Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 29(14): 21921-21935, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265968

RESUMEN

Monitoring cloud droplet effective radius (re) is of great significance for studying aerosol-cloud interactions (ACI). Passive satellite retrieval, e.g., MODIS (Moderate Resolution Imaging Spectroradiometer), requires sunlight. This requirement prompted developing re retrieval using active sensors, e.g., CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). Given the highest sensitivity of vertically homogeneous clouds to aerosols that feed to cloud base, here CALIOP profile measurements were used for the first time to quantify cloud vertical homogeneity and estimate cloud re during both day and night. Comparison using simultaneous Aqua-MODIS measurements demonstrates that CALIOP retrieval has the highest accuracy for vertically homogeneous clouds, with R2 (MAE, RMSE) of 0.72 (1.75 µm, 2.25 µm), while the accuracy is lowest for non-homogeneous clouds, with R2 (MAE, RMSE) of 0.60 (2.90 µm, 3.70 µm). The improved re retrieval in vertically homogeneous clouds provides a basis for possible breakthrough insights in ACI by CALIOP since re in such clouds reflects most directly aerosol effects on cloud properties. Global day-night maps of cloud vertical homogeneity and respective re are presented.

2.
Proc Natl Acad Sci U S A ; 113(21): 5828-34, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-26944081

RESUMEN

Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day.

3.
Nat Commun ; 13(1): 4289, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918331

RESUMEN

The known effects of thermodynamics and aerosols can well explain the thunderstorm activity over land, but fail over oceans. Here, tracking the full lifecycle of tropical deep convective cloud clusters shows that adding fine aerosols significantly increases the lightning density for a given rainfall amount over both ocean and land. In contrast, adding coarse sea salt (dry radius > 1 µm), known as sea spray, weakens the cloud vigor and lightning by producing fewer but larger cloud drops, which accelerate warm rain at the expense of mixed-phase precipitation. Adding coarse sea spray can reduce the lightning by 90% regardless of fine aerosol loading. These findings reconcile long outstanding questions about the differences between continental and marine thunderstorms, and help to understand lightning and underlying aerosol-cloud-precipitation interaction mechanisms and their climatic effects.

4.
Science ; 363(6427)2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30655446

RESUMEN

A lack of reliable estimates of cloud condensation nuclei (CCN) aerosols over oceans has severely limited our ability to quantify their effects on cloud properties and extent of cooling by reflecting solar radiation-a key uncertainty in anthropogenic climate forcing. We introduce a methodology for ascribing cloud properties to CCN and isolating the aerosol effects from meteorological effects. Its application showed that for a given meteorology, CCN explains three-fourths of the variability in the radiative cooling effect of clouds, mainly through affecting shallow cloud cover and water path. This reveals a much greater sensitivity of cloud radiative forcing to CCN than previously reported, which means too much cooling if incorporated into present climate models. This suggests the existence of compensating aerosol warming effects yet to be discovered, possibly through deep clouds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA