Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Theor Appl Genet ; 135(1): 273-290, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34661697

RESUMEN

KEY MESSAGE: Two read depth methods were jointly used in next-generation sequencing data to identify deletions in maize population. GWAS by deletions were analyzed for gene expression pattern and classical traits, respectively. Many studies have confirmed that structural variation (SV) is pervasive throughout the maize genome. Deletion is one type of SV that may impact gene expression and cause phenotypic changes in quantitative traits. In this study, two read count approaches were used to analyze the deletions in the whole-genome sequencing data of 270 maize inbred lines. A total of 19,754 deletion windows overlapped 12,751 genes, which were unevenly distributed across the genome. The deletions explained population structure well and correlated with genomic features. The deletion proportion of genes was determined to be negatively correlated with its expression. The detection of gene expression quantitative trait loci (eQTL) indicated that local eQTL were fewer but had larger effects than distant ones. The common associated genes were related to basic metabolic processes, whereas unique associated genes with eQTL played a role in the stress or stimulus responses in multiple tissues. Compared with the eQTL detected by SNPs derived from the same sequencing data, 89.4% of the associated genes could be detected by both markers. The effect of top eQTL detected by SNPs was usually larger than that detected by deletions for the same gene. A genome-wide association study (GWAS) on flowering time and plant height illustrated that only a few loci could be consistently captured by SNPs, suggesting that combining deletion and SNP for GWAS was an excellent strategy to dissect trait architecture. Our findings will provide insights into characteristic and biological function of genome-wide deletions in maize.


Asunto(s)
Eliminación de Gen , Variación Genética , Genoma de Planta , Zea mays/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Secuenciación Completa del Genoma , Zea mays/fisiología
2.
Materials (Basel) ; 17(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673135

RESUMEN

Developing advanced underwater welding technology for titanium, which is the key structural material for underwater applications, is of great significance for the design, fabrication, and maintenance of submarine equipment. In this study, in order to investigate the underwater welding microstructure and mechanical properties of Ti-4Al-2V alloy, underwater wet laser welding was conducted on Ti-4Al-2V alloy using varying laser power. The microstructure and properties of the welding joints were characterized and analyzed. The microstructure of the heat-affected zone and fusion zone in the welding joints are not significantly different from those of welding in air, but a mixed oxide layer composed of Al2O3 and TiO2 is formed on the surface of the fusion zone. Due to internal stress, a large number of cracks initiate on the oxide layer and propagate to the joints. In the 4 kW and 5 kW joints, a penetrating crack formed due to the excessive accumulation of internal stress breaking up the α phase. The mechanical properties of the joints are significantly affected by the laser power. The tensile strength of the 3 kW and 4 kW joints is comparable to that of the base metal, which is about 600 MPa, while the 5 kW joint shows brittle fracture with no plastic deformation and 228 MPa strength. This research lays a solid foundation for understanding the underwater wet laser welding behavior of titanium alloys.

3.
Water Res ; 260: 121955, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38909424

RESUMEN

Redox conditions play a decisive role in regulating contaminant and nutrient transformation in groundwater. Here we quantitatively described and interpreted the temporal and spatial variations of aquifer reduction capacity formation in lens-embedded heterogeneous aquifers in 1-D columns. Experimental results indicated that the aquifer reduction capacity exported from the low-permeability lens permeated into the downstream sandy zones, where it subsequently accumulated and extended. Reactive transport modeling suggested that reduction capacity within the lens preferentially diffused to the transmissive zones around the lens-sand interface, and was then transported via convection to downstream transmissive zones. A low-permeability lens of the same volume, but more elongated in the flow direction, led to less concentrated reduction capacity but extended further downgradient from the lens. The increased flow velocity attenuated the maintenance of aquifer reduction capacity by enhancing mixing and diluting processes in the transmissive zones. The reduction zones formed downstream from the low-permeability lens were hotpots for resisting the oxidative perturbation by O2. This study highlights the important role of low-permeability lenses as large and long-term electron pools for the transmissive zones, and thus providing aquifer reduction capacity for contaminant transformation and remediation in heterogeneous aquifers.

4.
ACS Appl Mater Interfaces ; 16(15): 19764-19770, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38577833

RESUMEN

Two-dimensional van der Waals (2D vdW) materials are widely used in spin-orbit torque (SOT) devices. Recent studies have demonstrated the low crystal symmetry and large spin Hall conductivity of 2D vdW ZrSe3, indicating its potential applications in low-power SOT devices. Here, we study the interfacial contribution of SOTs and current-induced magnetization switching in the ZrSe3/Py (Ni80Fe20) and ZrSe3/Cu/Py heterostructures. SOT efficiencies of samples are detected by the spin-torque ferromagnetic resonance (ST-FMR), and out-of-plane damping-like torque (τB) is observed. The ratio between τB and the field-like torque (τA) decreases from 0.175 to 0.138 when inserting 1 nm Cu at the interface and then drops to 0.001 when the thickness of Cu intercalation is 2 nm, indicating that Cu intercalation inhibits the τB component of SOT. Moreover, the SOT efficiency is increased from 3.05 to 5.21, which may be attributed to the Cu intercalation being beneficial to improve the interface between Py and ZrSe3. Theoretical calculation has shown that the Cu spacer can change the conductivity of ZrSe3 from semiconductor to conductor, thereby decreasing the Schottky barrier and increasing the transmission efficiency of the spin current. Furthermore, magneto-optical Kerr effect (MOKE) microscopy is employed to verify the current-driven magnetization switching in these structures. In comparison to the ZrSe3/Py bilayer, the critical current density of ZrSe3/Cu/Py is reduced when inserting 1 nm Cu, demonstrating the higher SOT efficiency and lower power consumption in ZrSe3/Cu/Py structures.

5.
Environ Int ; 171: 107710, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566719

RESUMEN

In recent years, ozone pollution in China has been shown to increase in frequency and persistence despite the concentrations of fine particulate matter (PM2.5) decreasing steadily. Open crop straw burning (OCSB) activities are extensive in China and emit large amounts of trace gases during a short period that could lead to elevated ozone concentrations. This study addresses the impacts of OCSB emissions on ground-level ozone concentration and the associated health impact in China. Total VOCs and NOx emissions from OCSB in 2018 were 798.8 Gg and 80.6 Gg, respectively, with high emissions in Northeast China (31.7%) and North China (23.7%). Based on simulations conducted for 2018, OCSB emissions are estimated to contribute up to 0.95 µg/m3 increase in annual averaged maximum daily 8-hour (MDA8) ozone and up to 1.35 µg/m3 for the ozone season average. The significant impact of OCSB emissions on ozone is mainly characterized by localized and episodic (e.g., daily) changes in ozone concentration, up to 20 µg/m3 in North China and Yangtze River Delta region and even more in Northeast China during the burning season. With the implementation of straw burning bans, VOCs and NOx emissions from OCSB dropped substantially by 46.9%, particularly over YRD (76%) and North China (60%). Consequently, reduced OCSB emissions result in an overall decrease in annual averaged MDA8 ozone, and reductions in monthly MDA8 ozone could be over 10 µg/m3 in North China. The number of avoided premature death due to reduced OCSB emissions (considering both PM2.5 and ozone) is estimated to be 6120 (95% Confidence Interval: 5320-6800), with most health benefits gained over east and central China. Our results illustrate the effectiveness of straw burning bans in reducing ozone concentrations at annual and national scales and the substantial ozone impacts from OCSB events at localized and episodic scales.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , China
6.
Huan Jing Ke Xue ; 43(6): 3357-3364, 2022 Jun 08.
Artículo en Zh | MEDLINE | ID: mdl-35686806

RESUMEN

Soil NO emissions represent an important source of atmospheric nitric oxide (NO) and play an important role in atmospheric chemistry. Based on the latest BDSNP algorithm, this study estimated the soil NO emissions over the Yangtze River Delta region for the year 2018 and further analyzed the associated temporal and spatial variations and uncertainties. The results showed that the annual soil NO emissions in 2018 over the YRD region was 213.6 kt, accounting for 7.3% of the total anthropogenic NOx emissions. Areas with high emissions were mainly concentrated in northern Anhui Province and most parts of Jiangsu Province. In terms of monthly variations, soil NO emissions peaked in June, accounting for 19.9% of the annual emissions and 19.7% of anthropogenic NOx emissions in June. In terms of daily variations, soil NO emissions peaked around 16:00 and accounted for 5.5% of daily emissions. Soil NO emissions came from three components:soil background, nitrogen fertilizer application, and nitrogen deposition. Nitrogen fertilizer application was the main source of soil NO emissions, accounting for up to 77.8%. With the in-depth reduction in NOx emissions from motor vehicles and industries, the importance of soil NO emissions will become increasingly prominent.


Asunto(s)
Contaminantes Atmosféricos , Suelo , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Fertilizantes , Óxido Nítrico , Nitrógeno/análisis
7.
Sci Total Environ ; 789: 147935, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34049144

RESUMEN

Open biomass burning (OBB) plays an important role in air pollution and climate change by releasing short-term but intensive amounts of particulate matter and gaseous air pollutants. During past years, policies with respect to prohibition on open straw burning have been issued in China in order to mitigate the air pollution problems and the effectiveness of these straw burning bans in different regions remains to be evaluated. In this study, open crop straw burning (OCSB) emissions during 2010-2018 were analyzed based on a commonly used emission inventory with high spatial and temporal resolution. High emissions concentrated over Northeast China (31.8% of national total PM2.5 emissions in 2018), East China (24.0%), and North China (16.6%). Simulations based on an integrated meteorology-air quality modeling system and an exposure-response function show that OCSB emissions could increase monthly PM2.5 concentration by as much as 10 µg/m3 during burning seasons in Northeast China and were associated with 4741 premature deaths in 2018. Spatial heterogeneities were observed with respect to the trends of OCSB emissions during 2010-2018. In East China, North China, and Central China, OCSB emissions showed a general declining trend since 2013 while an opposing increasing trend was observed in Northeast China with peak emissions in 2017. Comparing 2013 (before intensive implementation of straw burning bans) and 2018 (after), national total PM2.5 emissions from OCSB activities decreased by 46.9%, ranging from -14.1% to +70% depending on the specific regions. Northeast China is the only region that showed higher OCSB emissions in 2018 compared to 2013, probably associated with the relatively delayed implementation of the straw burning bans. Avoided number of premature deaths due to reduced OCSB emissions was estimated to be 4256 on a national scale, with most health benefits gained in East and Central China. Results from this study demonstrate the importance of OCSB contribution to PM2.5 concentrations and spatial heterogeneities exist in terms of the effectiveness of the straw burning bans in reducing OCSB emissions and gained health benefits.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente , Material Particulado/análisis
8.
Nanoscale ; 13(35): 14688-14693, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533556

RESUMEN

Recent advances in two-dimensional van der Waals (2D vdW) magnets provide new platforms to study their magnetism in reduced dimensions. However, most of the studies performed to date have been limited to low temperatures. Here, we report the proximity effect of a 2D vdW magnet Fe3GeTe2 (FGT) on nickel (Ni) films at room temperature. Ferromagnetic resonance measurements show that FGT can increase the perpendicular magnetic anisotropy (PMA) and magnetic damping of the adjacent Ni film. Such an interfacial effect is observed at room temperature, and becomes more pronounced as the temperature decreases. A similar effect is also achieved in another 2D heterostructure of Cr2Ge2Te6/Ni, implying its universality in a variety of 2D magnetic materials. Our work provides a new approach for utilizing 2D magnets in spintronics at room temperature.

9.
Plants (Basel) ; 10(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834621

RESUMEN

Gray leaf spot (GLS), caused by the fungal pathogen Cercospora zeina (C. zeina), is one of the most destructive soil-borne diseases in maize (Zea mays L.), and severely reduces maize production in Southwest China. However, the mechanism of resistance to GLS is not clear and few resistant alleles have been identified. Two maize inbred lines, which were shown to be resistant (R6) and susceptible (S8) to GLS, were injected by C. zeina spore suspensions. Transcriptome analysis was carried out with leaf tissue at 0, 6, 24, 144, and 240 h after inoculation. Compared with 0 h of inoculation, a total of 667 and 419 stable common differentially expressed genes (DEGs) were found in the resistant and susceptible lines across the four timepoints, respectively. The DEGs were usually enriched in 'response to stimulus' and 'response to stress' in GO term analysis, and 'plant-pathogen interaction', 'MAPK signaling pathways', and 'plant hormone signal transduction' pathways, which were related to maize's response to GLS, were enriched in KEGG analysis. Weighted-Genes Co-expression Network Analysis (WGCNA) identified two modules, while twenty hub genes identified from these indicated that plant hormone signaling, calcium signaling pathways, and transcription factors played a central role in GLS sensing and response. Combing DEGs and QTL mapping, five genes were identified as the consensus genes for the resistance of GLS. Two genes, were both putative Leucine-rich repeat protein kinase family proteins, specifically expressed in R6. In summary, our results can provide resources for gene mining and exploring the mechanism of resistance to GLS in maize.

10.
Huan Jing Ke Xue ; 41(8): 3511-3517, 2020 Aug 08.
Artículo en Zh | MEDLINE | ID: mdl-33124323

RESUMEN

Intermediate volatility organic compounds (IVOCs) are important precursors of secondary organic aerosols (SOA) but are currently not included in the conventional emissions inventories. Biomass burning represents an important source of IVOCs that could contribute to SOA formation. This study estimated the IVOC emissions from biomass burning in the Yangtze River Delta (YRD) region from 2010 to 2018 based on the fire inventory from NCAR (FINN) and the IVOCs/primary organic aerosol (POA) ratio reported in literature. During this period, the total number of fire events over the YRD region presented a declining trend, with an average of 104 fire events detected per year. During 2016-2018, the average number of fire events was approximately 6000 per year, which was 60% less than that prior to 2016. In terms of the monthly variation, the period from May to August was the period with the most fires observed, which was followed by a small peak in October. The results calculated based on the IVOCs/POA ratio method showed that the IVOC emissions from biomass burning exhibited large differences with different combinations of POA/OC and IVOCs/POA ratios, ranging from a maximum of 305.7×104 t to as small as 10.5×104 t. Monte Carlo simulation revealed that the uncertainties associated with the IVOCs/POA ratio method range from -99% to 68%.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Monitoreo del Ambiente , Ríos , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis , Volatilización
11.
Geohealth ; 4(9): e2020GH000272, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32838101

RESUMEN

The outbreak of COVID-19 in China has led to massive lockdowns in order to reduce the spread of the epidemic and control human-to-human transmission. Subsequent reductions in various anthropogenic activities have led to improved air quality during the lockdown. In this study, we apply a widely used exposure-response function to estimate the short-term health impacts associated with PM2.5 changes over the Yangtze River Delta (YRD) region due to COVID-19 lockdown. Concentrations of PM2.5 during lockdown period reduced by 22.9% to 54.0% compared to pre-lockdown level. Estimated PM2.5-related daily premature mortality during lockdown period is 895 (95% confidential interval: 637-1,081), which is 43.3% lower than pre-lockdown period and 46.5% lower compared with averages of 2017-2019. According to our calculation, total number of avoided premature death aassociated with PM2.5 reduction during the lockdown is estimated to be 42.4 thousand over the YRD region, with Shanghai, Wenzhou, Suzhou (Jiangsu province), Nanjing, and Nantong being the top five cities with largest health benefits. Avoided premature mortality is mostly contributed by reduced death associated with stroke (16.9 thousand, accounting for 40.0%), ischemic heart disease (14.0 thousand, 33.2%), and chronic obstructive pulmonary disease (7.6 thousand, 18.0%). Our calculations do not support or advocate any idea that pandemics produce a positive note to community health. We simply present health benefits from air pollution improvement due to large emission reductions from lowered human and industrial activities. Our results show that continuous efforts to improve air quality are essential to protect public health, especially over city-clusters with dense population.

12.
Sci Total Environ ; 732: 139282, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32413621

RESUMEN

The outbreak of COVID-19 has spreaded rapidly across the world. To control the rapid dispersion of the virus, China has imposed national lockdown policies to practise social distancing. This has led to reduced human activities and hence primary air pollutant emissions, which caused improvement of air quality as a side-product. To investigate the air quality changes during the COVID-19 lockdown over the YRD Region, we apply the WRF-CAMx modelling system together with monitoring data to investigate the impact of human activity pattern changes on air quality. Results show that human activities were lowered significantly during the period: industrial operations, VKT, constructions in operation, etc. were significantly reduced, leading to lowered SO2, NOx, PM2.5 and VOCs emissions by approximately 16-26%, 29-47%, 27-46% and 37-57% during the Level I and Level II response periods respectively. These emission reduction has played a significant role in the improvement of air quality. Concentrations of PM2.5, NO2 and SO2 decreased by 31.8%, 45.1% and 20.4% during the Level I period; and 33.2%, 27.2% and 7.6% during the Level II period compared with 2019. However, ozone did not show any reduction and increased greatly. Our results also show that even during the lockdown, with primary emissions reduction of 15%-61%, the daily average PM2.5 concentrations range between 15 and 79 µg m-3, which shows that background and residual pollutions are still high. Source apportionment results indicate that the residual pollution of PM2.5 comes from industry (32.2-61.1%), mobile (3.9-8.1%), dust (2.6-7.7%), residential sources (2.1-28.5%) in YRD and 14.0-28.6% contribution from long-range transport coming from northern China. This indicates that in spite of the extreme reductions in primary emissions, it cannot fully tackle the current air pollution. Re-organisation of the energy and industrial strategy together with trans-regional joint-control for a full long-term air pollution plan need to be further taken into account.


Asunto(s)
Contaminación del Aire , Betacoronavirus , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Contaminantes Atmosféricos , COVID-19 , China , Monitoreo del Ambiente , Actividades Humanas , Humanos , Material Particulado , SARS-CoV-2
13.
Adv Sci (Weinh) ; 7(19): e2001435, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35403380

RESUMEN

Coronavirus disease 2019 (COVID-19) has spread worldwide. To date, no specific drug for COVID-19 has been developed. Thus, this randomized, open-label, controlled clinical trial (ChiCTR2000029853) was performed in China. A total of 20 mild and common COVID-19 patients were enrolled and randomly assigned to receive azvudine and symptomatic treatment (FNC group), or standard antiviral and symptomatic treatment (control group). The mean times of the first nucleic acid negative conversion (NANC) of ten patients in the FNC group and ten patients in the control group are 2.60 (SD 0.97; range 1-4) d and 5.60 (SD 3.06; range 2-13) d, respectively (p = 0.008). The mean times of the first NANC of four newly diagnosed subjects in the FNC group and ten subjects in the control group are 2.50 (SD 1.00; range 2-4) d and 9.80 (SD 4.73; range 3-19) d, respectively (starting from the initial treatment) (p = 0.01). No adverse events occur in the FNC group, while three adverse events occur in the control group (p = 0.06). The preliminary results show that FNC treatment in the mild and common COVID-19 may shorten the NANC time versus standard antiviral treatment. Therefore, clinical trials of FNC treating COVID-19 with larger sample size are warranted.

14.
Front Behav Neurosci ; 9: 70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25870546

RESUMEN

Farnesoid X receptor (FXR) is a nuclear hormone receptor involved in bile acid synthesis and homeostasis. Dysfunction of FXR is involved in cholestasis and atherosclerosis. FXR is prevalent in liver, gallbladder, and intestine, but it is not yet clear whether it modulates neurobehavior. In the current study, we tested the hypothesis that mouse FXR deficiency affects a specific subset of neurotransmitters and results in an unique behavioral phenotype. The FXR knockout mice showed less depressive-like and anxiety-related behavior, but increased motor activity. They had impaired memory and reduced motor coordination. There were changes of glutamatergic, GABAergic, serotoninergic, and norepinephrinergic neurotransmission in either hippocampus or cerebellum. FXR deletion decreased the amount of the GABA synthesis enzyme GAD65 in hippocampus but increased GABA transporter GAT1 in cerebral cortex. FXR deletion increased serum concentrations of many bile acids, including taurodehydrocholic acid, taurocholic acid, deoxycholic acid (DCA), glycocholic acid (GCA), tauro-α-muricholic acid, tauro-ω-muricholic acid, and hyodeoxycholic acid (HDCA). There were also changes in brain concentrations of taurocholic acid, taurodehydrocholic acid, tauro-ω-muricholic acid, tauro-ß-muricholic acid, deoxycholic acid, and lithocholic acid (LCA). Taken together, the results from studies with FXR knockout mice suggest that FXR contributes to the homeostasis of multiple neurotransmitter systems in different brain regions and modulates neurobehavior. The effect appears to be at least partially mediated by bile acids that are known to cross the blood-brain barrier (BBB) inducing potential neurotoxicity.

15.
Artículo en Zh | MEDLINE | ID: mdl-26930926

RESUMEN

In order to further standardize the diagnosis and treatment of schistosomiasis japonica in China, on the basis of evidence-based medicine, the experts on schistosomiasis control from Hunan, Hubei and Jiangxi provinces summarized their consensuses on the disease after the discussion on the current situation and progress of clinical diagnosis and treatment of schistosomiasis in China, with the reference to the Diagnostic Criteria for Schistosomiasis (WS261-2006), which aimed to establish the therapeutic standards or guideline of schistosomiasis in China.


Asunto(s)
Consenso , Testimonio de Experto/normas , Esquistosomiasis Japónica/diagnóstico , Esquistosomiasis Japónica/terapia , China , Humanos , Guías de Práctica Clínica como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA