteínas de Unión a Poli-ADP-Ribosa , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
TRF1, a duplex telomeric DNA binding protein, is implicated in homologous-recombination-based alternative lengthening of telomeres, known as ALT. However, how TRF1 promotes ALT activity has yet to be fully characterized. Here we report that Cdk-dependent TRF1 phosphorylation on T371 acts as a switch to create a pool of TRF1, referred to as (pT371)TRF1, which is recruited to ALT-associated PML bodies (APBs) in S and G2 phases independently of its binding to telomeric DNA. We find that phosphorylation of T371 is essential for APB formation and C-circle production, both of which are hallmarks of ALT. We show that the interaction of (pT371)TRF1 with APBs is dependent upon ATM and homologous-recombination-promoting factors Mre11 and BRCA1. In addition, (pT371)TRF1 interaction with APBs is sensitive to transcription inhibition, which also reduces DNA damage at telomeres. Furthermore, overexpression of RNaseH1 impairs (pT371)TRF1 recruitment to APBs in the presence of campothecin, an inhibitor that prevents topoisomerase I from resolving RNA-DNA hybrids. These results suggest that transcription-associated DNA damage, perhaps arising from processing RNA-DNA hybrids at telomeres, triggers (pT371)TRF1 recruitment to APBs to facilitate ALT activity.
Asunto(s)
Proteína BRCA1/genética , Proteína Quinasa CDC2/genética , Proteínas de Unión al ADN/genética , Homeostasis del Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Línea Celular , Daño del ADN/genética , Regulación de la Expresión Génica , Recombinación Homóloga/genética , Humanos , Cuerpos de Inclusión Intranucleares/genética , Proteína Homóloga de MRE11 , Fosforilación , Ribonucleasa H/genética , Telómero/genéticaRESUMEN
Higher and prolonged viral replication is critical for the increased pathogenesis of the highly pathogenic avian influenza (HPAI) subtype of H5N1 influenza A virus (IAV) over the lowly pathogenic H1N1 IAV strain. Recent studies highlighted the considerable roles of cellular miRNAs in host defence against viral infection. In this report, using a 3'UTR reporter system, we identified several putative miRNA target sites buried in the H5N1 virus genome. We found two miRNAs, miR-584-5p and miR-1249, that matched with the PB2 binding sequence. Moreover, we showed that these miRNAs dramatically down-regulated PB2 expression, and inhibited replication of H5N1 and H1N1 IAVs in A549 cells. Intriguingly, these miRNAs expression was differently regulated in A549 cells infected with the H5N1 and H1N1 viruses. Furthermore, transfection of miR-1249 inhibitor enhanced the PB2 expression and promoted the replication of H5N1 and H1N1 IAVs. These results suggest that H5N1 virus may have evolved a mechanism to escape host-mediated inhibition of viral replication through down-regulation of cellular miRNAs, which target its viral genome.
Asunto(s)
Genoma Viral , Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , MicroARNs/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Regiones no Traducidas 3' , Células A549 , Animales , Antagomirs/genética , Antagomirs/metabolismo , Secuencia de Bases , Sitios de Unión , Perros , Regulación de la Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Células de Riñón Canino Madin Darby , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Unión Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Replicación Viral/genéticaRESUMEN
TRF1, a duplex telomeric DNA-binding protein, plays an important role in telomere metabolism. We have previously reported that a fraction of endogenous TRF1 can stably exist free of telomere chromatin when it is phosphorylated at T371 by Cdk1; however, the role of this telomere-free (pT371)TRF1 has yet to be fully characterized. Here we show that phosphorylated (pT371)TRF1 is recruited to sites of DNA damage, forming damage-induced foci in response to ionizing radiation (IR), etoposide and camptothecin. We find that IR-induced (pT371)TRF1 foci formation is dependent on the ATM- and Mre11/Rad50/Nbs1-mediated DNA damage response. While loss of functional BRCA1 impairs the formation of IR-induced (pT371)TRF1 foci, depletion of either 53BP1 or Rif1 stimulates IR-induced (pT371)TRF1 foci formation. In addition, we show that TRF1 depletion or the lack of its phosphorylation at T371 impairs DNA end resection and repair of nontelomeric DNA double-strand breaks by homologous recombination. The lack of TRF1 phosphorylation at T371 also hampers the activation of the G2/M checkpoint and sensitizes cells to PARP inhibition, IR and camptothecin. Collectively, these results reveal a novel but important function of phosphorylated (pT371)TRF1 in facilitating DNA double-strand break repair and the maintenance of genome integrity.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/fisiología , Línea Celular , Puntos de Control de la Fase G2 del Ciclo Celular , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Fosforilación , Proteína 1 de Unión al Supresor Tumoral P53RESUMEN
Iris lactea var. chinensis (I. lactea var. chinensis) is a widely adapted perennial species with a high level of copper tolerance. To evaluate the role of metallothioneins (MTs) in copper tolerance in I. lactea var. chinensis, a full-length cDNA homologue of MT2, designated IlMT2b (GenBank accession No. AB907788), was cloned using the RACE-PCR method. The expression level of IlMT2b in the leaves and roots of I. lactea var. chinensis was induced in response to copper (Cu) treatment. Ectopic expression of IlMT2b in Arabidopsis thaliana increased the Cu concentration and reduced H2O2 production in the transgenic plants. After treatment with 50 and 100 µM Cu, the root length of two transgenic seedlings was respectively about 1.5- and 3-fold longer than that of the wild-type. Together, these results suggested that IlMT2b may represent a useful target gene for the phytoremediation of Cu-polluted soil.
Asunto(s)
Arabidopsis/metabolismo , Cobre/toxicidad , Regulación de la Expresión Génica de las Plantas/fisiología , Género Iris/metabolismo , Metalotioneína/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Peróxido de Hidrógeno/metabolismo , Género Iris/genética , Metalotioneína/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantones/metabolismoRESUMEN
Ataxia telangiectasia mutated (ATM), a PI-3 kinase essential for maintaining genomic stability, has been shown to regulate TRF1, a negative mediator of telomerase-dependent telomere extension. However, little is known about ATM-mediated TRF1 phosphorylation site(s) in vivo. Here, we report that ATM phosphorylates S367 of TRF1 and that this phosphorylation renders TRF1 free of chromatin. We show that phosphorylated (pS367)TRF1 forms distinct non-telomeric subnuclear foci and that these foci occur predominantly in S and G2 phases, implying that their formation is cell cycle regulated. We show that phosphorylated (pS367)TRF1-containing foci are sensitive to proteasome inhibition. We find that a phosphomimic mutation of S367D abrogates TRF1 binding to telomeric DNA and renders TRF1 susceptible to protein degradation. In addition, we demonstrate that overexpressed TRF1-S367D accumulates in the subnuclear domains containing phosphorylated (pS367)TRF1 and that these subnuclear domains overlap with nuclear proteasome centers. Taken together, these results suggest that phosphorylated (pS367)TRF1-containing foci may represent nuclear sites for TRF1 proteolysis. Furthermore, we show that TRF1 carrying the S367D mutation is unable to inhibit telomerase-dependent telomere lengthening or to suppress the formation of telomere doublets and telomere loss in TRF1-depleted cells, suggesting that S367 phosphorylation by ATM is important for the regulation of telomere length and stability.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Homeostasis del Telómero , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Línea Celular , Núcleo Celular/química , Núcleo Celular/enzimología , Humanos , Mutación , Fosforilación , Inhibidores de Proteasoma , Telomerasa/metabolismo , Telómero/química , Proteína 1 de Unión a Repeticiones Teloméricas/análisis , Proteína 1 de Unión a Repeticiones Teloméricas/genéticaRESUMEN
The majority of Cockayne syndrome (CS) patients carry a mutation in Cockayne Syndrome group B (CSB), a large nuclear protein implicated in DNA repair, transcription and chromatin remodeling. However, whether CSB may play a role in telomere metabolism has not yet been characterized. Here, we report that CSB physically interacts with TRF2, a duplex telomeric DNA binding protein essential for telomere protection. We find that CSB localizes at a small subset of human telomeres and that it is required for preventing the formation of telomere dysfunction-induced foci (TIF) in CS cells. We find that CS cells or CSB knockdown cells accumulate telomere doublets, the suppression of which requires CSB. We find that overexpression of CSB in CS cells promotes telomerase-dependent telomere lengthening, a phenotype that is associated with a decrease in the amount of telomere-bound TRF1, a negative mediator of telomere length maintenance. Furthermore, we show that CS cells or CSB knockdown cells exhibit misregulation of TERRA, a large non-coding telomere repeat-containing RNA important for telomere maintenance. Taken together, these results suggest that CSB is required for maintaining the homeostatic level of TERRA, telomere length and integrity. These results further imply that CS patients carrying CSB mutations may be defective in telomere maintenance.